菲律宾海中部海域声速剖面结构及季节性变化

李攀峰, 颜中辉, 杜润林, 孙波, 刘李伟, 杨源, 于得水. 菲律宾海中部海域声速剖面结构及季节性变化[J]. 海洋地质与第四纪地质, 2021, 41(1): 147-157. doi: 10.16562/j.cnki.0256-1492.2020112301
引用本文: 李攀峰, 颜中辉, 杜润林, 孙波, 刘李伟, 杨源, 于得水. 菲律宾海中部海域声速剖面结构及季节性变化[J]. 海洋地质与第四纪地质, 2021, 41(1): 147-157. doi: 10.16562/j.cnki.0256-1492.2020112301
LI Panfeng, YAN Zhonghui, DU Runlin, SUN Bo, LIU Liwei, YANG Yuan, YU Deshui. Structures and seasonal variation of sound velocity profiles in the central Philippine Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 147-157. doi: 10.16562/j.cnki.0256-1492.2020112301
Citation: LI Panfeng, YAN Zhonghui, DU Runlin, SUN Bo, LIU Liwei, YANG Yuan, YU Deshui. Structures and seasonal variation of sound velocity profiles in the central Philippine Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 147-157. doi: 10.16562/j.cnki.0256-1492.2020112301

菲律宾海中部海域声速剖面结构及季节性变化

  • 基金项目: 中国地质调查局项目(DD20191003)
详细信息
    作者简介: 李攀峰(1987—),男,工程师,主要从事深海地质研究工作, E-mail:lpf_320@126.com
    通讯作者: 杜润林(1987—),男,助理研究员,主要从事海洋地质研究工作,E-mail:durunlin123@163.com
  • 中图分类号: P313

Structures and seasonal variation of sound velocity profiles in the central Philippine Sea

More Information
  • 利用2019年菲律宾海中部海域经质量校正后的Argo浮标数据,采用Wilson第二方程式计算得到每个浮标站位不同水深的声速值,分析了研究区声速的垂向结构、水平分布及季节性变化特征,并初步探讨了声速与海底地形的关系。结果显示研究区声速在垂向上表现为典型的三层结构,从上到下分别是混合层、主跃变层、深海等温层;声速在100 m以浅受季节影响最大,100~800 m影响程度基本一致,800 m以深逐渐减弱,1200 m以深基本不受影响。声速水平分布特征主要表现为:声道轴深度为900~1100 m,大致呈现南部较浅、北部较深的趋势,季节性变化不大;声速值在200 m以浅表现为南高北低,200~700 m为北高南低,800~1100 m为中间高、四周低,1200 m以深为南高北低。九州-帕劳海脊声道轴附近深度声速受地形影响明显低于周围海域。

  • 加载中
  • 图 1  研究区范围及水深地形图

    Figure 1. 

    图 2  研究区2019年Argo浮标站位图

    Figure 2. 

    图 3  浮标站位位置图

    Figure 3. 

    图 4  典型声速结构图

    Figure 4. 

    图 5  声层平面分布图

    Figure 5. 

    图 6  声道轴平面分布图

    Figure 6. 

    图 7  各季节标准层声速变化

    Figure 7. 

    图 8  声速平面分布图

    Figure 8. 

    图 9  经向声速剖面断面图

    Figure 9. 

    表 1  研究区各季节标准层声速值

    Table 1.  The sound velocity of the standard layer in each season

    深度/m2050100200300400500600700800
    春季最大值/(m/s)1539.21537.81537.71533.91524.01523.21523.71522.41505.81497.6
    最小值/(m/s)1516.21514.61513.91502.31491.51486.21483.71483.21481.31479.9
    变化值/(m/s)23.023.223.831.632.537.040.039.124.517.7
    平均值/(m/s)1532.61531.71530.11522.51515.115071498.214911486.41484.1
    标准差4.574.504.733.394.666.656.795.523.672.31
    夏季最大值/(m/s)1539.81540.01538.11532.01524.11522.81523.71521.41504.01497.5
    最小值/(m/s)1525.51519.31516.91506.41491.21487.61484.81483.51481.41480.4
    变化值/(m/s)14.320.621.225.633.035.238.937.922.617.0
    平均值/(m/s)1536.91534.51530.41522.51515.21506.91498.21491.21486.51484.1
    标准差2.373.624.443.034.406.957.105.433.502.20
    秋季最大值/(m/s)1538.61538.81538.31531.21523.41523.31521.01515.81506.01497.5
    最小值/(m/s)1527.41525.71518.31491.31487.81485.01484.51482.81480.11479.2
    变化值/(m/s)11.213.220.039.935.638.336.533.025.918.4
    平均值/(m/s)1536.71535.91530.51521.31514.41505.91497.114901485.71483.5
    标准差1.492.304.312.884.246.436.024.282.731.74
    冬季最大值/(m/s)1537.31537.91538.01533.51523.61523.31521.21516.61507.81499.5
    最小值/(m/s)1519.81520.21520.71509.21492.61486.91484.81483.31480.71480.7
    变化值/(m/s)17.517.717.324.330.936.436.333.227.118.8
    平均值/(m/s)1531.31531.61530.61521.31514.31506.61498.41491.51486.81484.3
    标准差4.344.394.273.045.758.017.696.084.212.71

    深度/m900100011001200130014001500160017001800
    春季最大值/(m/s)1490.81487.61486.51485.81486.21486.71487.41488.31489.31490.3
    最小值/(m/s)1479.71480.01480.41481.11482.01482.91484.21485.21486.41487.8
    变化值/(m/s)11.17.66.14.74.23.83.33.12.92.5
    平均值/(m/s)1483.01482.71482.71483.11483.71484.51485.41486.51487.61488.8
    标准差1.571.21.070.920.790.690.610.540.490.43
    夏季最大值/(m/s)1490.61487.11486.91487.01487.21487.51488.31488.81489.61490.7
    最小值/(m/s)1480.01480.01480.41481.31482.21483.01484.11485.31486.41487.7
    变化值/(m/s)10.67.16.55.75.04.54.23.53.23.0
    平均值/(m/s)1482.91482.61482.61483.01483.61484.41485.41486.51487.61488.8
    标准差1.501.181.070.960.780.660.580.530.480.42
    秋季最大值/(m/s)1490.21487.41485.51485.71485.81486.51487.21488.21489.21490.3
    最小值/(m/s)1479.31479.61479.91480.91481.91483.11484.21485.21486.51487.7
    变化值/(m/s)10.97.85.64.83.93.43.03.02.72.6
    平均值/(m/s)1482.51482.21482.31482.71483.41484.31485.21486.31487.51488.7
    标准差1.261.060.940.810.690.590.530.490.450.41
    冬季最大值/(m/s)1493.91487.81485.81485.91486.11486.71487.21488.01488.91490.0
    最小值/(m/s)1480.01480.21480.51481.21482.01482.91483.91485.01486.31487.7
    变化值/(m/s)13.87.55.34.74.13.83.33.02.62.3
    平均值/(m/s)1483.11482.61482.61483.01483.61484.41485.31486.41487.61488.8
    标准差1.831.120.970.850.750.660.600.540.490.44
    下载: 导出CSV
  • [1]

    张旭, 张永刚, 张健雪, 等. 一种新的声速剖面结构参数化方法[J]. 海洋学报: 中文版, 2011, 33(5):54-60

    ZHANG Xu, ZHANG Yonggang, ZHANG Jianxue, et al. A new model for calculating sound speed profile structure [J]. Acta Oceanologica Sinica, 2011, 33(5): 54-60.

    [2]

    吴碧, 陈长安, 林龙. 声速经验公式的适用范围分析[J]. 声学技术, 2014(6):504-507

    WU Bi, CHEN Changan, LIN Long. Analysis of applicable scope of empirical equation for sound velocity [J]. Technical Acoustics, 2014(6): 504-507.

    [3]

    张斌, 李广雪, 黄继峰. 菲律宾海构造地貌特征[J]. 海洋地质与第四纪地质, 2014, 34(2):79-88

    ZHANG Bin, LI Guangxue, HUANG Jifeng. The Tectonic Geomorphology of the Philippine sea [J]. Marine Geology & Quaternary Geology, 2014, 34(2): 79-88.

    [4]

    张旭, 张永刚, 张胜军, 等. 菲律宾海的声速剖面结构特征及季节性变化[J]. 热带海洋学报, 2009, 28(6):23-34 doi: 10.3969/j.issn.1009-5470.2009.06.004

    ZHANG Xu, ZHANG Yonggang, ZHANG Shengjun, et al. Distribution and seasonal variability of sound speed profile in the Philippine Sea [J]. Journal Article, 2009, 28(6): 23-34. doi: 10.3969/j.issn.1009-5470.2009.06.004

    [5]

    曹震卿, 张永刚, 李庆红, 等. 西太平洋一、二岛链间海区声传播的季节因素分析[J]. 科学技术与工程, 2018, 18(29):20-29 doi: 10.3969/j.issn.1671-1815.2018.29.004

    CAO Zhenqing, ZHANG Yonggang, LI Qinghong, et a1. Analysis of seasonal factors to acoustic propagation between the areas of first and second island chMns in the Western Pacific Ocean [J]. Science Technology and Engineering, 2018, 18(29): 20-29. doi: 10.3969/j.issn.1671-1815.2018.29.004

    [6]

    程琛, 张旭, 史峰. 西太平洋夏季三类声速环境下的会聚区特性比较[J]. 海洋科学进展, 2015, 33(1):56-62 doi: 10.3969/j.issn.1671-6647.2015.01.007

    CHENG Chen, ZHANG Xu, SHI Feng. Comparison of convergence zone features under three different hydrological environment in the west Pacific Ocean in summer [J]. Advances in Marine Science, 2015, 33(1): 56-62. doi: 10.3969/j.issn.1671-6647.2015.01.007

    [7]

    王彦磊, 高建华, 李杰, 等. 西北太平洋水声环境区划及声传播特征[J]. 海洋通报, 2013, 32(1):85-91 doi: 10.11840/j.issn.1001-6392.2013.01.013

    WANG Yanlei, GAO Jianhua, LI Jie, et a1. Zoning and propagation loss characteristics of underwater acoustic environment in the Northwest Pacific Ocean [J]. Marine Science Bulletin, 2013, 32(1): 85-91. doi: 10.11840/j.issn.1001-6392.2013.01.013

    [8]

    Bingham F M, Suga T. Distributions of mixed layer properties in North Pacific water mass formation areas: comparison of Argo floats and world Ocean Atlas 2001 [J]. Ocean science, 2006, 2(1): 61-70. doi: 10.5194/os-2-61-2006

    [9]

    Munk W H, Forbes A M G. Global ocean warming: an acoustic measure [J]. Journal of Physical Oceanography, 1989, 19(11): 1765-1778. doi: 10.1175/1520-0485(1989)019<1765:GOWAAM>2.0.CO;2

    [10]

    吴时国, 范建柯, 董冬冬. 论菲律宾海板块大地构造分区[J]. 地质科学, 2013, 48(3):677-692 doi: 10.3969/j.issn.0563-5020.2013.03.008

    WU Shiguo, FAN Jianke, DONG Dongdong. Discussion on the tectonic division of the Philippine Sea Plate [J]. Chinese Journal of Geology, 2013, 48(3): 677-692. doi: 10.3969/j.issn.0563-5020.2013.03.008

    [11]

    Barth A P, Tani K, Meffre S, et al. Generation of Silicic Melts in the Early Izu-Bonin Arc Recorded by Detrital Zircons in Proximal Arc Volcaniclastic Rocks From the Philippine Sea [J]. Geochemistry, Geophysics, Geosystems, 2017, 18: 3576-3591.

    [12]

    Ishizuka O, Taylor R N, Yuasa M, et al. Making and breaking an island arc: A new perspective from the Oligocene Kyushu-Palau arc, Philippine Sea [J]. Geochemistry, Geophysics, Geosystems, 2010, 12: 1-40.

    [13]

    殷征欣, 李正元, 沈泽中, 等. 西太平洋帕里西维拉海盆不对称性发育特征及其成因[J]. 吉林大学学报: 地球科学版, 2019, 49(1):218-229

    YIN Zhengxin, LI Zhengyuan, SHEN Zezhong, et al. Asymmetric Geological Developments and Their Geneses of the Parece Vela Basin in Western Pacific Ocean [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(1): 218-229.

    [14]

    许淑梅, 张晓东, 翟世奎. 四国海盆起源与沉积环境演化[J]. 海洋地质与第四纪地质, 2004, 24(2):119-123

    XU Shumei, ZHANG Xiaodong, ZHAI Shikui. The Origin and Sedimentary Environment Evolution of the Shikoku Basin [J]. Marine Geology & Quaternary Geology, 2004, 24(2): 119-123.

    [15]

    南明星, 段睿. 基于Argo数据的北太平洋声速剖面研究[J]. 电声技术, 2004, 24(2):119-123

    NAN Mingxing, DUAN Rui. Research on the Sound Speed Profile in the North Pacific Ocean Using the Argo Data [J]. Marine Geology & Quaternary Geology, 2004, 24(2): 119-123.

    [16]

    李兆钦, 刘增宏, 邢小罡. 全球海洋Argo散点资料集(V3.0)(1997—2019)用户手册.

    LI Zhaoqin, LIU Zenghong, XING Xiaogang. User Manual for Global Argo Observational data set (V3.0) (1997-2019).

    [17]

    Wilson W D. Extrapolation of the equation or the speed of sound in sea water [J]. Journal of the Acoustical Society of America, 1962, 34(6): 866-866. doi: 10.1121/1.1918215

    [18]

    魏宗坤. 高精度声速剖面测量系统研究[D]. 黑龙江: 哈尔滨工程大学, 2019.

    WEI Zongkun. The Research on High Precision Sound Velocity Profile Measurement System[D]. Heilongjiang: Harbin Engineering University, 2019.

    [19]

    陈希, 李妍, 李振锋, 等. 一种基于声信号的海洋温跃层特征参数寻优反演方法: CN201910684576.7[P]. 2019-11-01.

    CHEN Xi, LI Yan, LI Zhenfeng, et al. An inversion method of ocean thermocline characteristic parameter optimization based on acoustic signals: CN201910684576.7[P]. 2019-11-01

    [20]

    Saunders P M. Practical conversion of pressure to depth [J]. Journal of physical oceanography, 1981, 11: 573-574. doi: 10.1175/1520-0485(1981)011<0573:PCOPTD>2.0.CO;2

    [21]

    康霖, 王凡, 陈永利. 北太平洋低纬度西边界流(NMK)的时空特征[J]. 海洋预报, 2011, 28(3):32-39 doi: 10.3969/j.issn.1003-0239.2011.03.006

    KANG Lin, WANG Fan, CHEN Yongli. Characteristics of temporal and spatial distribution of North Pacific low-lalitude Western Boundary Currents [J]. MArine Forecasts, 2011, 28(3): 32-39. doi: 10.3969/j.issn.1003-0239.2011.03.006

    [22]

    杨蓓蓓, 林霄沛. 棉兰老流与棉兰老潜流季节内变化研究[J]. 中国海洋大学学报: 自然科学版, 2016, 46(6):21-28

    YANG Beibei, Lin Xiaopei. Intraseasonal variability of the Mindanao current and the Mindanao undercurrent [J]. Periodical of ocean university of China, 2016, 46(6): 21-28.

    [23]

    韩复兴, 孙建国, 王坤. 深海声道对波场传播的影响[J]. 石油地球物理勘探, 2014, 49(3):444-450, 467

    HAN Fuxing, SUN Jianguo, WANG Kun. Deep Sea Channel Influence on Wave Field Energy Propagation [J]. Oil Geophysical Prospecting, 2014, 49(3): 444-450, 467.

    [24]

    胡治国. 深海复杂地形环境下声传播规律及其空间相关特性研究[D]. 中国科学院大学, 2018.

    HU Zhiguo. Study on The Law of Sound Propagation and Its Spatial Correlation Characteristics in The Deep-sea Complex Terrain Environment[D]. Beijing: University of Chinese Academy of Sciences, 2018.

  • 加载中

(9)

(1)

计量
  • 文章访问数:  1913
  • PDF下载数:  20
  • 施引文献:  0
出版历程
收稿日期:  2020-11-23
修回日期:  2021-01-19
刊出日期:  2021-02-28

目录