基于滑动窗口导纳技术反演西太平洋中部岩石圈的有效弹性厚度

凌子龙, 赵俐红, 彭祎辉, 吴招才, 曲彦丞. 基于滑动窗口导纳技术反演西太平洋中部岩石圈的有效弹性厚度[J]. 海洋地质与第四纪地质, 2021, 41(1): 138-146. doi: 10.16562/j.cnki.0256-1492.2020112002
引用本文: 凌子龙, 赵俐红, 彭祎辉, 吴招才, 曲彦丞. 基于滑动窗口导纳技术反演西太平洋中部岩石圈的有效弹性厚度[J]. 海洋地质与第四纪地质, 2021, 41(1): 138-146. doi: 10.16562/j.cnki.0256-1492.2020112002
LING Zilong, ZHAO Lihong, PENG Yihui, WU Zhaocai, QU Yancheng. Inversion of the lithosphere effective elastic thickness in the central Western Pacific with moving window admittance technique[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 138-146. doi: 10.16562/j.cnki.0256-1492.2020112002
Citation: LING Zilong, ZHAO Lihong, PENG Yihui, WU Zhaocai, QU Yancheng. Inversion of the lithosphere effective elastic thickness in the central Western Pacific with moving window admittance technique[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 138-146. doi: 10.16562/j.cnki.0256-1492.2020112002

基于滑动窗口导纳技术反演西太平洋中部岩石圈的有效弹性厚度

  • 基金项目: 中国-东盟海上合作基金项目(12120100500017001);国家自然科学基金面上项目“北冰洋美亚海盆岩石圈的挠曲形变特征”(41676039),“中太平洋海山区岩石圈的挠曲形变特征”(41106037);山东省青年教师成长计划经费
详细信息
    作者简介: 凌子龙(1990—),男,博士研究生,主要从事海洋地球物理研究,E-mail:1376073417@qq.com
    通讯作者: 赵俐红(1976—),女,副教授,主要从事海洋地球物理研究,E-mail:skd992826@sdust.edu.cn
  • 中图分类号: P554

Inversion of the lithosphere effective elastic thickness in the central Western Pacific with moving window admittance technique

More Information
  • 西太平洋中部地区是西太平洋板块边缘沟-弧-盆体系构造演化的关键区域,其地质特征与构造演化一直是地学家关注的焦点问题之一。开展岩石圈有效弹性厚度的研究对于认识该区域的形成演化具有重要的科学意义。本文采用滑动窗口导纳技术,并在挠曲模型中考虑了表面荷载和内部荷载同时存在的情况,计算得到该区域的岩石圈有效弹性厚度(Te)。计算结果显示,研究区的Te值整体上为0~50 km,其变化基本上与构造单元相吻合,且与主要的构造边界密切相关。除海底火山具有相对较小的Te值(15~20 km)外,太平洋板块整体上具有较强的岩石圈强度(25~30 km)。马里亚纳海沟和菲律宾海沟的岩石圈强度从外隆起到海沟方向表现为明显的减弱,表明岩石圈由外隆起向海沟发生了弱化。帕里西维拉海盆西部相较于东部具有较弱的岩石圈强度,这可能与海盆的非对称扩张有关。卡罗琳板块的岩石圈整体上表现为相对均一的低Te值特征(<15 km)。欧里皮克海隆、卡罗琳海岭和索罗尔海槽的Te值为3 km,这可能是强烈的火山作用所导致的结果。

  • 加载中
  • 图 1  西太平洋中部的水深地形图

    Figure 1. 

    图 2  西太平洋中部的自由空气重力异常图(a)和Moho面深度图(b)

    Figure 2. 

    图 3  西太平洋中部岩石圈有效弹性厚度(Te)的空间变化图

    Figure 3. 

    表 1  常量的符号和数值

    Table 1.  Symbols and values of constants

    常量符号数值单位
    杨氏模量E100GPa
    牛顿引力常数G6.6726m3·kg−1· s−2
    泊松比v0.25
    重力加速度g9.79m·s−2
    海水密度ρw1030kg·m−3
    地壳密度ρc2800kg·m−3
    地幔密度ρm3300kg·m−3
    下载: 导出CSV
  • [1]

    刘新华. 西太平洋地区的海洋安全形势与中国的地区性海权[J]. 太平洋学报, 2011, 19(2):83-92 doi: 10.3969/j.issn.1004-8049.2011.02.010

    LIU Xinhua. Maritime security situation in the Western Pacific region and China’s regional sea power [J]. Pacific Journal, 2011, 19(2): 83-92. doi: 10.3969/j.issn.1004-8049.2011.02.010

    [2]

    张训华, 尚鲁宁. 冲绳海槽地壳结构与性质研究进展和新认识[J]. 中国海洋大学学报, 2014, 44(6):72-80

    ZHANG Xunhua, SHANG Luning. Study on Crustal Structure and Nature of the Okinawa Trough [J]. Periodical of Ocean University of China, 2014, 44(6): 72-80.

    [3]

    张正一, 范建柯, 白永良, 等. 中国海—西太平洋地区典型剖面的重-磁-震联合反演研[J]. 地球物理学报, 2018, 061(007):2871-2891

    ZHANG Zhengyi, FAN Jianke, BAI Yongliang, et al. Joint inversion of gravity-magnetic-seismic data of a typical profile in the China Sea-Western Pacific area [J]. Chinese Journal of Geophysics, 2018, 061(007): 2871-2891.

    [4]

    Zhang G L, Zhang J, Wang S, et al. Geochemical and chronological constraints on the mantle plume origin of the Caroline Plateau [J]. Chemical Geology, 2020: 119566.

    [5]

    Forsyth D W. Subsurface loading and estimates of the flexural rigidity of continental lithosphere [J]. Journal of Geophysical Research Solid Earth, 1985, 90(B14).

    [6]

    Watts A B, Burov E B. Lithospheric strength and its relationship to the elastic and seismogenic layer thickness [J]. Earth and Planetary Science Letters, 2003, 213(1-2): 113-131. doi: 10.1016/S0012-821X(03)00289-9

    [7]

    Lowry A R, Smith R B. Strength and rheology of the western U. S. Cordillera [J]. Journal of Geophysical Research Solid Earth, 1995, 100(B9): 17947-17963. doi: 10.1029/95JB00747

    [8]

    Burov E B, Diament M. The effective elastic thickness (Te) of continental lithosphere: What does it really mean? [J]. Journal of Geophysical Research Solid Earth, 1995, 100(B3). doi: 10.1029/94jb02770

    [9]

    Brown C D, Phillips R J. Crust-mantle decoupling by flexure of continental lithosphere [J]. Journal of Geophysical Research Solid Earth, 2000, 105(B6): 13221-13237. doi: 10.1029/2000JB900069

    [10]

    Tassara A, Swain C, Hackney R, et al. Elastic thickness structure of South America estimated using wavelets and satellite-derived gravity data [J]. Earth and Planetary Science Letters, 2007, 253(1-2): 17-36. doi: 10.1016/j.jpgl.2006.10.008

    [11]

    Pérez-Gussinyé M, Lowry A R, Watts A B. Effective elastic thickness of South America and its implications for intracontinental deformation [J]. Geochemistry Geophysics Geosystems, 2007, 8(5). doi: 10.1029/2006GC001511

    [12]

    付永涛, 李安春, 秦蕴珊. 大洋和大陆边缘岩石圈有效弹性厚度的研究意义[J]. 海洋地质与第四纪地质, 2002(03):71-77

    FU Yongtao, LI Anchun, QIN Yunshan. Effective elastic thickness of the oceanic and continental marginal lithospheres [J]. Marine Geology and Quaternary Geology, 2002(03): 71-77.

    [13]

    Altis S. Origin and tectonic evolution of the Caroline Ridge and the Sorol Trough, western tropical Pacific, from admittance and a tectonic modeling analysis [J]. Tectonophysics, 1999, 313(3): 271-292. doi: 10.1016/S0040-1951(99)00204-8

    [14]

    Kalnins L M, Watts A B. Spatial variation in effective elastic thickness in the Western Pacific Ocean and their implications for Mesozoic volcanism [J]. Earth and Planetary Science Letters, 2009, 286(1-2): 89-100. doi: 10.1016/j.jpgl.2009.06.018

    [15]

    Zhang F, Lin J, Zhan W. Variations in oceanic plate bending along the Mariana trench [J]. Earth and Planetary Science Letters, 2014, 401: 206-214. doi: 10.1016/j.jpgl.2014.05.032

    [16]

    胡敏章, 李建成, 李辉, 等. 西北太平洋岩石圈有效弹性厚度及其构造意义[J]. 地球物理学报, 2015, 58(2):542-555 doi: 10.6038/cjg20150217

    HU Minzhang, LI Jiancheng, LI Hui, et al. The lithosphere effective elastic thickness and its tectonic implications in the Northwestern Pacific [J]. Chinese Journal of Geophysics, 2015, 58(2): 542-555. doi: 10.6038/cjg20150217

    [17]

    杨安, 付永涛, 李安春. 卡罗琳板块及其附近地区的岩石圈有效弹性厚度[J]. 地球物理学报, 2016, 59(9):3280-3290 doi: 10.6038/cjg20160913

    YANG An, FU Yongtao, LI Anchun. The effective elastic thickness of the Caroline plate and its adjacent areas [J]. Chinese Journal of Geophysics, 2016, 59(9): 3280-3290. doi: 10.6038/cjg20160913

    [18]

    Watts A B, Brink U S T, Buhl P, et al. A multichannel seismic study of lithospheric flexure across the Hawaiian-Emperor seamount chain [J]. Nature, 1985, 315(6015): 105-111. doi: 10.1038/315105a0

    [19]

    Watts A B, Sandwell D T, Smith W H F, et al. Global gravity, bathymetry, and the distribution of submarine volcanism through space and time [J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B8). doi: 10.1029/2005JB004083

    [20]

    Pérez-Gussinyé M, Lowry A R, Watts A B, et al. On the recovery of effective elastic thickness using spectral methods: Examples from synthetic data and from the Fennoscandian Shield [J]. Journal of Geophysical Research: Solid Earth, 2004: 109. doi: 10.1029/2003JB002788

    [21]

    Pérez-Gussinyé M, Watts A. The long-term strength of Europe and its implications for plate-forming processes [J]. Nature, 2005, 436(7049): 381-384. doi: 10.1038/nature03854

    [22]

    Yang A, Fu Y T. Estimates of effective elastic thickness at subduction zones [J]. Journal of Geodynamics, 2018, 117: 75-87. doi: 10.1016/j.jog.2018.04.007

    [23]

    Lallemand, Serge. Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin-Mariana subduction [J]. Progress in Earth & Planetary Science, 2016, 3(1): 15.

    [24]

    Ishizuka O, Tani K, Reagan M K, et al. The timescales of subduction initiation and subsequent evolution of an oceanic island arc [J]. Earth and Planetary Science Letters, 2011, 306(3-4): 229-240. doi: 10.1016/j.jpgl.2011.04.006

    [25]

    Mrozowski C L, Lewis S D, Hayes D E. Complexities in the tectonic evolution of the West Philippine Basin [J]. Tectonophysics, 1982, 82(1-2): 1-24. doi: 10.1016/0040-1951(82)90085-3

    [26]

    Thomas W C, Hilde, Lee C. Origin and evolution of the West Philippine Basin: A new interpretation [J]. Tectonophysics, 1984, 102(1-4): 85-104. doi: 10.1016/0040-1951(84)90009-X

    [27]

    Weissel J K. Is there a Caroline plate? [J]. Earth and Planetary Science Letters, 1978, 41(2): 143-158. doi: 10.1016/0012-821X(78)90004-3

    [28]

    Gaina C, Müller D. Cenozoic tectonic and depth/age evolution of the Indonesian gateway and associated back-arc basins [J]. Earth Science Reviews, 2007, 83(3-4): 177-203. doi: 10.1016/j.earscirev.2007.04.004

    [29]

    Fujiwara T, Tamura C, Nishizawa A, et al. Morphology and tectonics of the Yap Trench [J]. Marine Geophysical Researches, 2000, 21(1-2): 69-86.

    [30]

    Ohara Y, Fujioka K, Ishizuka O, et al. Peridotites and volcanics from the Yap arc system: implications for tectonics of the southern Philippine Sea Plate [J]. Chemical Geology, 2002, 189(1): 35-53.

    [31]

    Mccabe R, Uyeda S. Hypothetical Model for the Bending of the Mariana Arc[M]// The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2. American Geophysical Union (AGU), 1983.

    [32]

    刘洋, 吴自银, 赵荻能, 等. MF多源测深数据融合方法及大洋水深模型构建[J]. 测绘学报, 2019, 48(9):1171-1181 doi: 10.11947/j.AGCS.2019.20180495

    LIU Yang, WU Ziyin, ZHAO Dineng, et al. The MF method for multi-source bathymetric data fusion and ocean bathymetric model construction [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1171-1181. doi: 10.11947/j.AGCS.2019.20180495

    [33]

    Pavlis N K, Holmes S A, Kenyon S C, et al. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008) [J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B4). doi: 10.1002/jgrb.50167

    [34]

    张精明, 闫建强, 王福民. EGM2008地球重力场模型精度分析与评价[J]. 石油地球物理勘探, 2010, 45(0z1):230-233

    ZHANG Jingming, YAN Jianqiang, WANG Fumin. Accuracy analysis and evaluation of EMG2008 earth gravity field model [J]. Oil Geophysical Prospecting, 2010, 45(0z1): 230-233.

    [35]

    Laske G, Masters G, Ma Z. Update on CRUST1.0—a 1-degree global model of Earth’s crust[M]. Geophysical research Abstracts, 15 (Abstract EGU2013-2658). 2013.

    [36]

    Turcote D L, Schubert G. Geodynamics[M]. Cambridge: Cambridge University Pres, 2002.

    [37]

    Audet P, Bürgmann R. Dominant role of tectonic inheritance in supercontinent cycles[J]. 2011, 4(3): 184-187.

    [38]

    Pérez-Gussinyé M, Swain C J, Kirby J F, et al. Spatial variations of the effective elastic thickness, Te, using multitaper spectral estimation and wavelet methods: Examples from synthetic data and application to South America [J]. Geochemistry Geophysics Geosystems, 2013, 10(4). doi: 10.1029/2008GC002229

    [39]

    Pérez-Gussinyé M, Metois M, Fernández M, et al. Effective elastic thickness of Africa and its relationship to other proxies for lithospheric structure and surface tectonics [J]. Earth and Planetary Science Letters, 2009, 287(1-2): 152-167. doi: 10.1016/j.jpgl.2009.08.004

    [40]

    Kirby J F, Swain C J. A reassessment of spectral T e estimation in continental interiors: The case of North America [J]. Journal of Geophysical Research Solid Earth, 2009, 114(B8). doi: 10.1029/2009JB006356

    [41]

    Shi X, Kirby J, Yu C, et al. Spatial variations in the effective elastic thickness of the lithosphere in Southeast Asia [J]. Gondwana Research, 2017, 42: 49-62. doi: 10.1016/j.gr.2016.10.005

    [42]

    Burov E B, Watts A B. The long-term strength of continental lithosphere: "Jelly Sandwich" or "Crème Brûlée"? [J]. GSA Today, 2006, 16(1). doi: 10.1130/1052-5173(2006)0162.0.CO;2

    [43]

    Hunter J, Watts, et al. Gravity anomalies, flexure and mantle rheology seaward of circum-Pacific trenches [J]. Geophysical Journal International, 2016, 207(1): 288-316. doi: 10.1093/gji/ggw275

    [44]

    Hussong D M. Tectonic processes and the history of the Mariana Arc: A synthesis of the results of deep-sea drilling project Leg 60 [J]. Initial Reports of the Deep Sea Drilling Project, 1982.

    [45]

    Stern R J, Fouch M J, Klemperer S L. An overview of the Izu-Bonin-Mariana subduction factory [J]. Inside of Subduction Factory, 2003, 138: 175-222.

    [46]

    Chamot-Rooke N. Magnetic anomalies in the Shikoku Basin: a new interpretation [J]. Earth and Planetary Science Letters, 1987, 83(1): 214-228.

    [47]

    Blackman D K, Forsyth D W. Isostatic compensation of tectonic features of the Mid-Atlantic Ridge: 25–27°30′S [J]. Journal of Geophysical Research, 1991, 96(B7): 11741. doi: 10.1029/91JB00602

  • 加载中

(3)

(1)

计量
  • 文章访问数:  1936
  • PDF下载数:  40
  • 施引文献:  0
出版历程
收稿日期:  2020-11-20
修回日期:  2021-01-26
刊出日期:  2021-02-28

目录