Multiscale topographic features of the seamounts in the Yap-Caroline area of West Pacific
-
摘要:
海山地形的多尺度特征研究,有助于理解海山形成与演化过程中的地貌过程,并为深入认识俯冲带地球动力过程提供新的线索。本文基于中国科学院海洋研究所“科学”号科考船近年来在雅浦-卡罗琳海区采集的高分辨率海底地形数据,利用统计学及频谱分析等方法,分析了研究区42座海山的形态及地形粗糙度特征,并对海山地形多尺度特征及其成因开展研究。结果表明,雅浦-卡罗琳海区不同构造环境下形成的海山群,在海山的形态参数和多尺度地形特征等方面存在显著差异。相比于索罗尔海槽,帕里西维拉海盆中的海山具有更大的宽高比与更小的平坦度。两区域内海山形态参数具有不同的线性相关关系,表明区域内海山存在不同的形态演化过程。对帕里西维拉海盆中海山地形的频谱分析显示,其大尺度特征信号不显著,意味着该区域内海山地形受小尺度地貌过程的影响更大。索罗尔海槽中海山的粗糙度与海山体积具有线性相关性,可能与不同海山形成过程的差异有关,较早形成的海山受到了更多构造活动及小尺度地貌过程的影响,进而形成了更加粗糙的表面特征。
Abstract:Multiscale topography of seamounts is helpful for understanding the geomorphic processes on different scales in the formation and evolution of seamounts and may provide clues for the study on geodynamic processes relating to plate subduction. Based on the high-resolution bathymetric data of Yap-Caroline area collected by R/V “Kexue” of the Institute of Oceanology, Chinese Academy of Sciences, the morphologic features and surface roughness of 42 seamounts in the study area have been analyzed by statistical methods, with focuses on the phenomenon and genesis of multiscale features of seamounts. The result demonstrates that the morphologic parameters and multiscale features of seamounts in different tectonic environments vary significantly. Seamounts in the Parece Vela Basin have larger height-to-basal-radius ratio and smaller flatness than those in the Sorol Trough. Different linear relationships between morphologic parameters imply that seamounts in the two regions have undergone different morphologic evolution processes. Multiscale analysis results suggest that the amplitudes of large characteristic scale (6~14 km) of seamounts in the Parece Vela Basin is not significant, and small-scale geomorphological processes have greater influence on the modification of seamount landscapes in this region. The linear relationship between roughness and volume of seamounts in the Sorol Trough might result from the discrepancy in formation times. Seamounts formed earlier have gone through more tectonic activities and small-scale geomorphologic processes, which resulted in rougher surface characteristics.
-
Key words:
- seamount /
- multiscale analysis /
- Yap /
- Caroline Ridge
-
图 1 研究区域位置和水深地形图(A)及研究区域构造纲要图[25](B)
Figure 1.
表 1 研究区域内海山的形态参数
Table 1. Shape parameters of seamounts in the study area
海山编号 高度/km 底面半径/km 顶面半径/km 体积/km3 山坡倾角/(°) 宽高比 平坦度 平均坡度/(°) M2 5.2 25.3 1.2 3 642.0 13.2 0.20 0.05 12.13 M4 2.6 12.3 3.8 583.6 24.5 0.21 0.31 17.24 W1 0.8 5.7 3.2 48.2 19.1 0.13 0.56 16.80 W2 0.9 4.9 2.0 34.4 18.2 0.18 0.41 17.16 W3 1.3 7.1 1.8 89.1 10.2 0.18 0.25 13.73 S1 2.3 14.9 2.3 627.8 11.8 0.15 0.15 10.25 S2 2.2 9.2 1.8 240.2 15.7 0.24 0.19 16.31 S3 1.7 12.8 2.1 349.8 8.5 0.13 0.16 9.14 S4 2.4 10.4 1.1 298.8 15.9 0.23 0.11 14.44 S5 1.9 10.0 3.6 298.2 19.2 0.19 0.36 16.75 S6 1.6 7.6 0.8 106.2 9.3 0.20 0.10 12.81 S7 2.0 11.3 1.2 298.5 11.8 0.18 0.10 11.20 S8 1.6 12.2 5.1 402.3 11.1 0.13 0.42 12.90 S9 1.2 12.1 2.2 215.8 10.2 0.10 0.18 6.69 S10 2.0 11.7 2.1 344.7 9.2 0.17 0.18 11.78 S11 1.2 10.0 1.4 144.3 6.0 0.12 0.14 7.96 S12 1.5 11.0 2.4 233.2 6.7 0.13 0.22 9.67 Y3 3.8 19.7 3.5 1851.8 9.2 0.19 0.18 13.03 P1 2.3 8.4 0.4 182.3 15.5 0.28 0.04 16.21 P2 1.8 8.3 0.4 138.7 18.3 0.22 0.05 13.06 P3 2.2 6.5 0.3 103.4 18.9 0.35 0.05 20.01 P4 1.9 8.7 1.5 179.3 12.2 0.22 0.18 14.70 P5 1.7 6.7 0.3 83.7 18.2 0.26 0.04 15.08 P6 2.5 7.9 2.6 234.8 15.2 0.32 0.33 25.37 P7 1.4 4.2 0.3 28.6 20.6 0.34 0.07 20.39 P8 1.1 3.9 0.6 20.7 19.0 0.28 0.15 18.49 P9 1.7 8.5 2.9 191.9 13.2 0.20 0.34 17.31 P10 1.5 4.2 0.2 29.0 20.0 0.35 0.04 19.92 P11 1.5 5.3 0.3 46.6 17.8 0.29 0.05 16.67 P12 1.5 5.9 1.3 67.4 16.9 0.25 0.22 17.67 P13 1.5 4.6 0.2 36.0 17.8 0.32 0.05 18.94 P14 1.5 8.7 1.0 128.8 9.8 0.17 0.11 10.61 P15 1.0 5.0 0.6 29.6 13.3 0.21 0.11 13.15 P16 1.2 5.6 0.4 43.8 13.0 0.22 0.08 13.65 P17 1.0 6.9 0.9 57.3 10.2 0.15 0.12 9.56 P18 1.2 7.3 1.2 78.7 13.9 0.16 0.16 10.99 P19 1.2 6.6 0.7 60.8 9.4 0.18 0.10 11.31 P20 1.3 5.0 0.3 36.2 13.7 0.26 0.06 15.41 P21 1.6 6.1 0.4 68.4 12.0 0.26 0.06 15.73 P22 1.5 8.3 0.5 112.0 11.0 0.18 0.06 10.65 P23 1.8 7.1 0.3 100.8 15.7 0.25 0.04 14.90 P24 2.2 10.4 0.4 257.4 14.6 0.21 0.04 12.30 -
[1] Hess H H. Drowned ancient islands of the Pacific Basin [J]. American Journal of Science, 1946, 244(11): 772-791. doi: 10.2475/ajs.244.11.772
[2] Menard G. Marine Geology of the Pacific[M]. New York: McGraw-Hill, 1964.
[3] IHO. Standardization of Undersea Feature Names: Guidelines Proposal form Terminology[M]. 4th ed. Monaco: International Hydrographic Organisation and Intergovernmental Oceanographic Commission, 2008.
[4] Staudigel H, Clague D A. The geological history of deep-sea volcanoes: Biosphere, hydrosphere, and lithosphere interactions [J]. Oceanography, 2010, 23(1): 58-71. doi: 10.5670/oceanog.2010.62
[5] Kim S S, Wessel P. New global seamount census from altimetry-derived gravity data [J]. Geophysical Journal International, 2011, 186(2): 615-631. doi: 10.1111/j.1365-246X.2011.05076.x
[6] Batiza R, Vanko D. Volcanic development of small oceanic central volcanoes on the flanks of the East Pacific Rise inferred from narrow-beam echo-sounder surveys [J]. Marine Geology, 1983, 54(1-2): 53-90. doi: 10.1016/0025-3227(83)90008-7
[7] Smith D K. Shape analysis of Pacific seamounts [J]. Earth and Planetary Science Letters, 1988, 90(4): 457-466. doi: 10.1016/0012-821X(88)90143-4
[8] Passaro S, Milano G, D'Isanto C, et al. DTM-based morphometry of the Palinuro seamount (Eastern Tyrrhenian Sea): Geomorphological and volcanological implications [J]. Geomorphology, 2010, 115(1-2): 129-140. doi: 10.1016/j.geomorph.2009.09.041
[9] Palomino D, Vázquez J T, Somoza L, et al. Geomorphological features in the southern Canary Island Volcanic Province: The importance of volcanic processes and massive slope instabilities associated with seamounts [J]. Geomorphology, 2016, 255: 125-139. doi: 10.1016/j.geomorph.2015.12.016
[10] Bijesh C M, Kurian P J, Yatheesh V, et al. Morphotectonic characteristics, distribution and probable genesis of bathymetric highs off southwest coast of India [J]. Geomorphology, 2018, 315: 33-44. doi: 10.1016/j.geomorph.2018.04.015
[11] Spatola D, Micallef A, Sulli A, et al. The Graham Bank (Sicily Channel, central Mediterranean Sea): Seafloor signatures of volcanic and tectonic controls [J]. Geomorphology, 2018, 318: 375-389. doi: 10.1016/j.geomorph.2018.07.006
[12] Micallef A, Krastel S, Savini A. Submarine Geomorphology[M]. Cham: Springer, 2018.
[13] Hubbard B, Siegert M J, Mccarroll D. Spectral roughness of glaciated bedrock geomorphic surfaces: Implications for glacier sliding [J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B9): 21295-21304. doi: 10.1029/2000JB900162
[14] Lyons A P, Fox W L J, Hasiotis T, et al. Characterization of the two-dimensional roughness of wave-rippled sea floors using digital photogrammetry [J]. IEEE Journal of Oceanic Engineering, 2002, 27(3): 515-524. doi: 10.1109/JOE.2002.1040935
[15] Perron J T, Kirchner J W, Dietrich W E. Spectral signatures of characteristic spatial scales and nonfractal structure in landscapes [J]. Journal of Geophysical Research: Earth Surface, 2008, 113(F4).
[16] Smith M W. Roughness in the Earth Sciences [J]. Earth-Science Reviews, 2014, 136: 202-225. doi: 10.1016/j.earscirev.2014.05.016
[17] Shepard M K, Campbell B A. Radar scattering from a self-affine fractal surface: Near-nadir regime [J]. Icarus, 1999, 141(1): 156-171. doi: 10.1006/icar.1999.6141
[18] Bomberger C, Bendick R, Flesch L, et al. Spatial scales in topography and strain rate magnitude in the western United States [J]. Journal of Geophysical Research: Solid Earth, 2018, 123(7): 6086-6097. doi: 10.1029/2018JB016135
[19] Altis S. Origin and tectonic evolution of the Caroline Ridge and the Sorol Trough, western tropical Pacific, from admittance and a tectonic modeling analysis [J]. Tectonophysics, 1999, 313(3): 271-292. doi: 10.1016/S0040-1951(99)00204-8
[20] Lee S M. Deformation from the convergence of oceanic lithosphere into Yap trench and its implications for early-stage subduction [J]. Journal of Geodynamics, 2004, 37(1): 83-102. doi: 10.1016/j.jog.2003.10.003
[21] Weissel J K, Anderson R N. Is there a Caroline plate? [J]. Earth and Planetary Science Letters, 1978, 41(2): 143-158. doi: 10.1016/0012-821X(78)90004-3
[22] Dong D D, Zhang Z Y, Bai Y L, et al. Topographic and sedimentary features in the Yap subduction zone and their implications for the Caroline Ridge subduction [J]. Tectonophysics, 2018, 722: 410-421. doi: 10.1016/j.tecto.2017.11.030
[23] Hu D X, Wu L X, Cai W J, et al. Pacific western boundary currents and their roles in climate [J]. Nature, 2015, 522(7556): 299-308. doi: 10.1038/nature14504
[24] Wang Q, Liu F, Zhang D C. Pelagihabitans pacificus gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from a deep-sea seamount [J]. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(8): 4569-4575. doi: 10.1099/ijsem.0.004315
[25] Zhang Z Y, Dong D D, Sun W D, et al. Subduction erosion, crustal structure, and an evolutionary model of the northern yap subduction zone: new observations from the latest geophysical survey [J]. Geochemistry, Geophysics, Geosystems, 2019, 20(1): 166-182. doi: 10.1029/2018GC007751
[26] 宫士奇. 雅浦海山区海底地形及海山形态特征研究与分析[D]. 中国科学院研究生院 (海洋研究所)硕士学位论文, 2016.
GONG Shiqi. Topographic and geomorphophic features and analysis of seafloor and seamounts in the Yap seamounts area[D]. Master Dissertation of University of Chinese Academy of Sciences (Institute of Oceanology), 2016.
[27] Magee C, Hunt-Stewart E, Jackson C A L. Volcano growth mechanisms and the role of sub-volcanic intrusions: Insights from 2D seismic reflection data [J]. Earth and Planetary Science Letters, 2013, 373: 41-53. doi: 10.1016/j.jpgl.2013.04.041
[28] Shepard M K, Campbell B A, Bulmer M H, et al. The roughness of natural terrain: A planetary and remote sensing perspective [J]. Journal of Geophysical Research: Planets, 2001, 106(E12): 32777-32795. doi: 10.1029/2000JE001429
[29] Xu T B, Moore I D, Gallant J C. Fractals, fractal dimensions and landscapes-a review [J]. Geomorphology, 1993, 8(4): 245-262. doi: 10.1016/0169-555X(93)90022-T
[30] Liucci L, Melelli L. The fractal properties of topography as controlled by the interactions of tectonic, lithological, and geomorphological processes [J]. Earth Surface Processes and Landforms, 2017, 42(15): 2585-2598. doi: 10.1002/esp.4206
[31] Black B A, Perron J T, Hemingway D, et al. Global drainage patterns and the origins of topographic relief on Earth, Mars, and Titan [J]. Science, 2017, 356(6339): 727-731. doi: 10.1126/science.aag0171
[32] Leon J X, Roelfsema C M, Saunders M I, et al. Measuring coral reef terrain roughness using ‘Structure-from-Motion’ close-range photogrammetry [J]. Geomorphology, 2015, 242: 21-28. doi: 10.1016/j.geomorph.2015.01.030
[33] Annen C, Lénat J F, Provost A. The long-term growth of volcanic edifices: numerical modelling of the role of dyke intrusion and lava-flow emplacement [J]. Journal of Volcanology and Geothermal Research, 2001, 105(4): 263-289. doi: 10.1016/S0377-0273(00)00257-2
[34] Dobbs S C, Mchargue T, Malkowski M A, et al. Are submarine and subaerial drainages morphologically distinct? [J]. Geology, 2019, 47(11): 1093-1097. doi: 10.1130/G46329.1
[35] Smith M E, Finnegan N J, Mueller E R, et al. Durable terrestrial bedrock predicts submarine canyon formation [J]. Geophysical Research Letters, 2017, 44(20): 10332-10340. doi: 10.1002/2017GL075139
[36] Sun Q J, Magee C, Jackson C A L, et al. How do deep-water volcanoes grow? [J]. Earth and Planetary Science Letters, 2020, 542: 116320. doi: 10.1016/j.jpgl.2020.116320
[37] Smith D K. Comparison of the shapes and sizes of seafloor volcanoes on Earth and “pancake” domes on Venus [J]. Journal of Volcanology and Geothermal Research, 1996, 73(1-2): 47-64. doi: 10.1016/0377-0273(96)00007-8
[38] Castruccio A, Diez M, Gho R. The influence of plumbing system structure on volcano dimensions and topography [J]. Journal of Geophysical Research: Solid Earth, 2017, 122(11): 8839-8859. doi: 10.1002/2017JB014855
[39] Beccaluva L, Serri G, Dostal J. Geochemistry of volcanic rocks from the mariana, yap and palau trenches bearing on the tectono-magmatic evolution of the mariana trench-arc-backarc system [J]. Developments in Geotectonics, 1986, 21: 481-508.
[40] Zhang Z Y, Dong D D, Sun W D, et al. Investigation of an oceanic plateau formation and rifting initiation model implied by the Caroline Ridge on the Caroline Plate, western Pacific [J]. International Geology Review, 2020, 63(2): 193-207.
[41] Xia C L, Zheng Y P, Liu B H, et al. Geological and geophysical differences between the north and south sections of the Yap trench-arc system and their relationship with Caroline Ridge subduction [J]. Geological Journal, 2020, 55(12): 7775-7789. doi: 10.1002/gj.3903
[42] Crawford A J, Beccaluva L, Serri G, et al. Petrology, geochemistry and tectonic implications of volcanics dredged from the intersection of the Yap and Mariana trenches [J]. Earth and Planetary Science Letters, 1986, 80(3-4): 265-280. doi: 10.1016/0012-821X(86)90110-X
[43] Calves G, Schwab A M, Huuse M, et al. Seismic volcano stratigraphy of the western Indian rifted margin: The pre‐deccan igneous province [J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B1): B01101.
[44] Rossi M J. Morphology and mechanism of eruption of postglacial shield volcanoes in Iceland [J]. Bulletin of Volcanology, 1996, 57(7): 530-540. doi: 10.1007/BF00304437
[45] McGuire W J. Volcano instability: A review of contemporary themes [J]. Geological Society, London, Special Publications, 1996, 110(1): 1-23. doi: 10.1144/GSL.SP.1996.110.01.01
[46] Duvall M S, Hench J L, Rosman J H. Collapsing complexity: quantifying multiscale properties of reef topography [J]. Journal of Geophysical Research: Oceans, 2019, 124(7): 5021-5038. doi: 10.1029/2018JC014859
[47] Grohmann C H, Smith M J, Riccomini C. Multiscale analysis of topographic surface roughness in the midland valley, scotland [J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(4): 1200-1213. doi: 10.1109/TGRS.2010.2053546
[48] Crossingham T J, Vasconcelos P M, Cunningham T, et al. 40Ar/39Ar geochronology and volume estimates of the Tasmantid Seamounts: Support for a change in the motion of the Australian plate [J]. Journal of Volcanology and Geothermal Research, 2017, 343: 95-108. doi: 10.1016/j.jvolgeores.2017.06.014
[49] Knesel K M, Cohen B E, Vasconcelos P M, et al. Rapid change in drift of the Australian plate records collision with Ontong Java plateau [J]. Nature, 2008, 454(7205): 754-757. doi: 10.1038/nature07138