Crustal thickness variations of the Izu-Bonin-Mariana Arc and their implications for arc magmatism
-
摘要:
数值模拟研究认为洋底高原/洋脊俯冲和弧后扩张能够有效影响俯冲带岩浆活动和岛弧地壳增生。本文以伊豆−博宁−马里亚纳(IBM)俯冲带为实例,论证该结论的有效性。以卫星测高反演重力异常为基础,通过构建地球不同圈层密度模型,反演得到IBM俯冲带莫霍面埋深。本文的莫霍面埋深反演结果与地震解释结果具有一致的分布趋势。结合开源水深和沉积层厚度数据,给出了IBM俯冲带地壳厚度分布。IBM岛弧地壳体积沿走向的分布特征表明:①小笠原洋底高原和相对较小规模达顿洋脊的俯冲,都能够使得相应位置的岛弧变窄、地壳变厚、体积增大;②马里亚纳海槽扩张显著降低了岛弧地壳体积的增生量。
-
关键词:
- 伊豆−博宁−马里亚纳岛弧 /
- 重力反演 /
- 地壳厚度 /
- 弧后扩张 /
- 洋底高原/洋脊俯冲
Abstract:Numerical simulations suggest that plateau/ridge subduction and back-arc spreading would influence magmatism and island-arc crustal growth subduction-zone. In this paper, we take the Izu-Bonin-Mariana (IBM) subduction zone paper as a case to test the above observation. Moho depth variations are estimated based on Inversed gravity anomaly by satellite altimetry and density modelling for different layers, and the trend of the Moho inversion result can well match the seismic interpretations. Crustal thickness variations are mapped based on gravity-inversed Moho, open-source topography and bathymetry as well as sediment thickness. The island-arc crustal volume variations along strike indicate that (1) the subduction of the Ogasawara Plateau and the Dutton Ridge necked and thickened the arc crust, and they also increased the arc crust volume, (2) the opening of the Marian Trough reduced substantially the island-arc crustal growth.
-
[1] Albarède F. The growth of continental crust [J]. Tectonophysics, 1998, 296(1-2): 1-14. doi: 10.1016/S0040-1951(98)00133-4
[2] Reymer A, Schubert G. Phanerozoic addition rates to the continental crust and crustal growth [J]. Tectonics, 1984, 3(1): 63-77. doi: 10.1029/TC003i001p00063
[3] Taylor S R. The origin and growth of continents [J]. Tectonophysics, 1967, 4(1): 17-34. doi: 10.1016/0040-1951(67)90056-X
[4] Suyehiro K, Takahashi N, Ariie Y, et al. Continental crust, crustal underplating, and low-Q upper mantle beneath an oceanic island arc [J]. Science, 1996, 272(5260): 390-392. doi: 10.1126/science.272.5260.390
[5] Tatsumi Y. Migration of fluid phases and genesis of basalt magmas in subduction zones [J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B4): 4697-4707.
[6] Schmidt M W, Poli S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation [J]. Earth and Planetary Science Letters, 1998, 163(1-4): 361-379. doi: 10.1016/S0012-821X(98)00142-3
[7] Van Keken P E, Hacker B R, Syracuse E M, et al. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide [J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B1): B01401.
[8] Grove T L, Till C B, Lev E, et al. Kinematic variables and water transport control the formation and location of arc volcanoes [J]. Nature, 2009, 459(7247): 694-697. doi: 10.1038/nature08044
[9] 郑永飞, 陈仁旭, 徐峥, 等. 俯冲带中的水迁移[J]. 中国科学: 地球科学, 2016, 59(4):651-682 doi: 10.1007/s11430-015-5258-4
ZHENG Yongfei, CHEN Renxu, XU Zheng, et al. The transport of water in subduction zones [J]. Science China Earth Sciences, 2016, 59(4): 651-682. doi: 10.1007/s11430-015-5258-4
[10] Perrin A, Goes S, Prytulak J, et al. Mantle wedge temperatures and their potential relation to volcanic arc location [J]. Earth and Planetary Science Letters, 2018, 501: 67-77. doi: 10.1016/j.jpgl.2018.08.011
[11] Turner S J, Langmuir C H, Katz R F, et al. Parental arc magma compositions dominantly controlled by mantle-wedge thermal structure [J]. Nature Geoscience, 2016, 9(10): 772-776. doi: 10.1038/ngeo2788
[12] Peacock S M. Thermal and petrologic structure of subduction zones[M]//Bebout G E, Scholl D W, Kirby S H, et al. Subduction: Top to Bottom. Washington, D.C.: Geophysical Monograph Series, 1996.
[13] Magni V. The effects of back-arc spreading on arc magmatism [J]. Earth and Planetary Science Letters, 2019, 519: 141-151. doi: 10.1016/j.jpgl.2019.05.009
[14] Mason W G, Moresi L, Betts P G, et al. Three-dimensional numerical models of the influence of a buoyant oceanic plateau on subduction zones [J]. Tectonophysics, 2010, 483(1-2): 71-79. doi: 10.1016/j.tecto.2009.08.021
[15] Wallace L M, McCaffrey R, Beavan J, et al. Rapid microplate rotations and backarc rifting at the transition between collision and subduction [J]. Geology, 2005, 33(11): 857-860. doi: 10.1130/G21834.1
[16] Harmon N, Blackman D K. Effects of plate boundary geometry and kinematics on mantle melting beneath the back-arc spreading centers along the Lau Basin [J]. Earth and Planetary Science Letters, 2010, 298(3-4): 334-346. doi: 10.1016/j.jpgl.2010.08.004
[17] Sandwell D T, Müller R D, Smith W H F, et al. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure [J]. Science, 2014, 346(6205): 65-67. doi: 10.1126/science.1258213
[18] Bai Y L, Li M, Wu S G, et al. Upper mantle density modelling for large-scale Moho gravity inversion: case study on the Atlantic Ocean [J]. Geophysical Journal International, 2019, 216(3): 2134-2147. doi: 10.1093/gji/ggz003
[19] Bai Y L, Gui Z, Li M, et al. Crustal thickness over the NW Pacific and its tectonic implications [J]. Journal of Asian Earth Sciences, 2019, 185: 104050. doi: 10.1016/j.jseaes.2019.104050
[20] Wang T T, Lin J, Tucholke B, et al. Crustal thickness anomalies in the North Atlantic Ocean basin from gravity analysis [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(3): Q0AE02.
[21] Stern R J, Bloomer S H. Subduction zone infancy: Examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs [J]. GSA Bulletin, 1992, 104(12): 1621-1636. doi: 10.1130/0016-7606(1992)104<1621:SZIEFT>2.3.CO;2
[22] Sdrolias M, Roest W R, Müller R D. An expression of Philippine Sea plate rotation: the Parece Vela and Shikoku Basins [J]. Tectonophysics, 2004, 394(1-2): 69-86. doi: 10.1016/j.tecto.2004.07.061
[23] Okino K, Ohara Y, Kasuga S, et al. The Philippine Sea: New survey results reveal the structure and the history of the marginal basins [J]. Geophysical Research Letters, 1999, 26(15): 2287-2290. doi: 10.1029/1999GL900537
[24] Ishizuka O, Hickey-Vargas R, Arculus R J, et al. Age of Izu–Bonin–Mariana arc basement [J]. Earth and Planetary Science Letters, 2018, 481: 80-90. doi: 10.1016/j.jpgl.2017.10.023
[25] Arculus R J, Ishizuka O, Bogus K A, et al. A record of spontaneous subduction initiation in the Izu-Bonin-Mariana arc [J]. Nature Geoscience, 2015, 8(9): 728-733. doi: 10.1038/ngeo2515
[26] Reagan M K, Pearce J A, Petronotis K, et al. Subduction initiation and ophiolite crust: new insights from IODP drilling [J]. International Geology Review, 2017, 59(11): 1439-1450. doi: 10.1080/00206814.2016.1276482
[27] 吴时国, 范建柯, 董冬冬. 论菲律宾海板块大地构造分区[J]. 地质科学, 2013, 48(3):677-692 doi: 10.3969/j.issn.0563-5020.2013.03.008
WU Shiguo, FAN Jianke, DONG Dongdong. Discussion on the tectonic division of the Philippine Sea Plate [J]. Chinese Journal of Geology, 2013, 48(3): 677-692. doi: 10.3969/j.issn.0563-5020.2013.03.008
[28] Hickey-Vargas R. Basalt and tonalite from the Amami Plateau, northern West Philippine Basin: New Early Cretaceous ages and geochemical results, and their petrologic and tectonic implications [J]. Island Arc, 2005, 14(4): 653-665. doi: 10.1111/j.1440-1738.2005.00474.x
[29] Amante C, Eakins B W. ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis[DB/OL]. National Geophysical Data Center, NOAA, 2009. http://apdrc.soest.hawaii.edu/datadoc/etopo1.php.
[30] Müller R D, Sdrolias M, Gaina C, et al. Age, spreading rates, and spreading asymmetry of the world's ocean crust [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4): Q04006.
[31] Clouard V, Bonneville A. Ages of seamounts, islands, and plateau on the pacific plate[M]//Foulger G R, Natland J H, Presnall D C, et al. Plates, Plumes and Paradigms. Washington, DC: Geological Society of America, 2005.
[32] Miller M S, Kennett B L N, Toy V G. Spatial and temporal evolution of the subducting Pacific plate structure along the western Pacific margin [J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B2): B02401.
[33] Straume E O, Gaina C, Medvedev S, et al. Globsed: updated total sediment thickness in the world's oceans [J]. Geochemistry, Geophysics, Geosystems, 2019, 20(4): 1756-1772. doi: 10.1029/2018GC008115
[34] Tenzer R, Pavel N, Vladislav G. The bathymetric stripping corrections to gravity field quantities for a depth-dependent model of seawater density [J]. Marine Geodesy, 2012, 35(2): 198-220. doi: 10.1080/01490419.2012.670592
[35] Sawyer D S. Total tectonic subsidence: A parameter for distinguishing crust type at the U.S. atlantic continental margin [J]. Journal of Geophysical Research: Solid Earth, 1985, 90(B9): 7751-7769. doi: 10.1029/JB090iB09p07751
[36] Takahashi N, Kodaira S, Klemperer S L, et al. Crustal structure and evolution of the Mariana intra-oceanic island arc [J]. Geology, 2007, 35(3): 203-206. doi: 10.1130/G23212A.1
[37] Chappell A R, Kusznir N J. Three-dimensional gravity inversion for Moho depth at rifted continental margins incorporating a lithosphere thermal gravity anomaly correction [J]. Geophysical Journal International, 2008, 174(1): 1-13. doi: 10.1111/j.1365-246X.2008.03803.x
[38] Bai Y L, Williams S E, Müller R D, et al. Mapping crustal thickness using marine gravity data: Methods and uncertainties [J]. Geophysics, 2014, 79(2): G27-G36. doi: 10.1190/geo2013-0270.1
[39] Bai Y L, Dong D D, Kirby J F, et al. The effect of dynamic topography and gravity on lithospheric effective elastic thickness estimation: a case study [J]. Geophysical Journal International, 2018, 214(1): 623-634. doi: 10.1093/gji/ggy162
[40] Isaak D G, Anderson O L, Goto T, et al. Elasticity of single-crystal forsterite measured to 1700 K [J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B5): 5895-5906. doi: 10.1029/JB094iB05p05895
[41] Forte A M, Woodward R L, Dziewonski A M. Joint inversions of seismic and geodynamic data for models of three—dimensional mantle heterogeneity [J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B11): 21857-21877. doi: 10.1029/94JB01467
[42] Schaeffer A J, Lebedev S. Global shear speed structure of the upper mantle and transition zone [J]. Geophysical Journal International, 2013, 194(1): 417-449. doi: 10.1093/gji/ggt095
[43] Parker R L. The rapid calculation of potential anomalies [J]. Geophysical Journal of the Royal Astronomical Society, 1973, 31(4): 447-455. doi: 10.1111/j.1365-246X.1973.tb06513.x
[44] Takahashi N, Kodaira S, Tatsumi Y, et al. Structural variations of arc crusts and rifted margins in the southern Izu-Ogasawara arc-back arc system [J]. Geochemistry, Geophysics, Geosystems, 2009, 10(9): Q09X08.
[45] Nishizawa A, Kaneda K, Oikawa M. Crust and uppermost mantle structure of the Kyushu-Palau Ridge, remnant arc on the Philippine Sea plate [J]. Earth, Planets and Space, 2016, 68: 30. doi: 10.1186/s40623-016-0407-3