Seismic survey and exploration methods for Neotectonic active faults in the area off China continent
-
摘要:
中国近海处于大洋板块与大陆板块作用的关键区域,新构造运动频繁,活动断裂是其主要的表现形式之一。浅地层剖面仪测量、单道地震、多道地震和海底地震仪探测(OBS)等海洋地震勘探方法是调查研究海域活动断裂的主要地球物理手段,各自具有不同技术优势和探测功能,在海域活动断裂调查研究中发挥了重要作用。通过OBS广角反射/折射深地震探测和长排列多道地震勘探,获得了中国近海的区域深大断裂展布特征,深化了深大断裂形成与演化的深部动力学机理的认识,进而分析了其对活动断裂控制与约束关系。根据活动断裂时代新、埋藏浅的特点,综合利用浅地层剖面仪测量、单道地震和高分辨率多道地震方法,获得了中国近海海域活动断裂的分布、走向和差异升降等特征,分析了新构造运动的演化规律。本文综述了海洋地震勘探技术方法的主要特点和功能,及其在海域活动断裂调查中的功能和作用,总结了利用地震勘探技术方法在中国近海新构造活动断裂调查研究中取得的主要成果,提出了在未来的海域新构造运动地震调查研究中,应采用多技术方法组合系统调查与研究的思路,着力提高地震勘探的精度,探索应用横波地震勘探和海底可控震源等新技术的建议。
Abstract:Located in the key area of land-ocean plate interaction, offshore China is an area frequently suffered from neotectonic movement-caused disasters, and active faults are one of their main triggers. Marine seismic exploration methods such as sub-bottom profiler, single channel seismic, multi-channel seismic and ocean bottom seismometer (OBS) are the main geophysical tools used to investigate active faults offshore. Each of them has its own technical advantages and detection ranges to play roles in the investigation and study of active faults offshore. Recently, through OBS wide-angle reflection/refraction deep seismic exploration and long spread multi-channel seismic exploration, we have been able to gain the distribution patterns of regional deep-large faults in China offshore area, and the understanding of deep dynamic mechanism of the formation and evolution of deep-large faults is greatly deepened. Upon the basis, we analyzed the control and constraint relationship of active faults in this paper. Newly buried active faults are young in age and shallow in burial depth. According to the features as such, we studied in this paper the distribution pattern, strike and differential rise and fall of active faults in China offshore area with such methods as sub-bottom profiler, single-channel seismic and high-resolution multi-channel seismic. And the main characteristics and functions of marine seismic exploration techniques and methods, as well as their functions and effects in the investigation of active faults in the sea area, are summarized in addition to the main achievements obtained in the researches. It is concluded that for future marine neotectonic seismic prospecting and research, it is necessary to insist on the idea of multi-technology methods and systematic investigation, focus more on improving the accuracy of seismic exploration, and explore the application of new technology such as S-wave seismic exploration and seabed vibrator.
-
Key words:
- active fault /
- seismic prospecting /
- neotectonic /
- ocean bottom seismometer(OBS) /
- joint detection
-
图 4 南黄海OBS-2013线纵波速度结构剖面[44]
Figure 4.
表 1 主要地震勘探方法对比
Table 1. Comparison of main seismic exploration methods
探测方法 分辨率 勘探深度 工作方式 主要用途 浅地层剖面 20~50 cm 100 m左右 电火花震源激发,拖曳式单道接收 用于全新世地质特征和活动断裂探查 单道地震 2~5 m(和震源的激发能量有关) 500~1000 m(和震源的激发能量有关) 电火花震源或小容量气枪激发,拖曳式单道接收 用于第四纪地质特征和活动断裂探查与成岩基底相关的活动断裂探查 高分辨率多道地震 1~3 m 1000~1500 m 大能量电火花或相干气枪激发,小间距多道接收 用于新生代地质特征和活动断裂探查与成岩基底相关的活动断裂探查 长排列多道地震 几十米到几百米 几千米到上万米 大能量气枪阵列震源激发,长排列多道接收,道数可达几百道 用于区域地质和探查盆地基底 海底地震仪(OBS) 分辨率低,只反映地层宏观速度结构 可达莫霍面 大能量气枪枪阵激发,单点独立式接收 用于探查地壳构造、深部断裂和中到深大断裂 -
[1] 郭玉贵, 王红霞, 邓志辉, 等. 山东沿海及近海地震分形分析[J]. 地球物理学进展, 2005, 20(1):155-159 doi: 10.3969/j.issn.1004-2903.2005.01.028
GUO Yugui, WANG Hongxia, DENG Zhihui, et al. The fractal analysis on seism in the coastal and Offshore areas of Shandong province [J]. Progress in Geophysics, 2005, 20(1): 155-159. doi: 10.3969/j.issn.1004-2903.2005.01.028
[2] 曹敬贺, 孙金龙, 徐辉龙, 等. 珠江口海域滨海断裂带的地震学特征[J]. 地球物理学报, 2014, 57(2):498-508 doi: 10.6038/cjg20140215
CAO Jinghe, SUN Jinlong, XU Huilong, et al. Seismological features of the littoral fault zone in the Pearl River Estuary [J]. Chinese Journal of Geophysics, 2014, 57(2): 498-508. doi: 10.6038/cjg20140215
[3] 李旭东, 刘绍文, 王丽. 江苏—南黄海地区地震活动时空分布特征及其孕震构造分析[J]. 高校地质学报, 2018, 24(4):551-562
LI Xundong, LIU Shaowen, WANG Li. Spatiotemporal pattern of earthquake activities and seismotectonics in Jiangsu and adjacent southern Yellow Sea Area [J]. Geological Journal of China Universities, 2018, 24(4): 551-562.
[4] 吴中海. 活断层的术语、研究进展及问题思考[J]. 地球科学与环境学报, 2018, 40(6):706-726 doi: 10.3969/j.issn.1672-6561.2018.06.002
WU Zhonghai. Active faults: Terminology, research advance, and thinking on some problems [J]. Journal of Earth Sciences and Environment, 2018, 40(6): 706-726. doi: 10.3969/j.issn.1672-6561.2018.06.002
[5] 王志才, 邓起东, 晁洪太, 等. 山东半岛北部近海海域北西向蓬莱-威海断裂带的声波探测[J]. 地球物理学报, 2006, 49(4):1092-1101 doi: 10.3321/j.issn:0001-5733.2006.04.022
WANG Zhicai, DENG Qidong, CHAO Hongtai, et al. Shallow-depth sonic reflection profiling studies on the active Penglai-Weihai Fault zone offshore of the Northern Shandong Peninsula [J]. Chinese Journal of Geophysics, 2006, 49(4): 1092-1101. doi: 10.3321/j.issn:0001-5733.2006.04.022
[6] 李西双, 裴彦良, 刘保华, 等. 1969年渤海MS7.4地震发震断层的声学探测[J]. 地球物理学报, 2009, 52(9):2291-2301 doi: 10.3969/j.issn.0001-5733.2009.09.013
LI Xishuang, PEI Yanliang, LIU Baohua, et al. Acoustic detection of the causative fault of 1969 MS7.4 earthquake in Bohai Sea [J]. Chinese Journal of Geophysics, 2009, 52(9): 2291-2301. doi: 10.3969/j.issn.0001-5733.2009.09.013
[7] 陆凯, 侯方辉, 李日辉, 等. 利用单道地震研究黄、渤海海域的活动断裂[J]. 海洋地质前沿, 2012, 28(8):27-30
LU Kai, HOU Fanghui, LI Rihui, et al. Using single-channel seismics for active faults investigation in Yellow Sea and Bohai Sea [J]. Marine Geology Frontiers, 2012, 28(8): 27-30.
[8] 吴志强, 肖国林, 林年添, 等. 基于南黄海区域地质调查的地震关键技术和成果[J]. 海洋地质与第四纪地质, 2014, 34(6):119-126
WU Zhiqiang, XIAO Guolin, LIN Niantian, et al. The key seismic technology and results based on the regional geological survey of the South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2014, 34(6): 119-126.
[9] 郝天珧, 游庆瑜. 国产海底地震仪研制现状及其在海底结构探测中的应用[J]. 地球物理学报, 2011, 54(12):3352-3361 doi: 10.3969/j.issn.0001-5733.2011.12.033
HAO Tianyao, YOU Qingyu. Progress of homemade OBS and its application on ocean bottom structure survey [J]. Chinese Journal of Geophysics, 2011, 54(12): 3352-3361. doi: 10.3969/j.issn.0001-5733.2011.12.033
[10] 刘保华, 丁继胜, 裴彦良, 等. 海洋地球物理探测技术及其在近海工程中的应用[J]. 海洋科学进展, 2005, 23(3):374-384 doi: 10.3969/j.issn.1671-6647.2005.03.019
LIU Baohua, DING Jisheng, PEI Yanliang, et al. Marine geophysical survey techniques and their applications to offshore engineering [J]. Advances in Marine Science, 2005, 23(3): 374-384. doi: 10.3969/j.issn.1671-6647.2005.03.019
[11] 张训华, 赵铁虎. 海洋地质调查技术[M]. 北京: 海洋出版社, 2017.
ZHANG Xunhua, ZHAO Tiehu. Survey Technologies of Marine Geology[M]. Beijing: China Ocean Press, 2017.
[12] Marsset T, Marsset B, Thomas Y, et al. Very high resolution 3D seismic: a new imaging tool for sub-bottom profiling [J]. Comptes Rendus Geoscience, 2002, 334(6): 403-408. doi: 10.1016/S1631-0713(02)01766-2
[13] Chiocci F L, Cattaneo A, Urgeles R. Seafloor mapping for geohazard assessment: state of the art [J]. Marine Geophysical Research, 2011, 32(1): 1-11.
[14] Petersen C J, Bünz S, Hustoft S, et al. High-resolution P-Cable 3D seismic imaging of gas chimney structures in gas hydrated sediments of an Arctic sediment drift [J]. Marine and Petroleum Geology, 2010, 27(9): 1981-1994. doi: 10.1016/j.marpetgeo.2010.06.006
[15] 褚宏宪, 杨源, 张晓波, 等. 高分辨率单道地震调查数据采集技术方法[J]. 海洋地质前沿, 2012, 28(12):70-74
CHU Hongxian, YANG Yuan, ZHANG Xiaobo, et al. Data acquisition techenique for high resolution single-channel seismic survey [J]. Marine Geology Frontiers, 2012, 28(12): 70-74.
[16] 王舒畋. 浅层物探技术在近海灾害地质与工程地质调查中的应用[J]. 海洋石油, 2008, 28(1):6-12 doi: 10.3969/j.issn.1008-2336.2008.01.002
Wang Shutian. Application of shallow bed geophysical exploration technique to offshore hazard geology and engineering geology [J]. Offshore Oil, 2008, 28(1): 6-12. doi: 10.3969/j.issn.1008-2336.2008.01.002
[17] 杨文达, 刘望军. 海洋高分辨率地震技术在浅部地质勘探中的运用[J]. 海洋石油, 2007, 27(2):18-25 doi: 10.3969/j.issn.1008-2336.2007.02.005
YANG Wenda, LIU Wangjun. Marine high-resolution seismic techniques applying in the geological exploration of shallow strata [J]. Offshore Oil, 2007, 27(2): 18-25. doi: 10.3969/j.issn.1008-2336.2007.02.005
[18] 裴彦良, 赵月霞, 刘保华, 等. 近海高分辨率多道地震拖缆系统及其在海洋工程中的应用[J]. 地球物理学进展, 2010, 25(1):331-336
PEI Yanliang, ZHAO Yuexia, LIU Baohua, et al. The offshore high-resolution multi-channel seismic streamer and its application to the ocean engineering [J]. Progress in Geophysics, 2010, 25(1): 331-336.
[19] 孟庆生, 楚贤峰, 郭秀军, 等. 高分辨率数据处理技术在近海工程地震勘探中的应用[J]. 地球物理学进展, 2007, 22(3):1006-1010 doi: 10.3969/j.issn.1004-2903.2007.03.053
MENG Qingsheng, CHU Xianfeng, GUO Xiujun, et al. The application of high resolution seismic data processing technique in multi-channel shallow offshore engineering seismic surveys [J]. Progress in Geophysics, 2007, 22(3): 1006-1010. doi: 10.3969/j.issn.1004-2903.2007.03.053
[20] Verschuur D J, Berkhout A J. Estimation of multiple scattering by iterative inversion, Part Ⅱ: Practical aspects and examples [J]. Geophysics, 1997, 62(5): 1596-1611. doi: 10.1190/1.1444262
[21] Trad D O, Ulrych T J, Sacchi M D. Accurate interpolation with high-resolution time-variant Radon transforms [J]. Geophysics, 2002, 67(2): 644-656. doi: 10.1190/1.1468626
[22] Abbad B, Ursin B, Porsani M J. A fast, modified parabolic Radon transform [J]. Geophysics, 2011, 76(1): V11-V24. doi: 10.1190/1.3532079
[23] 骆迪, 蔡峰, 吴志强, 等. 海洋短排列高分辨率多道地震高精度成像关键技术[J]. 地球物理学报, 2019, 62(2):730-742 doi: 10.6038/cjg2019M0178
LUO Di, CAI Feng, WU Zhiqiang, et al. The key technologies of marine small scale high resolution multichannel seismic high-precision imaging [J]. Chinese Journal of Geophysics, 2019, 62(2): 730-742. doi: 10.6038/cjg2019M0178
[24] 王海平, 李春雷, 焦叙明, 等. 海底及浅层地质灾害的高分辨率地震预测技术[J]. 工程地球物理学报, 2016, 13(6):694-700 doi: 10.3969/j.issn.1672-7940.2016.06.002
WANG Haiping, LI Chunlei, JIAO Xuming, et al. High-resolution seismic prediction technology of seafloor and shallow geohazards [J]. Chinese Journal of Engineering Geophysics, 2016, 13(6): 694-700. doi: 10.3969/j.issn.1672-7940.2016.06.002
[25] 吴志强, 郝天珧, 张训华, 等. 扬子块体与华北块体在海区的接触关系: 来自上下源、长排列多道地震剖面的新认识[J]. 地球物理学报, 2015, 58(5):1692-1705 doi: 10.6038/cjg20150520
WU Zhiqiang, HAO Tianyao, ZHANG Xunhua, et al. Contact relationships between the North China block and the Yangtze block: new constraints from upper/lower-source and long spread multi-channel seismic profiles [J]. Chinese Journal of Geophysics, 2015, 58(5): 1692-1705. doi: 10.6038/cjg20150520
[26] 吴志强, 郝天珧, 唐松华, 等. 立体气枪阵列延迟激发震源特性及在浅海区OBS探测中的应用[J]. 地球物理学报, 2016, 59(7):2573-2586 doi: 10.6038/cjg20160722
WU Zhiqiang, HAO Tianyao, TANG Songhua, et al. Tridimensional air-gun array with delay fired source signal characteristics and the application in OBS exploration in shallow sea [J]. Chinese Journal of Geophysics, 2016, 59(7): 2573-2586. doi: 10.6038/cjg20160722
[27] Aleman A, Heimbach J, Medina E, et al. Broadband processing for Campeche Basin: Improved seismic resolution and attribute derivation[C]//2017 SEG International Exposition and Annual Meeting. Houston, Texas: SEG, 2017: 4881-4886.
[28] Lee G S, Kim D C, Yoo D G, et al. Stratigraphy of late Quaternary deposits using high resolution seismic profile in the southeastern Yellow Sea [J]. Quaternary International, 2014, 344: 109-124.
[29] Gray S H. Seismic imaging and inversion: what are we doing, how are we doing, and where are we going?[C]//2014 SEG Annual Meeting. Denver, Colorado, USA: SEG, 2014: 4416-4420.
[30] Lu S M, McMechan G A. Elastic impedance inversion of multichannel seismic data from unconsolidated sediments containing gas hydrate and free gas [J]. Geophysics, 2004, 69(1): 164-179. doi: 10.1190/1.1649385
[31] Chen Q, Sidney S. Seismic attribute technology for reservoir forecasting and monitoring [J]. The Leading Edge, 1997, 16(5): 445-456. doi: 10.1190/1.1437657
[32] 王开燕, 徐清彦, 张桂芳, 等. 地震属性分析技术综述[J]. 地球物理学进展, 2013, 28(2):815-823 doi: 10.6038/pg20130231
WANG Kaiyan, XU Qingyan, ZHANG Guifang, et al. Summary of seismic attribute analysis [J]. Progress in Geophysics, 2013, 28(2): 815-823. doi: 10.6038/pg20130231
[33] 赵维娜, 张训华, 吴志强, 等. 三瞬属性在南黄海第四纪地震地层分析中的应用[J]. 海洋学报, 2016, 38(7):117-125
ZHAO Weina, ZHANG Xunhua, WU Zhiqiang, et al. Application of three instantaneous attributes in the analysis of Quaternary seismic strata in the southern Yellow Sea [J]. Haiyang Xuebao, 2016, 38(7): 117-125.
[34] Zhao W N, Zhang X H, Wang Z B, et al. Quaternary high-resolution seismic sequence based on instantaneous phase of single-channel seismic data in the South Yellow Sea, China [J]. Quaternary International, 2018, 468: 4-13. doi: 10.1016/j.quaint.2018.01.014
[35] 吴中海, 张岳桥, 胡道功. 新构造、活动构造与地震地质[J]. 地质通报, 2014, 33(4):391-402 doi: 10.3969/j.issn.1671-2552.2014.04.001
WU Zhonghai, ZHANG Yueqiao, HU Daogong. Neotectonics, active tectonics and earthquake geology [J]. Geological Bulletin of China, 2014, 33(4): 391-402. doi: 10.3969/j.issn.1671-2552.2014.04.001
[36] 阮爱国, 李家彪, 冯占英, 等. 海底地震仪及其国内外发展现状[J]. 东海海洋, 2004, 22(2):19-27
RUAN Aiguo, LI Jiabiao, FENG Zhanying, et al. Ocean bottom seismometer and its development in the world [J]. Donghai Marine Science, 2004, 22(2): 19-27.
[37] Zhao W N, Zhang X H, Meng X J, et al. S-wave velocity structures and Vp/Vs ratios beneath the South Yellow Sea from ocean bottom seismograph data [J]. Journal of Applied Geophysics, 2017, 139: 211-222. doi: 10.1016/j.jappgeo.2017.02.015
[38] 赵维娜, 张训华, 邹志辉, 等. 基于OBS数据的南黄海沉积地层速度结构特征[J]. 地球物理学报, 2019, 62(1):183-196 doi: 10.6038/cjg2018L0623
ZHAO Weina, ZHANG Xunhua, ZOU Zhihui, et al. Velocity structure of sedimentary formation in the South Yellow Sea Basin based on OBS data [J]. Chinese Journal of Geophysics, 2019, 62(1): 183-196. doi: 10.6038/cjg2018L0623
[39] 黄忠贤, 胥颐, 郝天珧, 等. 中国东部海域岩石圈结构面波层析成像[J]. 地球物理学报, 2009, 52(3):653-662
HUANG Zhongxian, XU Yi, HAO Tianyao, et al. Surface wave tomography of lithospheric structure in the seas of east China [J]. Chinese Journal of Geophysics, 2009, 52(3): 653-662.
[40] 秦晶晶, 袁洪克, 何银娟, 等. 层析成像技术在城市活断层探测中的应用[J]. 地球物理学进展, 2018, 33(5):2153-2158 doi: 10.6038/pg2018BB0383
QIN Jingjing, YUAN Hongke, HE Yinjuan, et al. Application of tomography inversion method in detecting active fault [J]. Progress in Geophysics, 2018, 33(5): 2153-2158. doi: 10.6038/pg2018BB0383
[41] 余景锋, 江为为, 郝天珧, 等. 中国东部海区及其邻域岩石层结构与地球动力学特征研究[J]. 地球物理学进展, 2015, 30(3):1100-1109 doi: 10.6038/pg20150314
YU Jingfeng, JIANG Weiwei, HAO Tiaoyao, et al. Lithosphere structure and geodynamics characteristics of China eastern seas and adjacent region [J]. Progress in Geophysics, 2015, 30(3): 1100-1109. doi: 10.6038/pg20150314
[42] 赵明辉, 丘学林, 夏少红, 等. 南海东北部三分量海底地震仪记录中横波的识别和分析[J]. 自然科学进展, 2007, 17(11):1516-1523 doi: 10.3321/j.issn:1002-008x.2007.11.008
ZHAO Minghui, QIU Xuelin, XIA Shaohong, et al. Identification and analysis of shear waves records by three-component OBSs in northeastern South China Sea [J]. Progress in Natural Science, 2007, 17(11): 1516-1523. doi: 10.3321/j.issn:1002-008x.2007.11.008
[43] 赵维娜, 张训华, 孟祥君, 等. 南黄海OBS数据转换横波分析及其地质意义[J]. 地球物理学报, 2017, 60(4):1479-1490 doi: 10.6038/cjg20170421
ZHAO Weina, ZHANG Xunhua, MENG Xiangjun, et al. Analysis of converted shear-waves based on OBS data in the South Yellow Sea and its geological implications [J]. Chinese Journal of Geophysics, 2017, 60(4): 1479-1490. doi: 10.6038/cjg20170421
[44] Zhao M H, Qiu X L, Xia S H, et al. Seismic structure in the northeastern South China Sea: S-wave velocity and Vp/Vs ratios derived from three-component OBS data [J]. Tectonophysics, 2010, 480(1-4): 183-197. doi: 10.1016/j.tecto.2009.10.004
[45] Zhao W N, Wang H G, Shi H C, et al. Crustal structure from onshore-offshore wide-angle seismic data: Application to Northern Sulu Orogen and its adjacent area [J]. Tectonophysics, 2019, 770: 228220. doi: 10.1016/j.tecto.2019.228220
[46] Ruan A G, Li J B, Lee C S, et al. Passive seismic experiment and ScS wave splitting in the southwestern subbasin of South China Sea [J]. Chinese Science Bulletin, 2012, 57(25): 3381-3390. doi: 10.1007/s11434-012-5132-0
[47] 王应斌, 黄雷, 刘廷海. 渤海新构造运动主要特征与构造型式[J]. 中国海上油气, 2012, 24(S1):6-10
WANG Yingbin, HUANG Lei, LIU Yanhai. The main characteristics and structural styles of Bohai newtectonism [J]. China Offshore Oil and Gas, 2012, 24(S1): 6-10.
[48] 陈江欣, 侯方辉, 李日辉, 等. 渤海海域中西部新构造运动特征[J]. 海洋地质与第四纪地质, 2018, 38(4):83-91
CHEN Jiangxin, HOU Fanghui, LI Rihui, et al. Neotectonics in the western and central Bohai Sea [J]. Marine Geology & Quaternary Geology, 2018, 38(4): 83-91.
[49] 周斌, 邓志辉, 徐杰, 等. 渤海新构造运动及其对晚期油气成藏的影响[J]. 地球物理学进展, 2009, 24(6):2135-2144 doi: 10.3969/j.issn.1004-2903.2009.06.028
ZHOU Bin, DENG Zhihui, XU Jie, et al. Characteristics of neotectonism and their relationship with late hydrocarbon accumulation in the Bohai sea [J]. Progress in Geophysics, 2009, 24(6): 2135-2144. doi: 10.3969/j.issn.1004-2903.2009.06.028
[50] 吴德城, 朱晓青, 王庆良, 等. 南黄海西北部与深大断裂相关的活动断层特征[J]. 海洋地质前沿, 2020, 36(2):12-18
WU Decheng, ZHU Xiaoqing, WANG Qingliang, et al. Characteristics of active faults related to deep faults in the northwestern part of the South Yellow Sea [J]. Marine Geology Frontiers, 2020, 36(2): 12-18.
[51] 王志才, 邓起东, 杜宪宋, 等. 莱州湾海域郯庐断裂带活断层探测[J]. 地震学报, 2006, 28(5):493-503 doi: 10.3321/j.issn:0253-3782.2006.05.006
WANG Zhicai, DENG Qidong, DU Xiansong, et al. Active fault survey on the Tanlu fault zone in Laizhou Bay [J]. Acta Seismologica Sinica, 2006, 28(5): 493-503. doi: 10.3321/j.issn:0253-3782.2006.05.006
[52] 侯方辉, 王保军, 孙建伟, 等. 渤海海峡跨海通道新构造运动特征及其工程地质意义[J]. 海洋地质前沿, 2016, 32(5):25-30
HOU Fanghui, WANG Baojun, SUN Jianwei, et al. Neotectonic movement across the Bohai Strait and its engineering geologic significance [J]. Marine Geology Frontiers, 2016, 32(5): 25-30.
[53] 李西双, 赵月霞, 刘保华, 等. 郯庐断裂带渤海段晚更新世以来的浅层构造变形和活动性[J]. 科学通报, 2010, 55(18):1908-1916 doi: 10.1007/s11434-010-3073-z
LI Xishuang, ZHAO Yuexia, LIU Baohua, et al. Structural deformation and fault activity of the Tan-Lu Fault zone in the Bohai Sea since the Late Pleistocene [J]. Chinese Science Bulletin, 2010, 55(18): 1908-1916. doi: 10.1007/s11434-010-3073-z
[54] Kim H J, Kim C H, Hao T Y, et al. Crustal structure of the Gunsan Basin in the SE Yellow Sea from ocean bottom seismometer (OBS) data and its linkage to the South China Block [J]. Journal of Asian Earth Sciences, 2019, 180: 103881. doi: 10.1016/j.jseaes.2019.103881
[55] 王志才, 晁洪太, 杜宪宋, 等. 南黄海北部千里岩断裂活动性初探[J]. 地震地质, 2008, 30(1):176-186 doi: 10.3969/j.issn.0253-4967.2008.01.012
WANG Zhicai, CHAO Hongtai, DU Xiansong, et al. Preliminary survey on the Quaternary activities of the Qianliyan fault in the northern part of the South Yellow Sea [J]. Seismology and Geology, 2008, 30(1): 176-186. doi: 10.3969/j.issn.0253-4967.2008.01.012
[56] 李官保, 刘保华, 赵月霞, 等. 南黄海千里岩附近海域第四纪构造活动特征[J]. 地球科学—中国地质大学学报, 2011, 36(6):977-984
LI Guanbao, LIU Baohua, ZHAO Yuexia, et al. Quaternary tectonic activity near the Qianliyan Island of Southern Yellow Sea [J]. Earth Science-Journal of China University of Geosciences, 2011, 36(6): 977-984.
[57] 沈中延, 周建平, 高金耀, 等. 南黄海北部千里岩隆起带的第四纪活动断裂[J]. 地震地质, 2013, 31(1):64-74 doi: 10.3969/j.issn.0253-4967.2013.01.005
SHEN Zhongyan, ZHOU Jianping, GAO Jinyao, et al. Quaternary faults of the Qianliyan Uplift in the northern South Yellow Sea [J]. Seismology and Geology, 2013, 31(1): 64-74. doi: 10.3969/j.issn.0253-4967.2013.01.005
[58] 王舒畋, 李斌. 东海新构造与新构造运动[J]. 海洋地质与第四纪地质, 2010, 30(4):141-150
WANG Shutian, LI Bin. Neotectonic features and movement in the east China Sea [J]. Marine Geology & Quaternary Geology, 2010, 30(4): 141-150.
[59] 侯方辉, 张志珣, 张训华, 等. 东海陆架盆地北部新构造运动特征[J]. 海洋地质动态, 2010, 26(11):1-6
HOU Fanghui, ZHANG Zhixun, ZHANG Xunhua, et al. Neotectonic Movement of The northern East China Sea shelf basin [J]. Marine Geology Letters, 2010, 26(11): 1-6.
[60] 孙金龙, 徐辉龙, 李亚敏. 南海东北部新构造运动及其动力学机制[J]. 海洋地质与第四纪地质, 2009, 29(3):61-68
SUN Jinlong, XUN Huilong, LI Yamin. Neotectonics in the northeastern South China Sea and its dynamic mechanism [J]. Marine Geology & Quaternary Geology, 2009, 29(3): 61-68.
[61] 赵明辉, 丘学林, 夏戡原, 等. 南海东北部滨海断裂带的研究现状与展望[J]. 华南地震, 2013, 23(1):20-27
ZHAO Minghui, QIU Xuelin, XIA Kanyuan, et al. The situation and prospect of the research on the Binhai fault of NE South China Sea [J]. South China Journal of Seismology, 2013, 23(1): 20-27.
[62] 赵明辉, 丘学林, 叶春明, 等. 南海东北部海陆深地震联测与滨海断裂带两侧地壳结构分析[J]. 地球物理学报, 2004, 47(5):845-852 doi: 10.3321/j.issn:0001-5733.2004.05.016
ZHAO Minghui, QIU Xuelin, YE Chunming, et al. Analysis on deep crustal structure along the onshore-offshore seismic profile across the Binhai (Littoral) Fault Zone in northeastern South China Sea [J]. Chinese Journal of Geophysics, 2004, 47(5): 845-852. doi: 10.3321/j.issn:0001-5733.2004.05.016
[63] 徐辉龙, 丘学林, 赵明辉, 等. 南海东北部南澳大地震(M=7.5)震中区的地壳结构特征与震源构造[J]. 科学通报, 2006, 51(增刊 2):83-91
XU Huilong, QIU Xuelin, ZHAO Minghui, et al. Nanao earthquake (M=7.5) epicentral area structure characteristics of crust and the source structure in northeast of South China sea [J]. Chinese Science Bulletin, 2006, 51(Suppl. 2): 83-91.
[64] 陈晓辉, 李日辉. 中国东部海域活动构造定量研究若干问题探讨[J]. 海洋地质与第四纪地质, 2017, 37(3):102-110
CHEN Xiaohui, LI Rihui. A review on Quantitative studies of active tectonics in Eastern China Sea [J]. Marine Geology & Quaternary Geology, 2017, 37(3): 102-110.
[65] 赵富有, 王世煜, 王典. 横波地震勘查技术在长春市活断层探测中的应用[J]. 地球物理学进展, 2008, 23(1):284-288
ZHAO Fuyou, WANG Shiyu, WANG Dian. Application of seismic shear wave prospecting in detection of active faults in Changchun city [J]. Progress in Geophysics, 2008, 23(1): 284-288.
[66] Barr F J. Dual-sensor OBC technology [J]. The Leading Edge, 1997, 16(1): 45-51. doi: 10.1190/1.1437427
[67] Ronen S, Rokkan A, Bouraly R, et al. Imaging shallow gas drilling hazards under three Forties oil field platforms using ocean-bottom nodes [J]. The Leading Edge, 2012, 31(4): 465-469. doi: 10.1190/tle31040465.1
[68] Roy D A, Rekos R, Brideau C, et al. A marine vibrator to meet the joint industry project specification[C]//SEG Technical Program Expanded Abstracts. SEG, 2018: 97-101.