-
摘要:
随着海底地热学研究的不断深入,对海底地热测量仪器的技术指标提出了更高要求。基于前期自主研发的FY1自容式微型温度测量记录仪,经过大量实践数据与经验积累,研制出新型的FY2自容式微型温度测量记录仪。为验证FY2的性能,在实验室恒温水槽和南海北部陆坡深水海域对FY1和FY2进行了仪器校验和比测,结果显示FY2的测量分辨率优于0.0001 ℃,测量准确度优于±0.0015 ℃,比测点的海底热流值为78 mW/m2。实验结果证实FY2探针不仅具有高分辨率、高精度、性能稳定的特点,而且测量效率高,可为海底热流探测与研究提供新一代可靠的技术支持。
Abstract:The seabed geothermal research has become a common component of integrated marine geological survey nowadays and high requirements are raised to the technical performance of instruments for seabed measurement. Based on the FY1, the self-contained miniature temperature measurement recorder independently developed by Guangzhou Marine Geological Survey, a new type of self-contained miniature temperature measurement recorder, FY2 in abbreviation, was developed after summarization of previous practicce data and survey experiences. In order to verify the performance of the FY2, efforts have been devoted to the instrument calibration and the comparison of the FY2 to the FY1 in laboratories under a constant temperature flume as well as in the deep water area on the northern slope of the South China Sea. Results show that the resolution of the FY2 is higher than 0.0001 ℃, and the precision is higher than ±0.0015 ℃. The seabed geothermal flow value of the measuring point is 78 mW/m2; indicating an excellent performance of the new equipment. The new equipment also has high efficiency, and may provide strong technical support for the research of seabed geothermal flow.
-
表 1 升级前后探针技术性能对照表
Table 1. Comparison table of Probe technical performance before and after upgrade
参数 FY1 FY2(新型飞鱼探针) 测量范围/℃ −7~52 −7~52 分辨率/℃ 0.001 0.0001 精度/℃ ±0.003(0~25) ±0.0015(0~25) 电源 标准小型3 V锂电池 标准小型3 V锂电池 最大工作深度/m 6 000 6 000 处理器 16位低功耗DSP器件 功耗:200 μA/MHz 32位低功耗ARM芯片 功耗:112 µA/MHz ADC(模数转换器) 16位低功耗Σ-Δ型ADC,单极性采样;信号分辨率40 μV;等效理论温度分辨率:以5 ℃为基准估算,相当于1.33 mK 24位低功耗Σ-Δ型ADC,双极性采样,信号分辨率0.3 μV;等效理论温度分辨率:以5 ℃为基准估算,相当于0.01 mK 数据存储 256 K,铁电存储器 1.5 M,Flash EEPROM存储器 通信接口 RS485 基于USB的单线串行通讯技术 表 2 校准后FY1探针和FY2探针在各标准温度点的测温误差
Table 2. Temperature measurement errors for FY1 and FY2 probes at each standard temperature point after calibration
序号 标准温度/℃ FY1(系列号) FY2(系列号) 06101 06123 0001 0002 0003 0005 0006 0007 0008 1 0.0051 0.0020 0.0030 0.000629 0.001469 0.000982 0.000842 0.001246 0.000640 0.000970 2 5.0028 0.0024 0.0026 −0.001144 −0.000822 −0.000820 0.000163 −0.000538 −0.001117 −0.000537 3 10.0040 0.0026 0.0019 −0.000470 0.000550 0.000666 −0.000332 −0.000564 −0.000185 −0.000203 4 15.0038 0.0023 0.0029 −0.000115 0.000402 0.000416 0.000464 −0.000210 0.000320 0.000125 5 20.0028 −0.0017 0.0014 −0.000064 −0.000001 −0.000030 0.000406 0.000087 −0.000008 0.000174 6 24.9953 0.0029 0.0018 0.000202 0.000821 0.000685 0.000544 0.000005 0.000455 0.000464 表 3 实验中FY1与FY2探针温度示值变化对比
Table 3. Comparison of temperature indication changes of FY1 and FY2 probes in the experiment
水槽测温对比实验(10 s采样间隔) 沉积物测温对比实验(1 s采样间隔) FY1探针(系列号06123) FY2探针(系列号0005) FY1探针(系列号08105) FY2探针(系列号0003) 03∶31∶44 5.0048 03∶31∶44 5.0036 07∶49∶01 3.3913 07∶49∶01 3.3669 03∶31∶54 5.0042 03∶31∶54 5.0035 07∶49∶02 3.3911 07∶49∶02 3.3669 03∶32∶04 5.0042 03∶32∶04 5.0034 07∶49∶03 3.3919 07∶49∶03 3.3670 03∶32∶14 5.0055 03∶32∶14 5.0034 07∶49∶04 3.3915 07∶49∶04 3.3671 03∶32∶24 5.0047 03∶32∶24 5.0033 07∶49∶05 3.3911 07∶49∶05 3.3671 03∶32∶34 5.0044 03∶32∶34 5.0034 07∶49∶06 3.3918 07∶49∶06 3.3672 03∶32∶44 5.0049 03∶32∶44 5.0035 07∶49∶07 3.3913 07∶49∶07 3.3672 03∶32∶54 5.0051 03∶32∶54 5.0036 07∶49∶08 3.3915 07∶49∶08 3.3672 03∶33∶04 5.0057 03∶33∶04 5.0036 07∶49∶09 3.3916 07∶49∶09 3.3673 03∶33∶14 5.0049 03∶33∶14 5.0035 07∶49∶10 3.3914 07∶49∶10 3.3672 注:红色数字代表稳定数字。 表 4 3次插入过程中,海底地温梯度的线性拟合对比
Table 4. The formula and data table for calculating the temperature gradient by linear fitting temperature-distance when inserting for three times
FY1+FY2 FY1 FY2 备注 拟合公式 Y=0.0878x+3.2294 Y=0.086x+3.2302 Y=0.0907x+3.2276 第1次插入倾斜度8.7° R2 0.9975 0.9983 0.9995 视地温梯度℃/m 87.8 86.0 90.7 真地温梯度℃/m 88.8 87.0 91.8 拟合公式 Y=0.091x+3.2329 Y=0.0901x+3.2329 Y=0.0919x+3.2323 第2次插入倾斜度11.0° R2 0.9971 0.9957 0.9993 视地温梯度℃/m 91.0 90.1 91.9 真地温梯度℃/m 92.7 91.8 93.6 拟合公式 Y=0.0887x+3.2146 Y=0.0881x+3.2126 Y=0.0884x+3.2155 第3次插入,倾斜度7.7° R2 0.9978 0.9963 0.9999 视地温梯度℃/m 88.7 88.1 88.4 真地温梯度℃/m 89.5 88.9 89.2 -
[1] 汪集暘. 地热学及其应用[M]. 北京: 科学出版社, 2015.
WANG Jiyang. Geothermics and its Applications[M]. Beijing: Science Press, 2015.
[2] O卡普迈耶 O, 海涅尔 R. 地热学及其应用[M]. 北京: 科学出版社, 1981.
Kappelmeyer O, Haenel R. Geotherks with Special Reference to Application[M]. Beijing: Science Press, 1981.
[3] 徐行, 罗贤虎, 肖波. 海洋地热流测量技术及其方法研究[J]. 海洋技术, 2005, 24(1):77-81 doi: 10.3969/j.issn.1003-2029.2005.01.019
XU Xing, LUO Xianhu, XIAO Bo. Research on the methods & technique of marine heat flow measurement [J]. Ocean Technology, 2005, 24(1): 77-81. doi: 10.3969/j.issn.1003-2029.2005.01.019
[4] 徐行, 陆敬安, 罗贤虎, 等. 南海北部海底热流测量及分析[J]. 地球物理学进展, 2005, 20(2):562-565 doi: 10.3969/j.issn.1004-2903.2005.02.057
XU Xing, LU Jing’an, LUO Xianhu, et al. The marine heat flow survey and the result discussion in the northern part of South China Sea [J]. Progress in Geophysics, 2005, 20(2): 562-565. doi: 10.3969/j.issn.1004-2903.2005.02.057
[5] 罗贤虎, 徐行, 张志刚, 等. XXG-T型海底地温梯度探测系统的研发及技术特点[J]. 南海地质研究, 2007(1):102-110
LUO Xianhu, XU Xing, ZHANG Zhigang, et al. Development and technical character of XXG-T marine geothermal gradient measurement system [J]. Gresearch of Eological South China Sea, 2007(1): 102-110.
[6] Bullard E C. The flow of heat through the floor of the Atlantic ocean [J]. Proceedings of the Royal Society of A: Mathematical, Physical and Engineering Sciences, 1954, 222(1150): 408-429.
[7] Von Herzen R, Maxwell A E. The measurement of thermal conductivity of deep-sea sediments by a needle-probe method [J]. Journal of Geophysical Research, 1959, 64(10): 1557-1563. doi: 10.1029/JZ064i010p01557
[8] Sclater J G, Corry C E, Vacquier V. In situ measurement of the thermal conductivity of ocean‐floor sediments [J]. Journal of Geophysical Research, 1969, 74(4): 1070-1081. doi: 10.1029/JB074i004p01070
[9] Hyndman R D, Erickson A J, Von Herzen R P. Geothermal measurement on DSDP Leg 26[M]//Davies T A, Luyendyk B P. Initial Reports of the Deep Sea Drilling Project 26. Washington: US Government Printing Office, 1974: 675-742.
[10] Lister C R B. The pulse-probe method of conductivity measurement [J]. Geophysical Journal of the Royal Astronomical Society, 1979, 57(2): 451-461. doi: 10.1111/j.1365-246X.1979.tb04788.x
[11] Pfender M, Villinger H. Miniaturized data loggers for deep sea sediment temperature gradient measurements [J]. Marine Geology, 2002, 186(3-4): 557-570. doi: 10.1016/S0025-3227(02)00213-X
[12] Chang H I, Shyu C T. Compact high-resolution temperature loggers for measuring the thermal gradients of marine sediments [J]. Marine Geophysical Research, 2011, 32(4): 465-479. doi: 10.1007/s11001-011-9136-y
[13] 钱翼鹏. 南海北部地热流测量及其成果[J]. 海洋地质与第四纪地质, 1982, 2(4):104-109
QIAN Yipeng. Terrestrial heat flow measurements and the results in the north of South China Sea [J]. Marine Geological Research, 1982, 2(4): 104-109.
[14] 姚伯初. 中美合作调研南海地质专报[M]. 武汉: 中国地质大学出版社, 1994.
YAO Bochu. The Geological Memoir of South China Sea Surveyed Jointly by China & USA[M]. Wuhan: China University of Geosciences Press, 1994.
[15] Nissen S S, Hayes D E, Yao B C, et al. Gravity heat flow, and seismic constraints on the processes of crustal extension: Northern margin of the South China Sea [J]. Journal of Geophysical Research, 1995, 100(B11): 22447-22483. doi: 10.1029/95JB01868
[16] Qian Y P, Niu X P, Yao B C, et al. Geothermal Pattern Beneath the continental margin in the northern part of the South China Sea[C]//CCOP/TB, 1995, 25: 89-104.
[17] 徐行, 罗贤虎, 许鹤华, 等. 南海地热流探测、研究与展望[J]. 南海地质研究, 2015:1-18
XU Xing, LUO Xianhu, XU Hehua, et al. The measurement, review and prospect on geothermal studies of the South China Sea [J]. Geological Research of South China Sea, 2015: 1-18.
[18] 徐行, 罗贤虎, 彭登, 等. 系列化的海洋地热流探测技术获得突破[J]. 中国地质, 2017, 44(3):621-622
XU Xing, LUO Xianhu, PENG Deng, et al. Marine geothermal flow detection technology gains breakthrough [J]. Geology in China, 2017, 44(3): 621-622.
[19] 彭登, 徐行, 罗贤虎. 海底沉积物地温梯度测量系统设计[J]. 电子设计工程, 2014, 22(6):1-3 doi: 10.3969/j.issn.1674-6236.2014.06.001
PENG Deng, XU Xing, LUO Xianhu. Design of marine sediment geothermal gradient measurement system [J]. Electronic Design Engineering, 2014, 22(6): 1-3. doi: 10.3969/j.issn.1674-6236.2014.06.001
[20] 张东风, 片秀红. 热工测量及仪表[M]. 3版. 北京: 中国电力出版社, 2015.
ZHANG Dongfeng, PIAN Xiuhong. Thermal Measurement and Instrumentation[M]. 3rd ed. Beijing: China Electric Power Press, 2015.