新型深海地温梯度测量设备(FY2)研发

李佳伟, 陈洁, 徐行, 潘飞儒, 罗贤虎, 俞欣沁, 罗新恒. 新型深海地温梯度测量设备(FY2)研发[J]. 海洋地质与第四纪地质, 2021, 41(3): 203-211. doi: 10.16562/j.cnki.0256-1492.2020092702
引用本文: 李佳伟, 陈洁, 徐行, 潘飞儒, 罗贤虎, 俞欣沁, 罗新恒. 新型深海地温梯度测量设备(FY2)研发[J]. 海洋地质与第四纪地质, 2021, 41(3): 203-211. doi: 10.16562/j.cnki.0256-1492.2020092702
LI Jiawei, CHEN Jie, XU Xing, PAN Feiru, LUO Xianhu, YU Xinqin, LUO Xinheng. A new equipment for deep-sea geothermal gradient measurement (FY2)[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 203-211. doi: 10.16562/j.cnki.0256-1492.2020092702
Citation: LI Jiawei, CHEN Jie, XU Xing, PAN Feiru, LUO Xianhu, YU Xinqin, LUO Xinheng. A new equipment for deep-sea geothermal gradient measurement (FY2)[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 203-211. doi: 10.16562/j.cnki.0256-1492.2020092702

新型深海地温梯度测量设备(FY2)研发

  • 基金项目: 2018年广东省级促进经济发展专项资金(海洋经济发展用途)专项“天然气水合物先导区建设与资源区块优选项目”(GDME-2018D001);广东省珠海市泰德企业有限公司海洋技术领域院士工作站
详细信息
    作者简介: 李佳伟(1994—),助理工程师,从事海洋地质及地球物理勘探技术方法研究,E-mail:upcljw@163.com
    通讯作者: 徐行(1963—),教授级高级工程师,从事海洋地质-地球物理勘探技术方法研究,E-mail:gz_xuxing@163.com
  • 中图分类号: P738.6

A new equipment for deep-sea geothermal gradient measurement (FY2)

More Information
  • 随着海底地热学研究的不断深入,对海底地热测量仪器的技术指标提出了更高要求。基于前期自主研发的FY1自容式微型温度测量记录仪,经过大量实践数据与经验积累,研制出新型的FY2自容式微型温度测量记录仪。为验证FY2的性能,在实验室恒温水槽和南海北部陆坡深水海域对FY1和FY2进行了仪器校验和比测,结果显示FY2的测量分辨率优于0.0001 ℃,测量准确度优于±0.0015 ℃,比测点的海底热流值为78 mW/m2。实验结果证实FY2探针不仅具有高分辨率、高精度、性能稳定的特点,而且测量效率高,可为海底热流探测与研究提供新一代可靠的技术支持。

  • 加载中
  • 图 1  FY2型探针安装说明图

    Figure 1. 

    图 2  FY2型探针电子电路框图和PCB板图

    Figure 2. 

    图 3  实验室各标准温度点下FY1探针和FY2探针示值变化情况

    Figure 3. 

    图 4  试验区的位置示意图

    Figure 4. 

    图 5  FY1探针与FY2探针3次插入海底沉积物过程中的温度—时间变化曲线图

    Figure 5. 

    图 6  第1次插入海底并计算地温梯度过程中,FY1探针和FY2探针各自测得温度点,温度—探针间距线性拟合关系图

    Figure 6. 

    表 1  升级前后探针技术性能对照表

    Table 1.  Comparison table of Probe technical performance before and after upgrade

    参数FY1FY2(新型飞鱼探针)
    测量范围/℃−7~52−7~52
    分辨率/℃0.0010.0001
    精度/℃±0.003(0~25)±0.0015(0~25)
    电源标准小型3 V锂电池标准小型3 V锂电池
    最大工作深度/m6 0006 000
    处理器16位低功耗DSP器件 功耗:200 μA/MHz32位低功耗ARM芯片 功耗:112 µA/MHz
    ADC(模数转换器)16位低功耗Σ-Δ型ADC,单极性采样;信号分辨率40 μV;等效理论温度分辨率:以5 ℃为基准估算,相当于1.33 mK24位低功耗Σ-Δ型ADC,双极性采样,信号分辨率0.3 μV;等效理论温度分辨率:以5 ℃为基准估算,相当于0.01 mK
    数据存储256 K,铁电存储器1.5 M,Flash EEPROM存储器
    通信接口RS485基于USB的单线串行通讯技术
    下载: 导出CSV

    表 2  校准后FY1探针和FY2探针在各标准温度点的测温误差

    Table 2.  Temperature measurement errors for FY1 and FY2 probes at each standard temperature point after calibration

    序号标准温度/℃FY1(系列号)FY2(系列号)
    06101061230001000200030005000600070008
    10.00510.00200.00300.0006290.0014690.0009820.0008420.0012460.0006400.000970
    25.00280.00240.0026−0.001144−0.000822−0.0008200.000163−0.000538−0.001117−0.000537
    310.00400.00260.0019−0.0004700.0005500.000666−0.000332−0.000564−0.000185−0.000203
    415.00380.00230.0029−0.0001150.0004020.0004160.000464−0.0002100.0003200.000125
    520.0028−0.00170.0014−0.000064−0.000001−0.0000300.0004060.000087−0.0000080.000174
    624.99530.00290.00180.0002020.0008210.0006850.0005440.0000050.0004550.000464
    下载: 导出CSV

    表 3  实验中FY1与FY2探针温度示值变化对比

    Table 3.  Comparison of temperature indication changes of FY1 and FY2 probes in the experiment

    水槽测温对比实验(10 s采样间隔)沉积物测温对比实验(1 s采样间隔)
    FY1探针(系列号06123)FY2探针(系列号0005)FY1探针(系列号08105)FY2探针(系列号0003)
    03∶31∶44  5.004803∶31∶44  5.003607∶49∶01  3.391307∶49∶01  3.3669
    03∶31∶54  5.004203∶31∶54  5.003507∶49∶02  3.391107∶49∶02  3.3669
    03∶32∶04  5.004203∶32∶04  5.003407∶49∶03  3.391907∶49∶03  3.3670
    03∶32∶14  5.005503∶32∶14  5.003407∶49∶04  3.391507∶49∶04  3.3671
    03∶32∶24  5.004703∶32∶24  5.003307∶49∶05  3.391107∶49∶05  3.3671
    03∶32∶34  5.004403∶32∶34  5.003407∶49∶06  3.391807∶49∶06  3.3672
    03∶32∶44  5.004903∶32∶44  5.003507∶49∶07  3.391307∶49∶07  3.3672
    03∶32∶54  5.005103∶32∶54  5.003607∶49∶08  3.391507∶49∶08  3.3672
    03∶33∶04  5.005703∶33∶04  5.003607∶49∶09  3.391607∶49∶09  3.3673
    03∶33∶14  5.004903∶33∶14  5.003507∶49∶10  3.391407∶49∶10  3.3672
      注:红色数字代表稳定数字。
    下载: 导出CSV

    表 4  3次插入过程中,海底地温梯度的线性拟合对比

    Table 4.  The formula and data table for calculating the temperature gradient by linear fitting temperature-distance when inserting for three times

    FY1+FY2FY1FY2备注
    拟合公式Y=0.0878x+3.2294Y=0.086x+3.2302Y=0.0907x+3.2276第1次插入倾斜度8.7°
    R20.99750.99830.9995
    视地温梯度℃/m87.886.090.7
    真地温梯度℃/m88.887.091.8
    拟合公式Y=0.091x+3.2329Y=0.0901x+3.2329Y=0.0919x+3.2323第2次插入倾斜度11.0°
    R20.99710.99570.9993
    视地温梯度℃/m91.090.191.9
    真地温梯度℃/m92.791.893.6
    拟合公式Y=0.0887x+3.2146Y=0.0881x+3.2126Y=0.0884x+3.2155第3次插入,倾斜度7.7°
    R20.99780.99630.9999
    视地温梯度℃/m88.788.188.4
    真地温梯度℃/m89.588.989.2
    下载: 导出CSV
  • [1]

    汪集暘. 地热学及其应用[M]. 北京: 科学出版社, 2015.

    WANG Jiyang. Geothermics and its Applications[M]. Beijing: Science Press, 2015.

    [2]

    O卡普迈耶 O, 海涅尔 R. 地热学及其应用[M]. 北京: 科学出版社, 1981.

    Kappelmeyer O, Haenel R. Geotherks with Special Reference to Application[M]. Beijing: Science Press, 1981.

    [3]

    徐行, 罗贤虎, 肖波. 海洋地热流测量技术及其方法研究[J]. 海洋技术, 2005, 24(1):77-81 doi: 10.3969/j.issn.1003-2029.2005.01.019

    XU Xing, LUO Xianhu, XIAO Bo. Research on the methods & technique of marine heat flow measurement [J]. Ocean Technology, 2005, 24(1): 77-81. doi: 10.3969/j.issn.1003-2029.2005.01.019

    [4]

    徐行, 陆敬安, 罗贤虎, 等. 南海北部海底热流测量及分析[J]. 地球物理学进展, 2005, 20(2):562-565 doi: 10.3969/j.issn.1004-2903.2005.02.057

    XU Xing, LU Jing’an, LUO Xianhu, et al. The marine heat flow survey and the result discussion in the northern part of South China Sea [J]. Progress in Geophysics, 2005, 20(2): 562-565. doi: 10.3969/j.issn.1004-2903.2005.02.057

    [5]

    罗贤虎, 徐行, 张志刚, 等. XXG-T型海底地温梯度探测系统的研发及技术特点[J]. 南海地质研究, 2007(1):102-110

    LUO Xianhu, XU Xing, ZHANG Zhigang, et al. Development and technical character of XXG-T marine geothermal gradient measurement system [J]. Gresearch of Eological South China Sea, 2007(1): 102-110.

    [6]

    Bullard E C. The flow of heat through the floor of the Atlantic ocean [J]. Proceedings of the Royal Society of A: Mathematical, Physical and Engineering Sciences, 1954, 222(1150): 408-429.

    [7]

    Von Herzen R, Maxwell A E. The measurement of thermal conductivity of deep-sea sediments by a needle-probe method [J]. Journal of Geophysical Research, 1959, 64(10): 1557-1563. doi: 10.1029/JZ064i010p01557

    [8]

    Sclater J G, Corry C E, Vacquier V. In situ measurement of the thermal conductivity of ocean‐floor sediments [J]. Journal of Geophysical Research, 1969, 74(4): 1070-1081. doi: 10.1029/JB074i004p01070

    [9]

    Hyndman R D, Erickson A J, Von Herzen R P. Geothermal measurement on DSDP Leg 26[M]//Davies T A, Luyendyk B P. Initial Reports of the Deep Sea Drilling Project 26. Washington: US Government Printing Office, 1974: 675-742.

    [10]

    Lister C R B. The pulse-probe method of conductivity measurement [J]. Geophysical Journal of the Royal Astronomical Society, 1979, 57(2): 451-461. doi: 10.1111/j.1365-246X.1979.tb04788.x

    [11]

    Pfender M, Villinger H. Miniaturized data loggers for deep sea sediment temperature gradient measurements [J]. Marine Geology, 2002, 186(3-4): 557-570. doi: 10.1016/S0025-3227(02)00213-X

    [12]

    Chang H I, Shyu C T. Compact high-resolution temperature loggers for measuring the thermal gradients of marine sediments [J]. Marine Geophysical Research, 2011, 32(4): 465-479. doi: 10.1007/s11001-011-9136-y

    [13]

    钱翼鹏. 南海北部地热流测量及其成果[J]. 海洋地质与第四纪地质, 1982, 2(4):104-109

    QIAN Yipeng. Terrestrial heat flow measurements and the results in the north of South China Sea [J]. Marine Geological Research, 1982, 2(4): 104-109.

    [14]

    姚伯初. 中美合作调研南海地质专报[M]. 武汉: 中国地质大学出版社, 1994.

    YAO Bochu. The Geological Memoir of South China Sea Surveyed Jointly by China & USA[M]. Wuhan: China University of Geosciences Press, 1994.

    [15]

    Nissen S S, Hayes D E, Yao B C, et al. Gravity heat flow, and seismic constraints on the processes of crustal extension: Northern margin of the South China Sea [J]. Journal of Geophysical Research, 1995, 100(B11): 22447-22483. doi: 10.1029/95JB01868

    [16]

    Qian Y P, Niu X P, Yao B C, et al. Geothermal Pattern Beneath the continental margin in the northern part of the South China Sea[C]//CCOP/TB, 1995, 25: 89-104.

    [17]

    徐行, 罗贤虎, 许鹤华, 等. 南海地热流探测、研究与展望[J]. 南海地质研究, 2015:1-18

    XU Xing, LUO Xianhu, XU Hehua, et al. The measurement, review and prospect on geothermal studies of the South China Sea [J]. Geological Research of South China Sea, 2015: 1-18.

    [18]

    徐行, 罗贤虎, 彭登, 等. 系列化的海洋地热流探测技术获得突破[J]. 中国地质, 2017, 44(3):621-622

    XU Xing, LUO Xianhu, PENG Deng, et al. Marine geothermal flow detection technology gains breakthrough [J]. Geology in China, 2017, 44(3): 621-622.

    [19]

    彭登, 徐行, 罗贤虎. 海底沉积物地温梯度测量系统设计[J]. 电子设计工程, 2014, 22(6):1-3 doi: 10.3969/j.issn.1674-6236.2014.06.001

    PENG Deng, XU Xing, LUO Xianhu. Design of marine sediment geothermal gradient measurement system [J]. Electronic Design Engineering, 2014, 22(6): 1-3. doi: 10.3969/j.issn.1674-6236.2014.06.001

    [20]

    张东风, 片秀红. 热工测量及仪表[M]. 3版. 北京: 中国电力出版社, 2015.

    ZHANG Dongfeng, PIAN Xiuhong. Thermal Measurement and Instrumentation[M]. 3rd ed. Beijing: China Electric Power Press, 2015.

  • 加载中

(6)

(4)

计量
  • 文章访问数:  917
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2020-09-27
修回日期:  2021-03-31
刊出日期:  2021-06-28

目录