东太平洋海隆13°N附近沉积物中类脂化合物的分布特征及其对热液活动的指示

樊俊宁, 曾志刚, 朱博文, 齐海燕. 东太平洋海隆13°N附近沉积物中类脂化合物的分布特征及其对热液活动的指示[J]. 海洋地质与第四纪地质, 2022, 42(1): 26-36. doi: 10.16562/j.cnki.0256-1492.2021010201
引用本文: 樊俊宁, 曾志刚, 朱博文, 齐海燕. 东太平洋海隆13°N附近沉积物中类脂化合物的分布特征及其对热液活动的指示[J]. 海洋地质与第四纪地质, 2022, 42(1): 26-36. doi: 10.16562/j.cnki.0256-1492.2021010201
FAN Junning, ZENG Zhigang, ZHU Bowen, QI Haiyan. Distribution of lipid compounds in the sediments of the East Pacific Rise near 13°N and its implications for hydrothermal activity[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 26-36. doi: 10.16562/j.cnki.0256-1492.2021010201
Citation: FAN Junning, ZENG Zhigang, ZHU Bowen, QI Haiyan. Distribution of lipid compounds in the sediments of the East Pacific Rise near 13°N and its implications for hydrothermal activity[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 26-36. doi: 10.16562/j.cnki.0256-1492.2021010201

东太平洋海隆13°N附近沉积物中类脂化合物的分布特征及其对热液活动的指示

  • 基金项目: 国家自然科学基金“西太平洋俯冲体系中岩浆活动及其对热液物质供给的制约”(91958213);中国科学院国际合作局对外合作重点项目“冲绳海槽热液活动成矿机理及其沉积效应”(133137KYSB20170003);大洋“十三五”深海资源潜力评估项目“海底多金属硫化物及金属软泥的成矿机理”(DY135-G2-1-02);泰山学者工程专项(ts201511061);国家重点基础研究发展计划(973计划)项目“典型弧后盆地热液活动及其成矿机理”(2013CB429700)
详细信息
    作者简介: 樊俊宁(1996—),女,硕士研究生,主要从事海底热液沉积物有机地球化学研究,E-mail:fanjunningda@126.com
    通讯作者: 曾志刚(1968—),男,研究员,主要从事海底热液活动研究,E-mail:zgzeng@ms.qdio.ac.cn
  • 中图分类号: P736.4

Distribution of lipid compounds in the sediments of the East Pacific Rise near 13°N and its implications for hydrothermal activity

More Information
  • 深海热液区的热液物质喷发扩散会对周围海底的沉积物产生影响,研究沉积物中类脂物有助于进一步了解热液活动对其产生的影响。对东太平洋海隆西翼13°N附近E271和E272站位沉积物中的正构烷烃和脂肪酸进行了气相色谱-质谱(GC-MS)分析。在两个站位的沉积物中检测到链长C11—C35的正构烷烃,其以双峰型分布为主,其中短链烷烃和长链烷烃分别指示了海洋细菌等微生物、陆源高等植物和热液物质的输入,且陆源输入主要来自大气输送的美洲物质。进一步,通过分析沉积物中正构烷烃的含量及组成,结果表明E272站位的沉积物经历了早期成岩作用。在两站位的沉积物中均检测到32种脂肪酸,其链长为C8—C24不等,总脂肪酸含量分别为93.55和50.71~87.05 μg/g。同时,通过探讨沉积物中特征脂肪酸的组成和分布证实其受到了热液活动的影响。

  • 加载中
  • 图 1  研究区地质图

    Figure 1. 

    图 2  E271、E272站位沉积物中典型正构烷烃各链长分布图

    Figure 2. 

    图 3  E271、E272站位沉积物中脂肪酸类型占比分布图

    Figure 3. 

    图 4  E272站位沉积物中正构烷烃、脂肪酸、Fe、Mn元素含量随深度变化图

    Figure 4. 

    表 1  沉积物中正构烷烃的参数

    Table 1.  Parameters of n-alkanes in sediments

    正构烷烃参数计算方法指示意义
    CPI[32](碳优势指数)CPI1=1/2(ΣC17~21(奇)/ΣC16~20(偶)+ΣC17~21(奇)/ΣC18~22(偶))CPI1、CPI2、CPI分别指示前峰群、后峰群和整体正构烷烃的碳优势,进一步指示沉积物质来源。
    CPI2=1/2(ΣC29~35(奇)/ΣC28~34(偶)+ΣC29~35(奇)/ΣC30~36(偶))
    CPI=1/2(ΣC17~35(奇)/ΣC16~34(偶)+ΣC17~35(奇)/ΣC18~36(偶))
    ACL[18-20](平均链长)ACL=(Σ[Cj]×i)/(Σ[Ci])反映一定碳数范围内正构烷烃含量分布集中的碳数链长,指示陆源与海源的相对输入情况。
    ΣT/ΣM[33]ΣT/ΣM=ΣC25~35/ΣC15~21消除粒度和沉积速率的影响,指示陆源相对于海源的输入情况。
    下载: 导出CSV

    表 2  沉积物中正构烷烃和脂肪酸的参数

    Table 2.  Parameters of n-alkanes and fatty acids in sediments

    样品编号正构烷烃(ALK)脂肪酸(FA)
    TALK/ (μg/g)CPI1CPI2CPIACLΣT/ΣMTFA/ (μg/g)SFA/%MUFA/%PUFA/%C22:1n9/%
    E2712.210.971.290.7229.644.1893.5550.5936.6212.7829.02
    E272-11.850.882.091.0227.033.7759.7152.1336.9010.9727.79
    E272-21.100.721.900.9325.212.0358.6853.0435.6911.2732.38
    E272-32.950.681.660.8129.623.2158.6347.4640.7711.7715.39
    E272-41.390.852.171.6725.311.8887.0568.9821.549.4819.31
    E272-51.770.840.470.3825.951.9275.3863.5526.0710.3832.25
    E272-61.690.731.451.1624.061.1485.1850.3039.0510.6532.27
    E272-71.320.882.271.3924.741.6850.7145.8540.7813.3725.55
    E272-80.851.002.881.5524.321.9055.1256.0733.2510.6823.06
    E272-90.861.701.140.9726.062.9752.6658.0530.5811.3627.11
    E272-101.241.140.721.0926.422.5363.6554.4534.6910.8517.11
    E272-111.460.951.200.7926.022.7270.6166.0323.2510.7231.51
    E272-122.030.740.970.7925.692.0569.4650.2739.3010.4434.74
    E272-132.240.720.860.7226.092.3372.3144.7443.5911.6728.27
      注:TALK:正构烷烃总含量;TFA:脂肪酸总含量;SFA:饱和脂肪酸;MUFA:单不饱和脂肪酸;PUFA:多不饱和脂肪酸。
    下载: 导出CSV

    表 3  太平洋喷口流体、硫化物、生物和沉积物的总脂肪酸含量

    Table 3.  Total fatty acid contents in sediments, vent fluid, sulfide, and bacteria mat from the Pacific Ocean

    地区样品类型总脂肪酸含量/(μg/g)
    东太平洋海隆13°N热液区[15]喷口流体1.8~6.1,均值3.3
    喷口水颗粒物41.4~73.8
    热液沉积物1.14
    洋脊附近4~40 km的沉积混合物0.46~1.37
    东太平洋赤道中部140°W[54]表层沉积物1.2~32.2
    东太平洋北部胡安·德富卡洋脊[13,55]热液喷口泥质沉积物磷脂脂肪酸(PLFA)247
    活动烟囱硫化物2.21~4.07
    中太平洋海隆175°E、15°S~48°N[41,56]海底表层沉积物1.82~23.8,均值7.93
    西太平洋马努斯热液活动区[14]Calyptogena(热液区蛤)群落和白色菌席131
    菌席内部(靠近管状蠕虫群落)184
    西太平洋伊豆-小笠原热液活动区[14]活动烟囱底部,菌席(无明显的生物群落)13.2
    菌席处(无明显生物群落)42.2
    西太平洋冲绳海槽Iheya海脊[14]与死亡的Calyptogena群落相距20 m的地方15.7
    下载: 导出CSV
  • [1]

    Rona P A. New evidence for seabed resources from global tectonics [J]. Ocean Management, 1973, 1: 145-159. doi: 10.1016/0302-184X(73)90009-7

    [2]

    曾志刚. 海底热液地质学[M]. 北京: 科学出版社, 2011.

    ZENG Zhigang. Submarine Hydrothermal Geology[M]. Beijing: Science Press, 2011.

    [3]

    Francheteau J, Needham H D, Choukroune P, et al. Massive deep-sea sulphide ore deposits discovered on the East Pacific Rise [J]. Nature, 1979, 277(5697): 523-528. doi: 10.1038/277523a0

    [4]

    Corliss J B, Dymond J, Gordon L I, et al. Submarine thermal springs on the Galápagos rift [J]. Science, 1979, 203(4385): 1073-1083. doi: 10.1126/science.203.4385.1073

    [5]

    Choukroune P, Francheteau J, Hekinian R. Tectonics of the East Pacific Rise near 12°50′N: a submersible study [J]. Earth and Planetary Science Letters, 1984, 68(1): 115-127. doi: 10.1016/0012-821X(84)90144-4

    [6]

    Fouquet Y, Knott R, Cambon P, et al. Formation of large sulfide mineral deposits along fast spreading ridges. Example from off-axial deposits at 12°43′N on the East Pacific Rise [J]. Earth and Planetary Science Letters, 1996, 144(1-2): 147-162. doi: 10.1016/0012-821X(96)00142-2

    [7]

    Rona P A, Bemis K G, Silver D, et al. Acoustic imaging, visualization, and quantification of buoyant hydrothermal plumes in the Ocean [J]. Marine Geophysical Researches, 2002, 23(2): 147-168. doi: 10.1023/A:1022481315125

    [8]

    Khripounoff A, Alberic P. Settling of particles in a hydrothermal vent field (East Pacific Rise 13°N) measured with sediment traps [J]. Deep Sea Research Part A. Oceanographic Research Papers, 1991, 38(6): 729-744. doi: 10.1016/0198-0149(91)90009-5

    [9]

    袁春伟. 东太平洋海隆13°N附近沉积物元素地球化学研究[D]. 中国科学院研究生院(海洋研究所)硕士学位论文, 2007.

    YUAN Chunwei. Elemental geochemistry of sediments near 13°N East Pacific Rise[D]. Master Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2007.

    [10]

    Hekinian R, Francheteau J, Renard V, et al. Intense hydrothermal activity at the axis of the east pacific rise near 13°N: Sumbersible witnesses the growth of sulfide chimney [J]. Marine Geophysical Researches, 1983, 6(1): 1-14. doi: 10.1007/BF00300395

    [11]

    余少雄. 东太平洋海隆13°N附近含金属沉积物中的有机碳氮研究 [D] . 中国科学院海洋研究所博士学位论文, 2010.

    YU Shaoxiong. Total organic carbon and nitrogen from metalliferous sediment on the flank of the east Pacific Rise 13°N[D]. Doctor Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2010.

    [12]

    武力. 东太平洋海隆13°N含金属沉积物研究[D]. 中国科学院研究生院(海洋研究所)硕士学位论文, 2011.

    WU Li. Study on the metalliferous sediments near 13°N East pacific rise[D]. Master Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2011.

    [13]

    Hedrick D B, Pledger R D, White D C, et al. In situ microbial ecology of hydrothermal vent sediments [J]. FEMS Microbiology Letters, 1992, 101(1): 1-10.

    [14]

    Yamanaka T, Sakata S. Abundance and distribution of fatty acids in hydrothermal vent sediments of the western Pacific Ocean [J]. Organic Geochemistry, 2004, 35(5): 573-582. doi: 10.1016/j.orggeochem.2004.01.002

    [15]

    Brault M, Marty J C, Saliot A. Fatty acids from particulate matter and sediment in hydrothermal environments from the east Pacific rise, near 13°N [J]. Organic Geochemistry, 1984, 6: 217-222. doi: 10.1016/0146-6380(84)90043-3

    [16]

    Tissot B P, Welte D H. Petroleum Formation and Occurrence[M]. Berlin: Springer-Verlag, 1984: 1-188.

    [17]

    Cranwell P A. Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change [J]. Freshwater Biology, 2010, 3(3): 259-265.

    [18]

    Blumer M, Guillard R P L, Chase T. Hydrocarbons of marine phytoplankton [J]. Marine Biology, 1971, 8(3): 183-189. doi: 10.1007/BF00355214

    [19]

    Eglinton G, Hamilton R J. Leaf epicuticular waxes [J]. Science, 1967, 156(3780): 1322-1335. doi: 10.1126/science.156.3780.1322

    [20]

    Goñi M A, Ruttenberg K C, Eglinton T I. Sources and contribution of terrigenous organic carbon to surface sediments in the Gulf of Mexico [J]. Nature, 1997, 389(6648): 275-278. doi: 10.1038/38477

    [21]

    Parrish C C. Marine Chemistry[M]. Berlin Heidelberg: Springer, 2000: 194-220.

    [22]

    Rajendran N, Suwa Y, Urushigawa Y. Distribution of phospholipid ester-linked fatty acid biomarkers for bacteria in the sediment of Ise Bay, Japan [J]. Marine Chemistry, 1993, 42(1): 39-56. doi: 10.1016/0304-4203(93)90248-M

    [23]

    Wannigama G P, Volkman J K, Gillan F T, et al. A comparison of lipid components of the fresh and dead leaves and pneumatophores of the mangrove Avicennia marina [J]. Phytochemistry, 1981, 20(4): 659-666. doi: 10.1016/0031-9422(81)85152-7

    [24]

    Falk-Petersen S, Dahl T M, Scott C L, et al. Lipid biomarkers and trophic linkages between ctenophores and copepods in Svalbard waters [J]. Marine Ecology Progress Series, 2002, 227: 187-194. doi: 10.3354/meps227187

    [25]

    Feng X J, Simpson M J. The distribution and degradation of biomarkers in Alberta grassland soil profiles [J]. Organic Geochemistry, 2007, 38(9): 1558-1570. doi: 10.1016/j.orggeochem.2007.05.001

    [26]

    Peters K E, Walters C C, Moldowan J M. The Biomarker Guide: Volume 1: Biomarkers and Isotopes in the Environment and Human History[M]. Cambridge: Cambridge University Press, 2004: 101-133.

    [27]

    Macdonald K C, Fox P J, Miller S, et al. The East Pacific Rise and its flanks 8-18°N: History of segmentation, propagation and spreading direction based on SeaMarc II and Sea Beam studies [J]. Marine Geophysical Researches, 1992, 14(4): 299-344. doi: 10.1007/BF01203621

    [28]

    张倩, 宋金明, 彭全材, 等. 胶州湾表层海水中的正构烷烃及其来源解析[J]. 环境科学, 2017, 38(7):2763-2772

    ZHANG Qian, SONG Jinming, PENG Quancai, et al. Distribution and Sources of n-alkanes in Surface Seawater of Jiaozhou Bay [J]. Environmental Science, 2017, 38(7): 2763-2772.

    [29]

    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 21247-2007 海面溢油鉴别系统规范[S]. 北京: 中国标准出版社, 2008: 1-27.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, National Standardization Administration of China. GB/T 21247-2007 Specifications for identification system of spilled oils on the sea[S]. Beijing: China Standard Press, 2008: 1-27.

    [30]

    彭全材, 宋金明, 李军, 等. 超声萃取-气相色谱法测定扇贝中30种脂肪酸[J]. 食品科学, 2012, 33(12):163-168

    PENG Quancai, SONG Jinming, LI Jun, et al. Determination of 30 fatty acids in scallop by ultrasonic extraction gas chromatography [J]. Food Science, 2012, 33(12): 163-168.

    [31]

    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 22223-2008 食品中总脂肪、饱和脂肪(酸)、不饱和脂肪(酸)的测定: 水解提取-气相色谱法[S]. 北京: 中国标准出版社, 2008: 1-13.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, National Standardization Administration of China. GB/T 22223-2008 Determination of total fat saturated fat and unsaturated fat in foods-Hydrolytic extraction-gas chromatography[S]. Beijing: China Standard Press, 2008: 1-13.

    [32]

    Sikes E L, Uhle M E, Nodder S D, et al. Sources of organic matter in a coastal marine environment: Evidence from n-alkanes and their δ13C distributions in the Hauraki Gulf, New Zealand [J]. Marine Chemistry, 2009, 113(3-4): 149-163. doi: 10.1016/j.marchem.2008.12.003

    [33]

    Duan Y. Organic geochemistry of recent marine sediments from the Nansha Sea, China [J]. Organic Geochemistry, 2000, 31(2-3): 159-167. doi: 10.1016/S0146-6380(99)00135-7

    [34]

    Doskey P V. Spatial variations and chronologies of aliphatic hydrocarbons in lake michigan sediments [J]. Environmental Science & Technology, 2001, 35(2): 247-254.

    [35]

    Lein A Y, Peresypkin V I, Simoneit B R T. Origin of hydrocarbons in hydrothermal sulfide ores in the mid-atlantic ridge [J]. Lithology and Mineral Resources, 2003, 38(5): 383-393. doi: 10.1023/A:1025525818526

    [36]

    Nishimura M, Baker E W. Possible origin of n-alkanes with a remarkable even-to-odd predominance in recent marine sediments [J]. Geochimica et Cosmochimica Acta, 1986, 50(2): 299-305. doi: 10.1016/0016-7037(86)90178-X

    [37]

    Grimalt J, Albaigés J. Sources and occurrence of C12-C22n-alkane distributions with even carbon-number preference in sedimentary environments [J]. Geochimica et Cosmochimica Acta, 1987, 51(6): 1379-1384. doi: 10.1016/0016-7037(87)90322-X

    [38]

    Cranwell P A, Eglinton G, Robinson N. Lipids of aquatic organisms as potential contributors to lacustrine sediments-II [J]. Organic Geochemistry, 1987, 11(6): 513-527. doi: 10.1016/0146-6380(87)90007-6

    [39]

    Kvenvolden K A. Molecular distributions of normal fatty acids and paraffins in some lower cretaceous sediments [J]. Nature, 1966, 209(5023): 573-577. doi: 10.1038/209573a0

    [40]

    刘季花, 石学法, 陈丽蓉, 等. 东太平洋沉积物中粘土组分的REEs和εNd: 粘土来源的证据[J]. 中国科学 D辑: 地球科学, 2005, 48(5):701-712 doi: 10.1360/03yd0276

    LIU Jihua, SHI Xuefa, CHEN Lirong, et al. REE and εNd of clay fractions in sediments from the eastern Pacific Ocean: Evidence for clay sources [J]. Science in China Series D: Earth Sciences, 2005, 48(5): 701-712. doi: 10.1360/03yd0276

    [41]

    Ohkouchi N, Kawamura K, Kawahata H, et al. Latitudinal distributions of terrestrial biomarkers in the sediments from the Central Pacific [J]. Geochimica et Cosmochimica Acta, 1997, 61(9): 1911-1918. doi: 10.1016/S0016-7037(97)00040-9

    [42]

    Pagani M, Freeman K H, Arthur M A. Isotope analyses of molecular and total organic carbon from miocene sediments [J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 37-49. doi: 10.1016/S0016-7037(99)00151-9

    [43]

    Brault M, Simoneit B R T, Saliot A. Trace petroliferous organic matter associated with massive hydrothermal sulfides from the east pacific rise at 13 and 2I°N [J]. Oceanologica Acta, 1989, 12(4): 405-415.

    [44]

    Larsen G, Chilingar G V. Diagenesis in Sediments[M]. Amsterdam: Elsevier, 1967: 1-5.

    [45]

    Brassell S C, Eglinton G, Maxwell J R, et al. Natural background of alkanes in the aquatic environment[M]//Hutzinger O, Van Lelyveld I H, Zoeteman B C J. Aquatic Pollutants. Oxford: Elsevier Ltd., 1978: 69-86.

    [46]

    Huang X, Chen S, Zeng Z G, et al. Characteristics of hydrocarbons in sediment core samples from the northern Okinawa Trough [J]. Marine Pollution Bulletin, 2017, 115(1-2): 507-514. doi: 10.1016/j.marpolbul.2016.12.034

    [47]

    Johnson R W, Calder J A. Early diagenesis of fatty acids and hydrocarbons in a salt marsh environment [J]. Geochimica et Cosmochimica Acta, 1973, 37(8): 1943-1955. doi: 10.1016/0016-7037(73)90150-6

    [48]

    Rielley G, Collier R J, Jones D M, et al. The biogeochemistry of Ellesmere Lake, U. K. —I: source correlation of leaf wax inputs to the sedimentary lipid record [J]. Organic Geochemistry, 1991, 17(6): 901-912. doi: 10.1016/0146-6380(91)90031-E

    [49]

    Meyers P A, Ishiwatari R. Organic Matter Accumulation Records in Lake Sediments[M]. Berlin Heidelberg: Springer, 1995: 279-328.

    [50]

    Simoneit B R T, Brault M, Saliot A. Hydrocarbons associated with hydrothermal minerals, vent waters and talus on the East Pacific Rise and Mid-Atlantic Ridge [J]. Applied Geochemistry, 1990, 5(1-2): 115-124. doi: 10.1016/0883-2927(90)90042-4

    [51]

    Brault M, Simoneit B R T, Marty J C, et al. Hydrocarbons in waters and particulate material from hydrothermal environments at the East Pacific Rise, 13°N [J]. Organic Geochemistry, 1988, 12(3): 209-219. doi: 10.1016/0146-6380(88)90259-8

    [52]

    Breier J A, Toner B M, Fakra S C, et al. Sulfur, sulfides, oxides and organic matter aggregated in submarine hydrothermal plumes at 9°50'N East Pacific Rise [J]. Geochimica et Cosmochimica Acta, 2012, 88: 216-236. doi: 10.1016/j.gca.2012.04.003

    [53]

    Huang X, Zeng Z G, Chen S, et al. Abundance and distribution of fatty acids in sediments of the south mid-Atlantic ridge [J]. Journal of Ocean University of China, 2015, 14(2): 277-283. doi: 10.1007/s11802-015-2613-1

    [54]

    Wakeham S G, Hedges J I, Lee C, et al. Compositions and transport of lipid biomarkers through the water column and surficial sediments of the equatorial Pacific Ocean [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1997, 44(9-10): 2132-2162.

    [55]

    Li J W, Zhou H Y, Peng X T, et al. Abundance and distribution of fatty acids within the walls of an active deep-sea sulfide chimney [J]. Journal of Sea Research, 2011, 65(3): 333-339. doi: 10.1016/j.seares.2011.01.005

    [56]

    Ohkouchi N. Lipids as biogeochemical tracers in the Late Quaternary[D]. Doctor Dissertation of University of Tokyo, 1995.

    [57]

    Oliver J D, Colwell R R. Extractable lipids of gram-negative Marine Bacteria: fatty-acid composition [J]. International Journal of Systematic Bacteriology, 1973, 23(4): 442-458. doi: 10.1099/00207713-23-4-442

    [58]

    Nercessian O, Bienvenu N, Moreira D, et al. Diversity of functional genes of methanogens, methanotrophs and sulfate reducers in deep-sea hydrothermal environments [J]. Environmental Microbiology, 2005, 7(1): 118-132. doi: 10.1111/j.1462-2920.2004.00672.x

    [59]

    Li Y X, Li F C, Zhang X W, et al. Vertical distribution of bacterial and archaeal communities along discrete layers of a deep-sea cold sediment sample at the East Pacific Rise (~ 13°N) [J]. Extremophiles, 2008, 12(4): 573-585. doi: 10.1007/s00792-008-0159-5

    [60]

    伏美燕, 杨群慧, 王虎. 深海热液环境中脂肪酸组成的研究进展[J]. 海洋科学, 2008, 32(5):78-86

    FU Meiyan, YANG Qunhui, WANG Hu. Progress in the composition research of fatty acids in deep-sea hydrothermal environment [J]. Marine Sciences, 2008, 32(5): 78-86.

    [61]

    Fullarton J G, Wood P, Sargent J R. Fatty acid composition of lipids from sulphuroxidizing and methylotrophic bacteria from thyasirid and lucinid bivalves [J]. Journal of the Marine Biological Association of the United Kingdom, 1995, 75(2): 445-454. doi: 10.1017/S0025315400018294

    [62]

    Colaço A, Desbruyères D, Guezennec J. Polar lipid fatty acids as indicators of trophic associations in a deep-sea vent system community [J]. Marine Ecology, 2007, 28(1): 15-24. doi: 10.1111/j.1439-0485.2006.00123.x

    [63]

    Saliot A, Laureillard J, Scribe P, et al. Evolutionary trends in the lipid biomarker approach for investigating the biogeochemistry of organic matter in the marine environment [J]. Marine Chemistry, 1991, 36(1-4): 233-248. doi: 10.1016/S0304-4203(09)90064-0

    [64]

    Rau G H. Hydrothermal vent clam and tube worm 13C/12C: further evidence of nonphotosynthetic food Sources [J]. Science, 1981, 213(4505): 338-340. doi: 10.1126/science.213.4505.338

    [65]

    Ben-Mlih F, Marty J C, Fiala-Médioni A. Fatty acid composition in deep hydrothermal vent symbiotic bivalves [J]. Journal of Lipid Research, 1992, 33(12): 1797-1806. doi: 10.1016/S0022-2275(20)41337-9

    [66]

    Burd B J, Thomson R E. Distribution of zooplankton associated with the Endeavour Ridge hydrothermal plume [J]. Journal of Plankton Research, 1995, 17(5): 965-997. doi: 10.1093/plankt/17.5.965

    [67]

    Burd B J, Thomson R E, Jamieson G S. Composition of a deep scattering layer overlying a mid-ocean ridge hydrothermal plume [J]. Marine Biology, 1992, 113(3): 517-526. doi: 10.1007/BF00349179

    [68]

    Ackman K G, Linke B A, Hingley J. Some details of fatty acids and alcohols in the lipids of north Atlantic copepods [J]. Journal of the Fisheries Board of Canada, 2011, 31(11): 1812-1818.

  • 加载中

(4)

(3)

计量
  • 文章访问数:  2007
  • PDF下载数:  24
  • 施引文献:  0
出版历程
收稿日期:  2021-01-02
修回日期:  2021-03-17
刊出日期:  2022-02-28

目录