琼东南盆地陵水凹陷海底周期阶坎底形的特征及成因

程琳燕, 李磊, 高毅凡, 张威, 龚广传, 杨志鹏, 王潘. 琼东南盆地陵水凹陷海底周期阶坎底形的特征及成因[J]. 海洋地质与第四纪地质, 2022, 42(1): 37-44. doi: 10.16562/j.cnki.0256-1492.2021041902
引用本文: 程琳燕, 李磊, 高毅凡, 张威, 龚广传, 杨志鹏, 王潘. 琼东南盆地陵水凹陷海底周期阶坎底形的特征及成因[J]. 海洋地质与第四纪地质, 2022, 42(1): 37-44. doi: 10.16562/j.cnki.0256-1492.2021041902
CHENG Linyan, LI Lei, GAO Yifan, ZHANG Wei, GONG Guangchuan,  YANG Zhipeng, WANG Pan. The characteristics and genesis of bottom cyclic steps in the Lingshui Sag of Qiongdongnan Basin[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 37-44. doi: 10.16562/j.cnki.0256-1492.2021041902
Citation: CHENG Linyan, LI Lei, GAO Yifan, ZHANG Wei, GONG Guangchuan,  YANG Zhipeng, WANG Pan. The characteristics and genesis of bottom cyclic steps in the Lingshui Sag of Qiongdongnan Basin[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 37-44. doi: 10.16562/j.cnki.0256-1492.2021041902

琼东南盆地陵水凹陷海底周期阶坎底形的特征及成因

  • 基金项目: 国家自然科学基金项目“深水重力流流态转化研究”(41302147);“研究生创新与实践能力培养计划”(YCS21112055)
详细信息
    作者简介: 程琳燕(1998—),女,硕士研究生,主要从事地震解释及深水沉积方面的研究工作,E-mail:1025667918@qq.com
    通讯作者: 李磊(1979—),男,博士,教授,硕士生导师,主要从事地震地质综合解释及海洋沉积方面的研究工作,E-mail:lilei@xsyu.edu.cn
  • 中图分类号: P737.2

The characteristics and genesis of bottom cyclic steps in the Lingshui Sag of Qiongdongnan Basin

More Information
  • 海底周期阶坎底形一直是海洋地质关注的热点。本文基于285 km2三维地震资料对琼东南盆地海底周期阶坎底形几何构型(波长、波高、迎流面长度、背流面长度、迎流面夹角和背流面夹角)及形成机理进行了分析。研究区位于上陆坡(2°~14°),发育一条NE-SW水道,宽 6.5 km,深 35 m。水道内外均发育周期阶坎,剖面上具有波状特征。周期阶坎的波长(20~160 m)随深度增加而变长,波高(4~10 m)随深度增加而减小,迎流面长度(20~140 m)比背流面长度(10~40 m)长,迎流面夹角(0.1°~0.15°)平缓,背流面夹角(0.2°~0.8°)陡峭。初步认为,研究区周期阶坎底形由持续稳定的浊流形成,且以沉积型周期阶坎为主。

  • 加载中
  • 图 1  琼东南盆地位置图(a)及研究区海底地形图(b

    Figure 1. 

    图 2  琼东南盆地现今海底阶梯地形分析图

    Figure 2. 

    图 3  波长随深度变化曲线图 (测线位置见图1b

    Figure 3. 

    图 4  迎流面、背流面长度随深度变化曲线图

    Figure 4. 

  • [1]

    Parker G. Interaction between basic research and applied engineering: A personal perspective [J]. Journal of Hydraulic Research, 1996, 34(3): 291-316. doi: 10.1080/00221689609498482

    [2]

    钟广法, 朱本铎, 王嘹亮. 南海浊流地貌[J]. 科技导报, 2020, 38(18):75-82

    ZHONG Guangfa, ZHU Benduo, WANG Liaoliang. Turbidity current related landforms in the South China Sea [J]. Science & Technology Review, 2020, 38(18): 75-82.

    [3]

    Zhong G F, Cartigny M J B, Kuang Z G, et al. Cyclic steps along the South Taiwan Shoal and West Penghu submarine canyons on the northeastern continental slope of the South China Sea [J]. GSA Bulletin, 2015, 127(5-6): 804-824. doi: 10.1130/B31003.1

    [4]

    许小勇, 吕福亮, 王大伟, 等. 周期性阶坎的特征及其对深水沉积研究的意义[J]. 海相油气地质, 2018, 23(4):1-14 doi: 10.3969/j.issn.1672-9854.2018.04.001

    XU Xiaoyong, LÜ Fuliang, WANG Dawei, et al. Cyclic steps and significance to deep water sedimentation [J]. Marine Origin Petroleum Geology, 2018, 23(4): 1-14. doi: 10.3969/j.issn.1672-9854.2018.04.001

    [5]

    高红芳, 钟和贤, 孙美静, 等. 南海海盆东南部大型深水浊积扇体系及其成因的构造控制[J]. 中国地质, 2020, 47(5):1395-1406

    GAO Hongfang, ZHONG Hexian, SUN Meijing, et al. The large deep-water turbidity fan system in southeastern South China Sea Basin: Formation and tectonic constraint [J]. Geology in China, 2020, 47(5): 1395-1406.

    [6]

    Wynn R B, Piper D J W, Gee M J R. Generation and migration of coarse-grained sediment waves in turbidity current channels and channel-lobe transition zones [J]. Marine Geology, 2002, 192(1-3): 59-78. doi: 10.1016/S0025-3227(02)00549-2

    [7]

    曾小明, 潘燕, 于佳, 等. 陵水凹陷北坡低密度浊流海底扇沉积特征[J]. 科学技术与工程, 2015, 15(33):48-53, 78 doi: 10.3969/j.issn.1671-1815.2015.33.008

    ZENG Xiaoming, PAN Yan, YU Jia, et al. Low-density turbidity submarine fan sedimentary characteristics in north slope of Lingshui sag [J]. Science Technology and Engineering, 2015, 15(33): 48-53, 78. doi: 10.3969/j.issn.1671-1815.2015.33.008

    [8]

    何家雄, 陈胜红, 马文宏, 等. 南海北部大陆边缘盆地深水油气成藏条件早期预测与评价[J]. 天然气地球科学, 2008, 19(6):780-789 doi: 10.11764/j.issn.1672-1926.2008.06.780

    HE Jiaxiong, CHEN Shenghong, MA Wenhong, et al. Early forecast and evaluation on petroleum accumulation conditions in deep basin in northern continental margin of the South China Sea [J]. Natural Gas Geoscience, 2008, 19(6): 780-789. doi: 10.11764/j.issn.1672-1926.2008.06.780

    [9]

    吴时国, 秦志亮, 王大伟, 等. 南海北部陆坡块体搬运沉积体系的地震响应与成因机制[J]. 地球物理学报, 2011, 54(12):3184-3195 doi: 10.3969/j.issn.0001-5733.2011.12.018

    WU Shiguo, QIN Zhiliang, WANG Dawei, et al. Seismic characteristics and triggering mechanism analysis of mass transport deposits in the northern continental slope of the South China Sea [J]. Chinese Journal of Geophysics, 2011, 54(12): 3184-3195. doi: 10.3969/j.issn.0001-5733.2011.12.018

    [10]

    Fildani A, Hubbard S M, Covault J A, et al. Erosion at inception of deep-sea channels [J]. Marine and Petroleum Geology, 2013, 41: 48-61. doi: 10.1016/j.marpetgeo.2012.03.006

    [11]

    Heiniö P, Davies R J. Trails of depressions and sediment waves along submarine channels on the continental margin of Espirito Santo Basin, Brazil [J]. Geological Society of America Bulletin, 2009, 121(5-6): 698-711. doi: 10.1130/B26190.1

    [12]

    Cartigny M J B, Postma G, van den Berg J H, et al. A comparative study of sediment waves and cyclic steps based on geometries, internal structures and numerical modeling [J]. Marine Geology, 2011, 280(1-4): 40-56. doi: 10.1016/j.margeo.2010.11.006

    [13]

    Fielding C R. Upper flow regime sheets, lenses and scour fills: extending the range of architectural elements for fluvial sediment bodies [J]. Sedimentary Geology, 2006, 190(1-4): 227-240. doi: 10.1016/j.sedgeo.2006.05.009

    [14]

    Kostic S. Modeling of submarine cyclic steps: Controls on their formation, migration, and architecture [J]. Geosphere, 2011, 7(2): 294-304. doi: 10.1130/GES00601.1

    [15]

    Gong C L, Chen L Q, West L. Asymmetrical, inversely graded, upstream-migrating cyclic steps in marine settings: Late Miocene-early Pliocene Fish Creek-Vallecito Basin, southern California [J]. Sedimentary Geology, 2017, 360: 35-46. doi: 10.1016/j.sedgeo.2017.09.002

    [16]

    Li L, Gong C L. Gradual transition from net erosional to net depositional cyclic steps along the submarine distributary channel Thalweg in the Rio Muni Basin: A joint 3-D seismic and numerical approach [J]. Journal of Geophysical Research: Earth Surface, 2018, 123(9): 2087-2106. doi: 10.1029/2017JF004513

    [17]

    Lamb M P, Parsons J D, Mullenbach B L, et al. Evidence for superelevation, channel incision, and formation of cyclic steps by turbidity currents in Eel Canyon, California [J]. GSA Bulletin, 2008, 120(3-4): 463-475. doi: 10.1130/B26184.1

    [18]

    谈明轩, 朱筱敏, 刘伟, 等. 旋回阶梯底形的动力地貌及其相关沉积物发育特征[J]. 地质论评, 2017, 63(6):1512-1522

    TAN Mingxuan, ZHU Xiaomin, LIU Wei, et al. The morphodynamics of cyclic steps and sedimentary characteristics of associated deposits [J]. Geological Review, 2017, 63(6): 1512-1522.

    [19]

    王大伟, 孙悦, 司少文, 等. 海底周期阶坎研究进展与挑战[J]. 地球科学进展, 2020, 35(9):890-901

    WANG Dawei, SUN Yue, SI Shaowen, et al. Research progress and challenges of submarine cyclic steps [J]. Advances in Earth Science, 2020, 35(9): 890-901.

    [20]

    肖彬. 深水水道沉积体系及成因机制研究[D]. 长江大学博士学位论文, 2014.

    XIAO Bin. Sedimentary system and formation mechanism of deep-water channel complex[D]. Doctor Dissertation of Yangtze University, 2014.

    [21]

    王大伟, 白宏新, 吴时国. 浊流及其相关的深水底形研究进展[J]. 地球科学进展, 2018, 33(1):52-65 doi: 10.11867/j.issn.1001-8166.2018.01.0052

    WANG Dawei, BAI Hongxin, WU Shiguo. The research progress of turbidity currents and related deep-water bedforms [J]. Advances in Earth Science, 2018, 33(1): 52-65. doi: 10.11867/j.issn.1001-8166.2018.01.0052

    [22]

    朱筱敏. 沉积岩石学[M]. 4版. 北京: 石油工业出版社, 2008.

    ZHU Xiaomin. Sedimentary Petrology[M]. 4th ed. Beijing: Petroleum Industry Press, 2008.

    [23]

    操应长, 杨田, 王艳忠, 等. 超临界沉积物重力流形成演化及特征[J]. 石油学报, 2017, 38(6):607-621 doi: 10.7623/syxb201706001

    CAO Yingchang, YANG Tian, WANG Yanzhong, et al. Formation, evolution and sedimentary characteristics of supercritical sediment gravity-flow [J]. Acta Petrolei Sinica, 2017, 38(6): 607-621. doi: 10.7623/syxb201706001

    [24]

    Kostic S, Parker G. The response of turbidity currents to a canyon-fan transition: internal hydraulic jumps and depositional signatures [J]. Journal of Hydraulic Research, 2006, 44(5): 631-653. doi: 10.1080/00221686.2006.9521713

    [25]

    张兴阳, 何幼斌, 罗顺社, 等. 内波单独作用形成的深水沉积物波[J]. 古地理学报, 2002, 4(1):83-89 doi: 10.3969/j.issn.1671-1505.2002.01.010

    ZHANG Xingyang, HE Youbin, LUO Shunshe, et al. Deep-water sediment waves formed by internal waves [J]. Journal of Palaeogeography, 2002, 4(1): 83-89. doi: 10.3969/j.issn.1671-1505.2002.01.010

    [26]

    钟广法, 李前裕, 郝沪军, 等. 深水沉积物波及其在南海研究之现状[J]. 地球科学进展, 2007, 22(9):907-913 doi: 10.3321/j.issn:1001-8166.2007.09.004

    ZHONG Guangfa, LI Qianyu, HAO Hujun, et al. Current status of deep-water sediment wave studies and the South China Sea perspectives [J]. Advances in Earth Science, 2007, 22(9): 907-913. doi: 10.3321/j.issn:1001-8166.2007.09.004

    [27]

    Spinewine B, Sequeiros O E, Garcia M H, et al. Experiments on wedge-shaped deep sea sedimentary deposits in minibasins and/or on channel levees emplaced by turbidity currents. Part II. Morphodynamic evolution of the wedge and of the associated bedforms [J]. Journal of Sedimentary Research, 2009, 79(8): 608-628. doi: 10.2110/jsr.2009.065

    [28]

    王海荣, 王英民, 邱燕, 等. 南海北部大陆边缘深水环境的沉积物波[J]. 自然科学进展, 2007, 17(9):1235-1243 doi: 10.3321/j.issn:1002-008x.2007.09.012

    WANG Hairong, WANG Yingmin, QIU Yan, et al. Sediment waves in the deep water environment of the northern continental margin of the South China Sea [J]. Progress in Natural Science, 2007, 17(9): 1235-1243. doi: 10.3321/j.issn:1002-008x.2007.09.012

    [29]

    Middleton G V, Hampton M A. Part I. Sediment gravity flows: mechanics of flow and deposition [J]. Turbidites & Deep Water Sedimentation, 1973.

    [30]

    胡日军. 南海北部外陆架区海底沙波动态分析[D]. 中国海洋大学硕士学位论文, 2006.

    HU Rijun. Dynamical analysis of seafloor sandwaves in the outer continental shelf of the northern South China Sea[D]. Master Dissertation of Ocean University of China, 2006.

    [31]

    张洪运. 南海北部陆架坡折附近的海底沙波的形态特征、活动规律和成因机制[D]. 中国科学院大学(中国科学院海洋研究所)博士学位论文, 2019.

    ZHANG Hongyun. Sand waves near the shelf break of northern South China Sea: morphology, mobility and mechanism[D]. Doctor Dissertation of University of Chinese Academy of Sciences (Institute of Oceanology, Chinese Academy of Sciences), 2019.

    [32]

    Symons W O, Sumner E J, Talling P J, et al. Large-scale sediment waves and scours on the modern seafloor and their implications for the prevalence of supercritical flows [J]. Marine Geology, 2016, 371: 130-148. doi: 10.1016/j.margeo.2015.11.009

    [33]

    李爽, 李伟, 詹文欢. 南海东北部陆缘浊流活动的地貌记录及其形成机制分析[J]. 热带海洋学报, 2021, 40(1):111-121

    LI Shuang, LI Wei, ZHAN Wenhuan. Geomorphological records of turbidity current activity in the northeastern margin of the South China Sea and analysis of triggering mechanism [J]. Journal of Tropical Oceanography, 2021, 40(1): 111-121.

    [34]

    鲁勇. 多坡道的浊流流动及沉积的实验研究[D]. 安徽工业大学硕士学位论文, 2019.

    LU Yong. Experimental study on the flow and deposition of turbidity currents with multiple slope transitions[D]. Master Dissertation of Anhui University of Technology, 2019.

    [35]

    丁巍伟, 李家彪, 韩喜球, 等. 南海东北部海底沉积物波的形态、粒度特征及物源、成因分析[J]. 海洋学报, 2010, 32(2):96-105

    DING Weiwei, LI Jiabiao, HAN Xiqiu, et al. Geomorphology, grain-size charicteristics, matter source and forming mechanism of sediment waves on the ocean bottom of the northeast South China Sea [J]. Acta Oceanologica Sinica, 2010, 32(2): 96-105.

    [36]

    Fildani A, Normark W R, Kostic S, et al. Channel formation by flow stripping: Large-scale scour features along the Monterey East Channel and their relation to sediment waves [J]. Sedimentology, 2006, 53(6): 1265-1287. doi: 10.1111/j.1365-3091.2006.00812.x

    [37]

    Jalili Ghazizadeh M, Fallahi H, Jabbari E. Characteristics of water surface profile over rectangular side weir for supercritical flows [J]. Journal of Irrigation and Drainage Engineering, 2021, 147(5): 04021011. doi: 10.1061/(ASCE)IR.1943-4774.0001551

  • 加载中

(4)

计量
  • 文章访问数:  1534
  • PDF下载数:  25
  • 施引文献:  0
出版历程
收稿日期:  2021-04-19
修回日期:  2021-07-21
刊出日期:  2022-02-28

目录