琼东南盆地陵水17-2深水气田开发区表层沉积物类型及工程地质特性

朱友生, 王艳秋, 冯湘子, 王大伟, 王姝. 琼东南盆地陵水17-2深水气田开发区表层沉积物类型及工程地质特性[J]. 海洋地质与第四纪地质, 2022, 42(1): 45-56. doi: 10.16562/j.cnki.0256-1492.2020120601
引用本文: 朱友生, 王艳秋, 冯湘子, 王大伟, 王姝. 琼东南盆地陵水17-2深水气田开发区表层沉积物类型及工程地质特性[J]. 海洋地质与第四纪地质, 2022, 42(1): 45-56. doi: 10.16562/j.cnki.0256-1492.2020120601
ZHU Yousheng, WANG Yanqiu, FENG Xiangzi, WANG Dawei, WANG Shu. Surface sediments and their geotechnical characteristics in the development area of deepwater gas field LS17-2[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 45-56. doi: 10.16562/j.cnki.0256-1492.2020120601
Citation: ZHU Yousheng, WANG Yanqiu, FENG Xiangzi, WANG Dawei, WANG Shu. Surface sediments and their geotechnical characteristics in the development area of deepwater gas field LS17-2[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 45-56. doi: 10.16562/j.cnki.0256-1492.2020120601

琼东南盆地陵水17-2深水气田开发区表层沉积物类型及工程地质特性

  • 基金项目: 中海油田服务股份有限公司项目“土动力实验和分析技术研究”(E-23202009);海南省重点研发计划科技合作方向项目“南海海底滑坡-海啸灾害预测及评估技术开发”(ZDYF2020209);广东省重点领域研发计划项目“海底沉积物多参量原位环境监测设备研制及应用示范”(2020B1111020002)
详细信息
    作者简介: 朱友生(1982—),男,高级工程师,主要从事海洋工程勘察技术和海洋地质灾害方面的研究,E-mail:zhuysh2@cosl.com.cn
  • 中图分类号: P642

Surface sediments and their geotechnical characteristics in the development area of deepwater gas field LS17-2

  • 陵水17-2气田位于中国南海琼东南盆地,是中国海油自营勘探发现的第一个深水高产气田,探明储量规模超千亿立方米。在水深200~1600 m区域,采用工程调查船与自主式水下潜器调查结合的方式,进行地球物理资料采集、海底表层取样及钻探取样,并对多波束测深、后向散射强度、侧扫声呐、浅地层剖面、室内测试分析等数据进行综合分析,研究了海底表层沉积物类型、分布规律及工程地质特性。按照海底地形地貌特征,陵水17-2深水气田开发区可划分为陆架区、缓坡区和滑塌区;陆架区表层沉积物以黏土和粉质黏土为主,不同站位物理力学性质差异较大,局部夹砂层;缓坡区和滑塌区具有高含水率、低密度、高孔隙比、高液限、高可塑性、低强度等典型深水沉积特点。区域内海底泥面至泥面之下0.3 m,土质不排水抗剪强度为0~4 kPa,非常有利于海底电缆、海底管道、脐带缆的铺设。缓坡区浅层土质条件非常适合吸力式、防沉板及抓力锚施工,滑塌区浅层土质条件适合防沉板、抓力锚及打入桩基础施工。研究成果将对琼东南盆地深水油气田开发工程的设计和安装施工具有指导意义。

  • 加载中
  • 图 1  研究区域位置

    Figure 1. 

    图 2  研究区域三维光照图和取样站位

    Figure 2. 

    图 3  海底峡谷三维光照图

    Figure 3. 

    图 4  图2区域后向散射强度平面图及底质分区

    Figure 4. 

    图 5  陆架区后向散射强度图及其底质分类结果(图4中A区)

    Figure 5. 

    图 6  过海底洼地的浅地层剖面图(图4中L1)

    Figure 6. 

    图 7  过滑坡堆积物的浅地层剖面图(图4中L2)

    Figure 7. 

    图 8  滑塌区边缘的浅地层剖面记录中的浊流沉积(图4中L3)

    Figure 8. 

    图 9  浅地层剖面记录中的缓坡区、滑塌区过渡带(图4中L4)

    Figure 9. 

    图 10  海底底质详细分区(图4中C区)

    Figure 10. 

    图 11  陵水17-2深水气田开发区沉积物工程地质特性

    Figure 11. 

    表 1  陵水17-2深水气田开发区沉积物物理力学性质汇总

    Table 1.  A summary of physico-mechanic properties of sediments within LS17-2 deepwater gas field development area

    所在区域土质类型深度/m含水量/%容重/(kN/m3)碳酸盐含量/%中值粒径/mm液限/%塑性指数/%不排水抗剪强度/kPa
    陆架区
    (水深<250 m)
    黏土/粉质黏土0~5.030~7015.5~18.57~300.006~0.3230~6010~302~43
    缓坡区
    (水深<1000 m)
    黏土0~5.060~10614.0~16.515~200.005~0.0150~9022~552~9
    缓坡区
    (水深>1000 m)
    黏土0~1.0100~12013.5~14.517~290.008~0.00970~11040~701.5~7.5
    黏土1.0~5.0110~14013.0~14.010~180.005~0.00970~11030~704.0~15.0
    MTCs沉积区
    (水深>1000 m)
    黏土0~1.0100~12013.5~14.517~290.008~0.00970~11040~701.5~7.5
    1.0~5.060~11013.5~16.310~180.005~0.00950~9020~504.0~15.0
    浊流体系沉积区
    (水深>1000 m)
    黏土0~1.0100~12013.5~14.517~290.008~0.00970~11040~701.5~7.5
    1.0~5.070~14013.0~17.37~280.005~0.00970~11030~704.0~15.0
    下载: 导出CSV
  • [1]

    李新仲, 谭越. 海上油气田开发工程模式探讨[J]. 石油工程建设, 2015, 41(1):1-4 doi: 10.3969/j.issn.1001-2206.2015.01.001

    LI Xinzhong, TAN Yue. Discussion on development engineering modes for offshore oil and gas fields [J]. Petroleum Engineering Construction, 2015, 41(1): 1-4. doi: 10.3969/j.issn.1001-2206.2015.01.001

    [2]

    王丽勤, 侯金林, 庞然, 等. 深水油气田开发工程中的基础应用探讨[J]. 海洋石油, 2011, 31(4):87-92 doi: 10.3969/j.issn.1008-2336.2011.04.087

    WANG Liqin, HOU Jinlin, PANG Ran, et al. The application of foundations in deepwater oil and gas field development engineering [J]. Offshore Oil, 2011, 31(4): 87-92. doi: 10.3969/j.issn.1008-2336.2011.04.087

    [3]

    王桂林, 段梦兰, 冯玮, 等. 深海油气田开发模式及控制因素分析[J]. 海洋工程, 2011, 29(3):139-145 doi: 10.3969/j.issn.1005-9865.2011.03.021

    WANG Guilin, DUAN Menglan, FENG Wei, et al. Analysis of control factors in deepwater oil & gas field development [J]. The Ocean Engineering, 2011, 29(3): 139-145. doi: 10.3969/j.issn.1005-9865.2011.03.021

    [4]

    刘乐军, 傅命佐, 李家钢, 等. 荔湾3-1气田海底管道深水段地质灾害特征[J]. 海洋科学进展, 2014, 32(2):162-174 doi: 10.3969/j.issn.1671-6647.2014.02.006

    LIU Lejun, FU Mingzuo, LI Jiagang, et al. Geologic Hazards in the deep pipeline routing area of the Liwan 3-1 gas field in the South China Sea [J]. Advances in Marine Science, 2014, 32(2): 162-174. doi: 10.3969/j.issn.1671-6647.2014.02.006

    [5]

    冯文科, 石要红, 陈玲辉. 南海北部外陆架和上陆坡海底滑坡稳定性研究[J]. 海洋地质与第四纪地质, 1994, 14(2):81-94

    FENG Wenke, SHI Yaohong, CHEN Linghui. Research for seafloor landslide stability on the outer continental shelf and the upper continental slope in the northern South China Sea [J]. Marine Geology & Quaternary Geology, 1994, 14(2): 81-94.

    [6]

    吴时国, 陈珊珊, 王志君, 等. 大陆边缘深水区海底滑坡及其不稳定性风险评估[J]. 现代地质, 2008, 22(3):430-437 doi: 10.3969/j.issn.1000-8527.2008.03.013

    WU Shiguo, CHEN Shanshan, WANG Zhijun, et al. Submarine landslide and risk evaluation on its instability in the deepwater continental margin [J]. Geoscience, 2008, 22(3): 430-437. doi: 10.3969/j.issn.1000-8527.2008.03.013

    [7]

    孙运宝, 吴时国, 王志君, 等. 南海北部白云大型海底滑坡的几何形态与变形特征[J]. 海洋地质与第四纪地质, 2008, 28(6):69-77

    SUN Yunbao, WU Shiguo, WANG Zhijun, et al. The geometry and deformation characteristics of Baiyun submarine Landslide [J]. Marine Geology & Quaternary Geology, 2008, 28(6): 69-77.

    [8]

    王大伟, 吴时国, 秦志亮, 等. 南海陆坡大型块体搬运体系的结构与识别特征[J]. 海洋地质与第四纪地质, 2009, 29(5):65-72

    WANG Dawei, WU Shiguo, QIN Zhiliang, et al. Architecture and identification of large quaternary mass transport depositions in the slope of South China Sea [J]. Marine Geology & Quaternary Geology, 2009, 29(5): 65-72.

    [9]

    Wang W W, Wang D W, Wu S G, et al. Submarine landslides on the north continental slope of the South China Sea [J]. Journal of Ocean University of China, 2018, 17(1): 83-100. doi: 10.1007/s11802-018-3491-0

    [10]

    杨文达, 张异彪, 李斌. 南海琼东南深水海区地质灾害类型与特征[J]. 海洋石油, 2011, 31(1):1-7 doi: 10.3969/j.issn.1008-2336.2011.01.001

    YANG Wenda, ZHANG Yibiao, LI Bin. Types and characteristics of deepwater geologic hazard in Qiongdongnan of the South China Sea [J]. Offshore Oil, 2011, 31(1): 1-7. doi: 10.3969/j.issn.1008-2336.2011.01.001

    [11]

    杨文达, 李斌, 胡津荧, 等. 三维地震资料在深水油气勘探井场地质灾害评价中的运用: 以南海琼东南海区为例[J]. 海洋地质与第四纪地质, 2013, 33(1):83-90

    YANG Wenda, LI Bin, HU Jinying, et al. Using 3D Seismic data to evaluate deepwater geohazards for well site investigation: a case of Qiongdongnan Block in South China Sea [J]. Marine Geology & Quaternary Geology, 2013, 33(1): 83-90.

    [12]

    阎贫, 王彦林, 郑红波. 南海北部白云凹陷-东沙岛西南海区的浅地层探测与深水沉积特点[J]. 热带海洋学报, 2011, 30(2):115-122 doi: 10.3969/j.issn.1009-5470.2011.02.017

    YAN Pin, WANG Yanlin, ZHENG Hongbo. Characteristics of deep water sedimentation revealed by sub-bottom profiler survey over the Baiyun Sag: southwest Dongsha Island Waters in the northern South China Sea [J]. Journal of Tropical Oceanography, 2011, 30(2): 115-122. doi: 10.3969/j.issn.1009-5470.2011.02.017

    [13]

    陈泓君, 彭学超, 朱本铎, 等. 南海1: 100万海南岛幅海洋区域地质调查与编图成果综述[J]. 海洋地质与第四纪地质, 2014, 34(6):83-96

    CHEN Hongjun, PEN Xuechao, ZHU Benduo, et al. A brief review of 1: 1 000 000 marine geological survey and mapping results of the Hainan sheet in the South China Sea [J]. Marine Geology & Quaternary Geology, 2014, 34(6): 83-96.

    [14]

    罗进华, 朱培民. 琼东南盆地陆坡区重力流沉积体系超高精度解析[J]. 地质科技情报, 2019, 38(6):42-50

    LUO Jinhua, ZHU Peimin. Gravity induced deposits in the continental slope of Qiongdongnan basin based on ultrahigh resolution AUV data [J]. Geological Science and Technology Information, 2019, 38(6): 42-50.

    [15]

    Silva A J, Baxter C D P, Larosa P T, et al. Investigation of mass wasting on the continental slope and rise [J]. Marine Geology, 2004, 203(3-4): 355-366. doi: 10.1016/S0025-3227(03)00315-3

    [16]

    Haflidason H, Sejrup H P, Nygård A, et al. The Storegga Slide: architecture, geometry and slide development [J]. Marine Geology, 2004, 213(1-4): 201-234. doi: 10.1016/j.margeo.2004.10.007

    [17]

    Sultan N, Voisset M, Marsset B, et al. Potential role of compressional structures in generating submarine slope failures in the Niger Delta [J]. Marine Geology, 2007, 237(3-4): 169-190. doi: 10.1016/j.margeo.2006.11.002

    [18]

    谢玉洪. 南海北部自营深水天然气勘探重大突破及其启示[J]. 天然气工业, 2014, 34(10):1-8

    XIE Yuhong. A major breakthrough in deepwater natural gas exploration in a self-run oil/gas field in the northern South China Sea and its enlightenment [J]. Natural Gas Industry, 2014, 34(10): 1-8.

    [19]

    杨进, 李文龙, 胡志强, 等. 深水钻井水下井口稳定性研究进展[J]. 中国海上油气, 2020, 32(4):124-130

    YANG Jin, LI Wenlong, HU Zhiqiang, et al. Research progresses on subsea wellhead stability of deep water drilling [J]. China Offshore Oil and Gas, 2020, 32(4): 124-130.

    [20]

    郑利军, 段梦兰, 刘军鹏, 等. 水下生产系统选型影响因素研究[J]. 石油矿场机械, 2012, 41(6):67-71 doi: 10.3969/j.issn.1001-3482.2012.06.017

    ZHENG Lijun, DUAN Menglan, LIU Junpeng, et al. Study of influencing factors on subsea production system selection [J]. Oil Field Equipment, 2012, 41(6): 67-71. doi: 10.3969/j.issn.1001-3482.2012.06.017

    [21]

    赵党, 郝双户, 何宁. 海底管道稳定性分析[J]. 舰船科学技术, 2013, 35(5):99-102 doi: 10.3404/j.issn.1672-7649.2013.05.023

    ZHAO Dang, HAO Shuanghu, HE Ning. Survey on on-bottom stability design of submarine pipelines [J]. Ship Science and Technology, 2013, 35(5): 99-102. doi: 10.3404/j.issn.1672-7649.2013.05.023

    [22]

    朱海山, 李达, 魏澈, 等. 南海陵水17-2深水气田开发工程方案研究[J]. 中国海上油气, 2018, 30(4):170-177

    ZHU Haishan, LI Da, WEI Che, et al. Research on LS17-2 deep water gas field development engineering scenario in South China Sea [J]. China Offshore Oil and Gas, 2018, 30(4): 170-177.

    [23]

    吴自银, 阳凡林, 李守军, 等. 高分辨率海底地形地貌: 可视计算与科学应用[M]. 北京: 科学出版社, 2017.

    WU Ziyin, YANG Fanlin, LI Shoujun, et al. High Resolution Submarine Geomorphology Visual Computation and Scientific Applications[M]. Beijing: Science Press, 2017.

    [24]

    纪雪. 基于多波束数据的海底底质及地形复杂度分类研究[D]. 国家海洋局第一海洋研究所硕士学位论文, 2017.

    JI Xue. Classification of seabed sediment and terrain complexity based on multibeam data[D]. Master Dissertation of the First Institute of Oceanography, State Bureau of Oceanic Administration, 2017.

    [25]

    罗伟东, 郭军. 基于多波束背向散射数据的海底底质分类[J]. 海洋地质前沿, 2017, 33(8):57-62

    LUO Weidong, GUO Jun. Seabed sediment classification based on multibeam backscatter data [J]. Marine Geology Frontiers, 2017, 33(8): 57-62.

    [26]

    唐秋华, 纪雪, 丁继胜, 等. 多波束声学底质分类研究进展与展望[J]. 海洋科学进展, 2019, 37(1):1-10 doi: 10.3969/j.issn.1671-6647.2019.01.001

    TANG Qiuhua, JI Xue, DING Jisheng, et al. Research progress and prospect of acoustic seabed classification using multibeam echo sounder [J]. Advances in Marine Science, 2019, 37(1): 1-10. doi: 10.3969/j.issn.1671-6647.2019.01.001

    [27]

    金绍华, 翟京生, 刘雁春, 等. Simrad EM多波束反向散射强度数据精处理研究[J]. 测绘科学, 2010, 35(2):106-108

    JIN Shaohua, ZHAI Jingsheng, LIU Yanchun, et al. Study on processing of Simrad EM multibeam backscatter data [J]. Science of Surveying and Mapping, 2010, 35(2): 106-108.

    [28]

    杨词银. 基于侧扫声纳成像的海底底质识别研究[D]. 中国科学院声学研究所博士学位论文, 2005.

    YANG Ciyin. Seabed sediment classification based on side scan sonar imagery[D]. Doctor Dissertation of the Institute of Acoustics of the Chinese Academy of Sciences, 2005.

    [29]

    张楷涵, 袁飞, 程恩. 侧扫声呐图像噪声模型的分析[J]. 厦门大学学报: 自然科学版, 2018, 57(3):390-395

    ZHANG Kaihan, YUAN Fei, CHENG En. Analysis of side-scan sonar image noise model [J]. Journal of Xiamen University: Natural Science, 2018, 57(3): 390-395.

    [30]

    赵永祯, 唐劲松, 钟何平. 基于声纳图像纹理特征的海底底质分类方法研究[J]. 海洋测绘, 2015, 35(3):60-63

    ZHAO Yongzhen, TANG Jinsong, ZHONG Heping. Seabed sediment classification based on texture features of sonar imagery [J]. Hydrographic Surveying and Charting, 2015, 35(3): 60-63.

    [31]

    罗进华, 蒋锦朋, 朱培民. 基于数学形态学的侧扫声呐图像轮廓自动提取[J]. 海洋学报, 2016, 38(5):150-157

    LUO Jinhua, JIANG Jinpeng, ZHU Peimin. Automatic extraction of the side-scan sonar imagery outlines based on mathematical morphology [J]. Acta Oceanologica Sinica, 2016, 38(5): 150-157.

    [32]

    刘玉萍, 丁龙翔, 杨志成, 等. 利用浅剖资料进行海底底质分析[J]. 物探与化探, 2016, 40(1):66-72

    LIU Yuping, DING Longxiang, YANG Zhicheng, et al. Seabed sediment analysis using sub-bottom profile data [J]. Geophysical and Geochemical Exploration, 2016, 40(1): 66-72.

    [33]

    国家海洋局. GB/T 12763.8-2007 海洋调查规范 第8部分 海洋地质地球物理调查[S]. 北京: 中国标准出版社, 2017.

    State Oceanic Administration. GB/T 12763.8-2007 Specifications for oceanographic survey: Part 8: marine geology and geophysics survey[S]. Beijing: China Standards Press, 2017.

    [34]

    Prior D B, Bornhold B D, Johns M W. Depositional characteristics of a submarine debris flow [J]. The Journal of Geology, 1984, 92(6): 707-727. doi: 10.1086/628907

    [35]

    陈泓君, 詹文欢, 温明明, 等. 南海西北部琼东南盆地陆架坡折带类型及沉积作用特征[J]. 海洋地质前沿, 2015, 31(8):1-9

    CHEN Hongjun, ZHAN Wenhuan, WEN Mingming, et al. Characteristics of shelf break and sedimentaion process at the Qiongdongnan basin, Northwestern South China Sea [J]. Marine Geology Frontiers, 2015, 31(8): 1-9.

  • 加载中

(11)

(1)

计量
  • 文章访问数:  1432
  • PDF下载数:  22
  • 施引文献:  0
出版历程
收稿日期:  2020-12-06
修回日期:  2021-03-23
刊出日期:  2022-02-28

目录