山东即墨马山粗面英安岩年代学与地球化学特征及其地质意义

朱晓青, 侯方辉, 刘洪滨, 郭兴伟, 孙天本, 秦亚超, 安郁辉, 李凤春. 山东即墨马山粗面英安岩年代学与地球化学特征及其地质意义[J]. 海洋地质与第四纪地质, 2021, 41(6): 138-150. doi: 10.16562/j.cnki.0256-1492.2021011801
引用本文: 朱晓青, 侯方辉, 刘洪滨, 郭兴伟, 孙天本, 秦亚超, 安郁辉, 李凤春. 山东即墨马山粗面英安岩年代学与地球化学特征及其地质意义[J]. 海洋地质与第四纪地质, 2021, 41(6): 138-150. doi: 10.16562/j.cnki.0256-1492.2021011801
ZHU Xiaoqing, HOU Fanghui, LIU Hongbin, GUO Xingwei, SUN Tianben, QIN Yachao, AN Yuhui, LI Fengchun. Geochronology and geochemistry of Mashan trachydacite, JiMo District, Shandong Province and their geological implications[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 138-150. doi: 10.16562/j.cnki.0256-1492.2021011801
Citation: ZHU Xiaoqing, HOU Fanghui, LIU Hongbin, GUO Xingwei, SUN Tianben, QIN Yachao, AN Yuhui, LI Fengchun. Geochronology and geochemistry of Mashan trachydacite, JiMo District, Shandong Province and their geological implications[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 138-150. doi: 10.16562/j.cnki.0256-1492.2021011801

山东即墨马山粗面英安岩年代学与地球化学特征及其地质意义

  • 基金项目: 中国地质调查局海洋地质调查项目(DD20190365,DD20190377,DD20190205)
详细信息
    作者简介: 朱晓青(1982—),男,博士,副研究员,主要从事构造地质与海洋地质研究,E-mail:xq_zhu0819@126.com
    通讯作者: 侯方辉(1979—),男,博士,高级工程师,主要从事构造地质及海洋地质研究,E-mail:houfanghui3993@163.com
  • 中图分类号: P542

Geochronology and geochemistry of Mashan trachydacite, JiMo District, Shandong Province and their geological implications

More Information
  • 山东即墨马山地区出露罕见的发育柱状节理的中酸性火山岩,对于其年代学及形成的大地构造背景鲜有讨论。岩石薄片与主量元素分析结果证明马山柱状节理火山岩属于粗面英安岩。利用LA-ICP-MS对马山柱状节理火山岩中的锆石进行U-Pb测年,确定其形成时间为113.2±1.3 Ma,属于早白垩世晚期。原位Lu-Hf分析获得锆石εHf(t)值范围为−19.5~−0.4,对应的二阶段模式年龄范围约为1.97~3.26 Ga,暗示其源区岩浆成生于古老地壳的熔融。马山粗面英安岩具有SiO2和Al2O3含量较高,MgO含量低及富含碱的主量元素的特征。其稀土元素总量较低,配分模式呈轻稀土富集、重稀土亏损的右倾模式,Eu轻微负异常,Sr含量高而Y和Yb含量低。马山粗面英安岩的主微量元素显示其具有埃达克岩特征,推测其来源岩浆可能形成于燕山期华北东部区域性地壳增厚后下部老地壳的熔融。

  • 加载中
  • 图 1  研究区地质概况、马山柱状节理火山岩露头与镜下特征

    Figure 1. 

    图 2  马山粗面英安岩锆石特征与测年结果

    Figure 2. 

    图 3  马山粗面英安岩中锆石的稀土元素配分曲线[21]

    Figure 3. 

    图 4  马山粗面英安岩中锆石的εHft)值与对应的二阶段模式年龄

    Figure 4. 

    图 5  马山柱状节理粗面英安岩岩石类型划分TAS图解[22]

    Figure 5. 

    图 6  马山粗面英安岩稀土元素配分曲线[21]

    Figure 6. 

    图 7  马山粗面英安岩微量元素蛛网图[21]

    Figure 7. 

    图 8  马山粗面英安岩Sr/Y vs.Y[24]和(La/Yb)N-YbN[32]判别图解

    Figure 8. 

    表 1  马山粗面英安岩锆石U-Pb测试结果

    Table 1.  Zircon U-Pb dating results of trachydacite at Mashan

    点 号Th /10−6U/10−6Th/U比值年龄/Ma谐和度*/%
    207Pb/206Pb± 1σ207Pb/235U± 1σ206Pb/238U± 1σ207Pb/206Pb± 1σ207Pb/235U± 1σ206Pb/238U± 1σ
    MS-013.2370.20.010.049950.002970.133780.007410.019840.000391951341277127299
    MS-02165.0235.10.700.103040.003872.149010.078400.150080.002761679691165259011574
    MS-030.00.450.010.034650.016824.371172.079280.034120.01459----17073932169156
    MS-041327.3935.31.420.047820.001970.118100.004840.017850.00027100871134114299
    MS-05376.9294.51.280.049510.003290.119910.007490.017870.000401721561157114399
    MS-06100.5115.30.870.056430.005250.136870.012190.017670.0005347820513011113385
    MS-07899.6806.21.120.051670.002460.128890.006000.017870.000373331051235114292
    MS-0896.9148.00.650.116180.003705.079290.160910.312620.0057018985718332717542895
    MS-091121.3809.31.390.050880.002580.126930.006280.017950.000362351141216115294
    MS-1080.6120.90.670.081390.004430.717900.040650.063210.001671231140549243951067
    MS-110.06.20.000.090500.022780.450480.120010.032430.003611436496378842062341
    MS-12510.81110.00.460.051500.002060.125020.005060.017270.00030265931205110291
    MS-13167.72466.90.070.169040.004069.842730.238790.412520.0063325484024202222262991
    MS-14184.5166.11.110.052290.004710.129910.010390.017950.000462982101249115392
    MS-1569.1246.80.280.055780.002570.267340.011740.034360.000624431022419218490
    MS-16109.4315.40.350.052550.002370.241680.010640.032710.00060309992209208494
    MS-17937.5625.81.500.052140.002390.130700.005110.017940.000343001061255115291
    MS-18396.1555.50.710.053030.002220.130040.004860.017490.00032332941244112290
    MS-1952.91325.40.040.050070.001460.226080.006220.032090.00044198692075204398
    MS-20614.1290.22.120.046500.005310.114270.014120.017150.000483324311013110399
    MS-213467.11542.52.250.046980.001560.117370.004140.017660.0002956721134113299
    MS-221321.0881.11.500.047500.001890.120300.004820.017970.0003476891154115299
    MS-23412.3496.50.830.046820.002510.112490.005550.017280.00040391261085110397
      注:*谐和度=100
    下载: 导出CSV

    表 2  马山粗面英安岩锆石原位Lu-Hf测试结果

    Table 2.  Zircon in-situ Lu-Hf results of trachydacite at Mashan

    点 号176Yb/177Hf±2σ176Lu/177Hf±2σ176Hf/177Hf±2σt (Ma)T C ② DM±2σεHf(t)±2σ
    MS-010.0107700.0001130.0004680.0000040.2823400.000014127197132−12.50.51
    MS-040.0926220.0021840.0034620.0000740.2822420.000021114220947−16.50.76
    MS-050.0800540.0015200.0030270.0000390.2822390.000021114221346−16.60.74
    MS-070.1451240.0042300.0052050.0001410.2822210.000020114226344−17.40.71
    MS-080.0049210.0002090.0001250.0000050.2812650.0000151898326333−11.10.54
    MS-090.1055450.0008740.0038230.0000370.2822140.000017115227238−17.50.61
    MS-120.1332180.0015710.0049970.0000550.2822320.000033110223972−17.01.17
    MS-130.0221710.0009790.0007140.0000250.2811770.0000272548308758−0.40.96
    MS-140.0640950.0016470.0025420.0000620.2821910.000029115231763−18.21.01
    MS-150.0224320.0005870.0008750.0000190.2821760.000016218228736−16.40.58
    MS-160.0137030.0001350.0006270.0000050.2822940.000012208203028−12.50.44
    MS-170.1102100.0003950.0041990.0000160.2821590.000017115239538−19.50.61
    MS-190.0241160.0005540.0011120.0000240.2821020.000012204245827−19.40.44
    MS-200.0828070.0014610.0033160.0000560.2822250.000025110224855−17.20.88
    MS-210.1500460.0041720.0052990.0001460.2822630.000023113217251−15.90.82
    MS-220.1322880.0024290.0051100.0000930.2822540.000022115219148−16.20.77
    MS-230.0741510.0040700.0028050.0001470.2821870.000018110233039−18.50.64
      注:①为锆石表观年龄;②为基于DM的二阶段模式年龄计算使用平均大陆地壳176Lu/177Hf值0.015。表中数据的误差为2σ(标准误差),不确定度为最后一位数字;③为εHf(t)值的计算使用锆石的表观年龄,该年龄为锆石结晶年龄的最小估计值,λ176Lu=1.867×10−11/a[17],CHUR现今的176Lu/177Hf及176Hf/177Hf值分别为0.0332和0.282772[18],DM现今的176Lu/177Hf及176Hf/177Hf值分别为0.0384和0.28325[19]
    下载: 导出CSV

    表 3  马山粗面英安岩全岩主量元素分析结果

    Table 3.  Whole-rock major element compositions of trachydacite at Mashan

    %
    样品号M-01M-02M-03M-04平均值
    SiO265.4467.2667.0667.1866.74
    TiO20.460.450.440.400.44
    Al2O314.5813.3713.4313.3813.69
    Fe2O33.613.893.653.623.69
    MnO0.080.100.080.090.09
    MgO2.101.952.142.362.14
    CaO3.402.672.762.582.85
    Na2O3.774.484.714.414.34
    K2O3.833.763.583.983.79
    P2O50.180.190.210.170.19
    L.O.I2.121.461.861.651.77
    下载: 导出CSV

    表 4  马山粗面英安岩微量元素分析结果

    Table 4.  Trace element compositions of trachydacite at Mashan

    10−6
    样品号M-01M-02M-03M-04平均值
    Li37.541.436.438.638.5
    Be1.751.661.701.681.70
    Sc18.307.807.918.1010.50
    Ti28232700264024002641
    V53.155.156.154.454.7
    Cr68.563.565.681.669.8
    Co10.8011.0011.0011.4011.10
    Ni32.129.529.639.232.6
    Cu4.7645.8028.6028.2026.80
    Zn48.572.268.067.264.0
    Ga17.916.717.215.916.9
    Rb91.685.087.199.290.7
    Sr402341422489414
    Y13.413.613.913.013.5
    Zr130141134126133
    Nb9.511.010.810.610.5
    Mo0.610.880.580.660.68
    Cd0.0360.0610.0660.0380.051
    Cs0.880.620.651.000.79
    Ba23811461193917271877
    Hf3.734.354.404.004.12
    Ta0.731.201.001.151.02
    Tl0.380.380.380.440.40
    Pb30.354.639.243.641.9
    Th6.465.565.385.265.67
    U1.691.501.541.541.57
    下载: 导出CSV

    表 5  马山粗面英安岩稀土元素分析结果

    Table 5.  REE compositions of trachydacite at Mashan

    10−6
    样品号M-01M-02M-03M-04平均值
    La29.629.930.827.829.5
    Ce52.453.154.649.552.4
    Pr6.346.186.345.776.16
    Nd22.923.324.021.823.0
    Sm3.963.863.923.643.85
    Eu0.941.081.101.001.03
    Gd3.533.283.383.103.32
    Tb0.500.470.480.460.48
    Dy2.502.532.602.462.52
    Ho0.500.510.520.480.50
    Er1.391.421.441.381.41
    Tm0.240.220.220.220.23
    Yb1.451.461.441.401.44
    Lu0.230.230.230.220.23
    Eu/Eu*0.770.930.920.910.88
    LaN/YbN13.8913.9414.5613.5113.98
    ΣREE126.48127.54131.07119.23126.08
    下载: 导出CSV
  • [1]

    Cope T. Phanerozoic magmatic tempos of North China [J]. Earth and Planetary Science Letters, 2017, 468: 1-10. doi: 10.1016/j.jpgl.2017.03.022

    [2]

    任纪舜, 陈廷愚, 牛宝贵, 等. 中国东部及邻区大陆岩石圈的构造演化与成矿[M]. 北京: 科学出版社, 1990: 1-205.

    REN Jishun, CHEN Tingyu, NIU Baogui, et al. Tectonic Evolution of the Continental Lithosphere and Metallogeny in Eastern China and Adjacent Areas[M]. Beijing: Science Press, 1990: 1-205.

    [3]

    邓晋福, 刘厚祥, 赵海玲, 等. 燕辽地区燕山期火成岩与造山模型[J]. 现代地质, 1996, 10(2):137-148

    DENG Jinfu, LIU Houxiang, ZHAO Hailing, et al. Yanshanian igneous rocks and orogeny model in Yanshan-Liaoning area [J]. Geoscience, 1996, 10(2): 137-148.

    [4]

    董树文, 吴锡浩, 吴珍汉, 等. 论东亚大陆的构造翘变: 燕山运动的全球意义[J]. 地质论评, 2000, 46(1):8-13 doi: 10.3321/j.issn:0371-5736.2000.01.002

    DONG Shuwen, WU Xihao, WU Zhenhan, et al. On tectonic seesawing of the East Asia Continent: Global implication of the Yanshanian Movement [J]. Geological Review, 2000, 46(1): 8-13. doi: 10.3321/j.issn:0371-5736.2000.01.002

    [5]

    董树文, 张岳桥, 李海龙, 等. “燕山运动”与东亚大陆晚中生代多板块汇聚构造: 纪念“燕山运动”90周年[J]. 中国科学: 地球科学, 2018, 61(6):1888-1909

    DONG Shuwen, ZHANG Yueqiao, LI Hailong, et al. The Yanshan orogeny and late Mesozoic multi-plate convergence in East Asia: Commemorating 90th years of the “Yanshan Orogeny” [J]. Science China Earth Sciences, 2018, 61(6): 1888-1909.

    [6]

    张旗, 钱青, 王二七, 等. 燕山中晚期的中国东部高原: 埃达克岩的启示[J]. 地质科学, 2001, 36(2):248-255 doi: 10.3321/j.issn:0563-5020.2001.02.014

    ZHANG Qi, QIAN Qing, WANG Erqi, et al. An East China Plateau in Mid-Late Yanshanian Period: Implication from adakites [J]. Chinese Journal of Geology, 2001, 36(2): 248-255. doi: 10.3321/j.issn:0563-5020.2001.02.014

    [7]

    张旗, 许继峰, 王焰, 等. 埃达克岩的多样性[J]. 地质通报, 2004, 23(9-10):959-965

    ZHANG Qi, XU Jifeng, WANG Yan, et al. Diversity of adakite [J]. Geological Bulletin of China, 2004, 23(9-10): 959-965.

    [8]

    张旗, 焦守涛. 埃达克岩来自高压背景: 一个科学的、可靠的、有预见性的科学发现[J]. 岩石学报, 2020, 36(6):1675-1683 doi: 10.18654/1000-0569/2020.06.02

    ZHANG Qi, JIAO Shoutao. Adakite comes from a high-pressure background: A scientific, reliable, predictable scientific discovery [J]. Acta Petrologica Sinica, 2020, 36(6): 1675-1683. doi: 10.18654/1000-0569/2020.06.02

    [9]

    汪洋, 程素华. “C型埃达克岩”: 一个基于误解的概念?[J]. 矿物岩石地球化学通报, 2010, 29(3):284-292, 298 doi: 10.3969/j.issn.1007-2802.2010.03.012

    WANG Yang, CHENG Suhua. The “C-type Adakite”: A concept based on misunderstanding? [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2010, 29(3): 284-292, 298. doi: 10.3969/j.issn.1007-2802.2010.03.012

    [10]

    汪洋. 涉及埃达克岩实验的若干基本概念与问题辨析[J]. 岩石矿物学杂志, 2016, 35(1):162-176 doi: 10.3969/j.issn.1000-6524.2016.01.012

    WANG Yang. A discussion on some basic conceptions and problems related to the experimental study of adakite [J]. Acta Petrologica Et Mineralogica, 2016, 35(1): 162-176. doi: 10.3969/j.issn.1000-6524.2016.01.012

    [11]

    Martin H, Smithies R H, Rapp R, et al. D. An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution [J]. Lithos, 2005, 79(1-2): 1-24. doi: 10.1016/j.lithos.2004.04.048

    [12]

    王强, 郝露露, 张修政, 等. 汇聚板块边缘的埃达克质岩: 成分和成因[J]. 中国科学: 地球科学, 2020, 63(12):1992-2016 doi: 10.1007/s11430-020-9678-y

    WANG Qiang, HAO Lulu, ZHANG Xiuzheng, et al. Adakitic rocks at convergent plate boundaries: Compositions and petrogenesis [J]. Science China Earth Sciences, 2020, 63(12): 1992-2016. doi: 10.1007/s11430-020-9678-y

    [13]

    山东省地质调查院. 1: 25万青岛市幅区域地质调查报告与地质图[R]. 2004.

    Shandong Institute of Geological Survey. 1: 250000 Qingdao Regional Geological Survey Report and Geological Map[R]. 2004.

    [14]

    韩宗珠, 衣伟虹, 余芝华, 等. 青岛马山地区安山玢岩地球化学特征及成因机理研究[J]. 中国海洋大学学报, 2011, 41(S1):305-311

    HAN Zongzhu, YI Weihong, YU Zhihua, et al. Geochemistry and petrogenesis of andesite-prophyrite in Mashan area, Qingdao [J]. Periodical of Ocean University of China, 2011, 41(S1): 305-311.

    [15]

    何登洋, 邱昆峰, 于皓丞, 等. 华北克拉通胶莱盆地马山地区早白垩世粗面英安岩岩石成因[J]. 岩石学报, 2020, 36(12):3705-3720 doi: 10.18654/1000-0569/2020.12.09

    HE Dengyang, QIU Kunfeng, YU Haocheng, et al. Petrogenesis of the Early Cretaceous trachy-dacite from Mashan in the Jiaolai Basin, North China Craton [J]. Acta Petrologica Sinica, 2020, 36(12): 3705-3720. doi: 10.18654/1000-0569/2020.12.09

    [16]

    Pearce N J G, Perkins W T, Westgate J A, et al. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials [J]. Geostandards Newsletter, 1997, 21(1): 115-144. doi: 10.1111/j.1751-908X.1997.tb00538.x

    [17]

    Söderlund U, Patchett P J, Vervoort J D, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions [J]. Earth and Planetary Science Letters, 2004, 219(3-4): 311-324. doi: 10.1016/S0012-821X(04)00012-3

    [18]

    Bichert-Toft J, Albarède F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system [J]. Earth and Planetary Science Letters, 1997, 148(1-2): 243-258. doi: 10.1016/S0012-821X(97)00040-X

    [19]

    Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites [J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147. doi: 10.1016/S0016-7037(99)00343-9

    [20]

    吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(15):1554-1569 doi: 10.1007/BF03184122

    WU Yuanbao, ZHENG Yongfei. Genesis of zircon and its constraints on interpretation of U-Pb age [J]. Chinese Science Bulletin, 2004, 49(15): 1554-1569. doi: 10.1007/BF03184122

    [21]

    McDonough W F, Sun S S. The composition of the Earth [J]. Chemical Geology, 1995, 120(3-4): 223-253. doi: 10.1016/0009-2541(94)00140-4

    [22]

    Le Bas M J, Le Maitre R W, Streckeisen A, et al. A chemical classification of volcanic rocks based on the total alkali-silica diagram [J]. Journal of Petrology, 1986, 27(3): 745-750. doi: 10.1093/petrology/27.3.745

    [23]

    Kay R W. Aleutian magnesian andesites: Melts from subducted Pacific ocean crust [J]. Journal of Volcanology and Geothermal Research, 1978, 4(1-2): 117-132. doi: 10.1016/0377-0273(78)90032-X

    [24]

    Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere [J]. Nature, 1990, 347(6294): 662-665. doi: 10.1038/347662a0

    [25]

    Defant M J, Xu J F, Kepezhinskas P, et al. Adakites: some variations on a theme [J]. Acta Petrologica Sinica, 2002, 18(2): 129-142.

    [26]

    王焰, 张旗, 钱青. 埃达克岩(adakite)的地球化学特征及其构造意义[J]. 地质科学, 2000, 35(2):251-256 doi: 10.3321/j.issn:0563-5020.2000.02.016

    WANG Yan, ZHANG Qi, QIAN Qing. Adakite: geochemical characteristics and tectonic significances [J]. Scientia Geologica Sinica, 2000, 35(2): 251-256. doi: 10.3321/j.issn:0563-5020.2000.02.016

    [27]

    王强, 许继锋, 赵振华. 一种新的火成岩: 埃达克岩的研究综述[J]. 地球科学进展, 2001, 16(2):201-208 doi: 10.3321/j.issn:1001-8166.2001.02.010

    WANG Qiang, XU Jifen, ZHAO Zhenghua. The summary and comment on research on a new kind of igneous rock-Adakite [J]. Advance in Earth Sciences, 2001, 16(2): 201-208. doi: 10.3321/j.issn:1001-8166.2001.02.010

    [28]

    Rapp R P, Xiao L, Shim Izu N. Experimental constraints on the origin of potassium-rich adakites in eastern China [J]. Acta Petrologica Sinica, 2002, 18(3): 293-302.

    [29]

    罗照华, 柯珊, 谌宏伟. 埃达克岩的特征、成因及构造意义[J]. 地球科学进展, 2002, 21(7):436-440

    LUO Zhaohua, KE Shan, CHEN Hongwei. Characteristics, petrogenesis and tectonic implications of adakite [J]. Geological Bulletin of China, 2002, 21(7): 436-440.

    [30]

    翟明国. 埃达克岩和大陆下地壳重熔的花岗岩类[J]. 岩石学报, 2004, 20(2):193-194 doi: 10.3969/j.issn.1000-0569.2004.02.001

    ZHAI Mingguo. Adakite and related granitoids from partial melting of continental lower crust [J]. Acta Petrologica Sinica, 2004, 20(2): 193-194. doi: 10.3969/j.issn.1000-0569.2004.02.001

    [31]

    张旗, 王元龙, 金惟俊, 等. 晚中生代的中国东部高原: 证据、问题和启示[J]. 地质通报, 2008, 27(9):1404-1430 doi: 10.3969/j.issn.1671-2552.2008.09.004

    ZHANG Qi, WANG Yuanlong, JI Weijun, et al. Eastern China Plateau during the Late Mesozoic: evidence, problems and implication [J]. Geological Bulletin of China, 2008, 27(9): 1404-1430. doi: 10.3969/j.issn.1671-2552.2008.09.004

    [32]

    Martin H. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas [J]. Geology, 1986, 14(9): 753-756. doi: 10.1130/0091-7613(1986)14<753:EOSAGG>2.0.CO;2

    [33]

    邓晋福, 苏尚国, 刘翠, 等. 关于华北克拉通燕山期岩石圈减薄的机制与过程的讨论: 是拆沉, 还是热侵蚀和化学交代?[J]. 地学前缘, 2006, 13(2):105-119 doi: 10.3321/j.issn:1005-2321.2006.02.009

    DENG Jinfu, SU Shangguo, LIU Cui, et al. Discussion on the lithospheric thinning of the North China craton: delamination? Or thermal erosion and chemical metasomatism? [J]. Earth Science Frontiers, 2006, 13(2): 105-119. doi: 10.3321/j.issn:1005-2321.2006.02.009

    [34]

    Best M G. Igneous and Metamorphic Petrology[M]. 2nd ed. Malden, Mass: Blackwell Science, 2003: 340-341.

    [35]

    Taylor S R, McClennan S M. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell Scientific Publication, 1985: 312.

    [36]

    张旗, 王焰, 熊小林, 等. 埃达克岩和花岗岩: 挑战与机遇[M]. 北京: 中国大地出版社, 2008: 1-344.

    ZHANG Qi, WANG Yan, XIONG Xiaolin, et al. Adakite and Granite: Challenges and Opportunities[M]. Beijing: China Land Press, 2008: 1-344.

    [37]

    赵越, 徐刚, 张拴宏, 等. 燕山运动与东亚构造体制的转变[J]. 地学前缘, 2004, 11(3):319-328 doi: 10.3321/j.issn:1005-2321.2004.03.030

    ZHAO Yue, XU Gang, ZHANG Shuanhong, et al. Yanshanian movement and conversion of tectonic regimes in East Asia [J]. Earth Science Frontiers, 2004, 11(3): 319-328. doi: 10.3321/j.issn:1005-2321.2004.03.030

    [38]

    孟庆任. 中国东部燕山期沉积盆地演化与资源效应[J]. 矿物岩石地球化学通报, 2017, 36(4):567-569 doi: 10.3969/j.issn.1007-2802.2017.04.007

    MENG Qingren. Development of sedimentary basins in Eastern China during the Yanshanian period [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(4): 567-569. doi: 10.3969/j.issn.1007-2802.2017.04.007

    [39]

    邵济安, 刘福田, 陈辉, 等. 大兴安岭—燕山晚中生代岩浆活动与俯冲作用关系[J]. 地质学报, 2001, 75(1):56-63 doi: 10.3321/j.issn:0001-5717.2001.01.006

    SHAO Ji’an, LIU Futian, CHEN Hui, et al. Relationship between Mesozoic Magmatism and Subduction in Da Hinggan-Yanshan Area [J]. Acta Geologica Sinica, 2001, 75(1): 56-63. doi: 10.3321/j.issn:0001-5717.2001.01.006

    [40]

    胡受奚, 赵乙英, 胡志宏, 等. 中国东部中—新生代活动大陆边缘构造: 岩浆作用演化和发展[J]. 岩石学报, 1994, 10(4):370-381 doi: 10.3321/j.issn:1000-0569.1994.04.003

    HU Shouxi, ZHAO Yiying, HU Zhihong, et al. Evolution and development of tectonics and magmatism at the active continental margin of the East China (E106°) during Mesozoic and Cenozoic [J]. Acta Petrologica Sinica, 1994, 10(4): 370-381. doi: 10.3321/j.issn:1000-0569.1994.04.003

    [41]

    王德滋, 任启江, 邱检生, 等. 中国东部橄榄安粗岩省的火山岩特征及其成矿作用[J]. 地质学报, 1996, 70(1):23-34

    WANG Dezi, REN Qijiang, QIU Jiansheng, et al. Characteristics of volcanic rocks in the Shoshonite province, Eastern China, and their metallogenesis [J]. Acta Geologica Sinica, 1996, 70(1): 23-34.

    [42]

    万天丰, 赵庆乐. 中国东部构造-岩浆作用的成因[J]. 中国科学: 地球科学, 2012, 55(3):347-354 doi: 10.1007/s11430-011-4361-4

    WAN Tianfeng, ZHAO Qingle. The genesis of tectono-magmatism in eastern China [J]. Science China Earth Sciences, 2012, 55(3): 347-354. doi: 10.1007/s11430-011-4361-4

    [43]

    张旗. 中国东部中生代岩浆活动与太平洋板块向西俯冲有关吗?[J]. 岩石矿物学杂志, 2013, 32(1):113-128 doi: 10.3969/j.issn.1000-6524.2013.01.010

    ZHANG Qi. Is the Mesozoic magmatism in eastern China related to westward subduction of the Pacific plate? [J]. Acta Petrologica ET Mineralogica, 2013, 32(1): 113-128. doi: 10.3969/j.issn.1000-6524.2013.01.010

    [44]

    Zhu X Q, Zhu W B, Ge R F, et al. Late Paleozoic provenance shift in the south-central North China Craton: Implications for tectonic evolution and crustal growth [J]. Gondwana Research, 2014, 25(1): 383-400. doi: 10.1016/j.gr.2013.04.009

    [45]

    Li S Z, Zhao S J, Liu X, et al. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia [J]. Earth-Science Reviews, 2018, 186: 37-75. doi: 10.1016/j.earscirev.2017.01.011

    [46]

    张岳桥, 李金良, 张田, 等. 胶莱盆地及其邻区白垩纪—古新世沉积构造演化历史及其区域动力学意义[J]. 地质学报, 2008, 82(9):1229-1257 doi: 10.3321/j.issn:0001-5717.2008.09.007

    ZHANG Yueqiao, LI Jinliang, ZHANG Tian, et al. Cretaceous to Paleocene Tectono-sedimentary evolution of the Jiaolai Basin and the contiguous areas of the Shandong Peninsula (North China) and Its geodynamic implications [J]. Acta Geologica Sinica, 2008, 82(9): 1229-1257. doi: 10.3321/j.issn:0001-5717.2008.09.007

    [47]

    张田, 张岳桥. 胶北隆起晚中生代构造-岩浆演化历史[J]. 地质学报, 2008, 82(9):1210-1228 doi: 10.3321/j.issn:0001-5717.2008.09.006

    ZHANG Tian, ZHANG Yueqiao. Late Mesozoic tectono-magmatic evolution history of the Jiaobei Uplift, Shandong Peninsula [J]. Acta Geologica Sinica, 2008, 82(9): 1210-1228. doi: 10.3321/j.issn:0001-5717.2008.09.006

    [48]

    Guo Z X, Yang Y T, Zhao X Z, et al. Early Cretaceous tectonostratigraphic evolution of the Erlian Basin, NE China: A record of Late Mesozoic intraplate deformation in East Asia [J]. Marine and Petroleum Geology, 2019, 110: 539-564. doi: 10.1016/j.marpetgeo.2019.07.043

    [49]

    吕洪波, 王俊, 张海春. 山东灵山岛晚中生代滑塌沉积层的发现及区域构造意义初探[J]. 地质学报, 2011, 85(6):938-946

    LÜ Hongbo, WANG Jun, ZHANG Haichun. Discovery of the Late Mesozoic slump beds in Lingshan Island, Shandong, and a pilot research on the regional tectonics [J]. Acta Geologica Sinica, 2011, 85(6): 938-946.

    [50]

    孙天柱, 武斌. 临沂方城盆地中生代青山群火山岩地球化学特征及地质意义[J]. 山东国土资源, 2020, 36(6):14-22

    SUN Tianzhu, WU Bin. Geochemical characteristics and geological significance of volcanic rocks in Mesozoic Qingshan Group in Fangcheng Basin of Linyi City [J]. Shandong Land and Resources, 2020, 36(6): 14-22.

    [51]

    王宇林, 郭强, 李喜海, 等. 辽西喀左盆地九佛堂组的划分及相关问题[J]. 地层学杂志, 2009, 33(2):147-154 doi: 10.3969/j.issn.0253-4959.2009.02.004

    WANG Yulin, GUO Qiang, LI Xihai, et al. Subdivision of the Jiufotang Formation and related issues in the Kazuo Basin [J]. Journal of Stratigraphy, 2009, 33(2): 147-154. doi: 10.3969/j.issn.0253-4959.2009.02.004

    [52]

    刘为付, 刘双龙, 孙立新, 等. 包日温都构造带九佛堂组高分辨率层序结构及储层分析[J]. 地层学杂志, 2015, 39(3):310-318

    LIU Weifu, LIU Shuanglong, SUN Lixin, et al. High resolution sequence stratigraphy configurations and reservoir analysis of the Jiufotang Formation in the Baoriwendu tectonic belt [J]. Journal of Stratigraphy, 2015, 39(3): 310-318.

    [53]

    姜同海. 胶莱盆地构造特征及演化[D]. 山东科技大学硕士学位论文, 2005: 1-45.

    JIANG Tonghai. The structural characteristics and evolution of Jiaolai Basin[D]. Master Dissertation of Shandong University of Science and Technology, 2005: 1-45.

    [54]

    Wu L, Monié P, Wang F, et al. Multi-phase cooling of Early Cretaceous granites on the Jiaodong Peninsula, East China: Evidence from 40Ar/39Ar and (U-Th)/He thermochronology [J]. Journal of Asian Earth Sciences, 2018, 160: 334-347. doi: 10.1016/j.jseaes.2017.11.014

    [55]

    Zhang L M, Wang C S, Cao K, et al. High elevation of Jiaolai Basin during the Late Cretaceous: Implication for the coastal mountains along the East Asian margin [J]. Earth and Planetary Science Letters, 2016, 456: 112-123. doi: 10.1016/j.jpgl.2016.09.034

    [56]

    Yang Y T. An unrecognized major collision of the Okhotomorsk Block with East Asia during the Late Cretaceous, constraints on the plate reorganization of the Northwest Pacific [J]. Earth-Science Reviews, 2013, 126: 96-115. doi: 10.1016/j.earscirev.2013.07.010

    [57]

    Chen P J. Paleoenvironmental changes during the Cretaceous in eastern China[M]//Okada H, Mateer N J. Developments in Palaeontology and Stratigraphy. Amsterdam: Elsevier, 2000, 17: 81-90.

  • 加载中

(8)

(5)

计量
  • 文章访问数:  2608
  • PDF下载数:  56
  • 施引文献:  0
出版历程
收稿日期:  2021-01-18
修回日期:  2021-04-30
刊出日期:  2021-12-28

目录