Characteristics and controlling factors of submarine fluid escape in Tethys tectonic domain
-
摘要:
海底流体逃逸活动会显著地改变海底地形地貌,产生麻坑、泥火山等地貌和冷泉羽状流现象。特提斯构造域是世界上油气最集中的构造域,流体逃逸活动广泛发育,形成的复杂流体逸出结构,对海洋油气勘探、全球气候变化研究等方面具有较好指示作用。本文选取特提斯构造域主要海域,系统总结其海底流体逃逸活动特征,发现特提斯构造域海底流体逃逸活动多分布在被动大陆边缘和弧后裂谷盆地等地质背景中,其中地中海、黑海和南海广泛发育海底冷泉、麻坑和泥火山等流体逃逸特征,而波斯湾和澳大利亚西北部近海大量发育碳酸盐岩。海底流体逃逸活动主要受控于活动断裂、沉积物超压、地震活动、海平面变化、潮汐活动和海底滑坡等海洋与地质因素。在不同海域,流体来源也不尽相同(热成因、生物成因以及天然气水合物分解),大多数通过断层、泥火山和气烟囱等通道运移。建议重视对特提斯构造域海底流体逃逸活动发育区的调查和探测,深入分析与之相关的海底流体逃逸地貌发育机制,以及其特殊海域背景下的海洋与地质因素控制作用,总结建立其海底流体逃逸活动模式及相关理论。
Abstract:Seabed fluid escape may significantly change the seafloor topography, resulting in some geomorphic features such as pockmarks, mud volcanoes and cold seep plumes. The Tethys tectonic domain, the most hydrocarbon-rich domain in the world, hosts substantial fluid escape-related structures that can act as good indicators for offshore hydrocarbon exploration and global climate changes. Based on previous researches of major sea areas in the Tethys tectonic domain, this paper systematically summarized the characteristics of the seabed fluid flow, which shows that the seabed fluid escape activities of the Tethys tectonic area are mostly distributed in passive continental margins and back-arc rift basins. Seafloor manifestations of fluid escape including submarine cold seeps, pockmarks and mud volcanoes, are widely distributed in the Mediterranean Sea, the Black Sea and the South China Sea, however, massive carbonate-related structures are the prominent seabed fluid escape features in the Persian Gulf and the northwestern shelf of Australia. Seabed fluid flow is a dynamic process in the Tethys tectonic domain. The main marine and geological factors controlling fluid escape include active faults, sediment overpressure, seismic activities, sea-level changes, tidal activities and seabed landslides. Fluids are sourced from different intervals (thermal, biogenesis, and natural gas hydrate decomposition) in different sea areas, and the migration of fluids is mostly through fault planes, mud volcanoes and gas chimneys to the seafloor. To summarize and establish the model and theory of seabed fluid escape, it is suggested that more attention should be paid to the investigation and detection of the development areas of the seabed fluid escape activities in the Tethys tectonic domain. Moreover, the further analysis of the mechanism of the fluid escape-related geomorphic features, as well as the marine and geological controls in the special oceanic regions will provide basic support for the subsequent research.
-
Key words:
- Tethys /
- fluid escape /
- gas hydrate /
- oil and gas exploration /
- cold seep
-
图 5 波斯湾及周边地区的构造背景和海底流体逃逸特征分布[118]
Figure 5.
表 1 特提斯构造域海底流体逃逸
Table 1. Seabed fluid escape in the Tethys tectonic domain
研究区域 构造背景 主要逃逸特征 流体来源 运移通道 地质控制作用 主要参考文献 波斯湾 裂谷盆地 碳酸盐岩 热成因 断层 褶皱活动 [121-122] 地中海 俯冲带、被动大陆边缘 泥火山、麻坑、活动冷泉 热成因、生物成因、
天然气水合物分解断层、泥火山、气烟囱 海底滑坡、沉积物超压、高沉积速率、挤压构造、孔隙压力升高 [3,86,103] 黑海 弧后裂谷盆地 泥火山、麻坑、活动冷泉 生物成因、天然气水
合物分解断层、泥火山、气烟囱 海底滑坡、海平面升降、活动断层、海底峡谷、地震活动 [16,114] 南海 主动、被动与走滑大陆边缘 泥火山、麻坑、活动冷泉、碳酸盐岩 生物成因、热成因、
天然气水合物分解断层、泥火山、气烟囱 地震活动、深部底辟运动、倾斜断层和沉积边界 [44,47] 澳大利亚西北近海 被动大陆边缘 碳酸盐岩 热成因 断层 断层、海平面升降、潮汐活动 [21] -
[1] Berndt C. Focused fluid flow in passive continental margins [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 363(1837): 2855-2871. doi: 10.1098/rsta.2005.1666
[2] Judd A, Hovland M. Seabed Fluid Flow: the Impact on Geology, Biology and the Marine Environment[M]. Cambridge: Cambridge University Press, 2009.
[3] Bertoni C, Kirkham C, Cartwright J, et al. Seismic indicators of focused fluid flow and cross-evaporitic seepage in the Eastern Mediterranean [J]. Marine and Petroleum Geology, 2017, 88: 472-488. doi: 10.1016/j.marpetgeo.2017.08.022
[4] Andresen K J, Huuse M. 'Bulls-eye' pockmarks and polygonal faulting in the Lower Congo Basin: Relative timing and implications for fluid expulsion during shallow burial [J]. Marine Geology, 2011, 279(1-4): 111-127. doi: 10.1016/j.margeo.2010.10.016
[5] Anka Z, Berndt C, Gay A. Hydrocarbon leakage through focused fluid flow systems in continental margins [J]. Marine Geology, 2012, 332-334: 1-3. doi: 10.1016/j.margeo.2012.10.012
[6] 陈江欣, 关永贤, 宋海斌, 等. 麻坑、泥火山在南海北部与西部陆缘的分布特征和地质意义[J]. 地球物理学报, 2015, 58(3):919-938 doi: 10.6038/cjg20150319
CHEN Jiangxin, GUAN Yongxian, SONG Haibin, et al. Distribution characteristics and geological implications of pockmarks and mud volcanoes in the northern and western continental margins of the South China Sea [J]. Chinese Journal of Geophysics, 2015, 58(3): 919-938. doi: 10.6038/cjg20150319
[7] Tamborrino L, Himmler T, Elvert M, et al. Formation of tubular carbonate conduits at Athina mud volcano, eastern Mediterranean Sea [J]. Marine and Petroleum Geology, 2019, 107: 20-31. doi: 10.1016/j.marpetgeo.2019.05.003
[8] Andresen K J. Fluid flow features in hydrocarbon plumbing systems: What do they tell us about the basin evolution? [J]. Marine Geology, 2012, 332-334: 89-108. doi: 10.1016/j.margeo.2012.07.006
[9] MacDonald I R, Sager W W, Peccini M B. Gas hydrate and chemosynthetic biota in mounded bathymetry at mid-slope hydrocarbon seeps: Northern Gulf of Mexico [J]. Marine Geology, 2003, 198(1-2): 133-158. doi: 10.1016/S0025-3227(03)00098-7
[10] Judd A G. The global importance and context of methane escape from the seabed [J]. Geo-Marine Letters, 2003, 23(3-4): 147-154. doi: 10.1007/s00367-003-0136-z
[11] Paull C K, Ussler W, Holbrook W S. Assessing methane release from the colossal Storegga submarine landslide [J]. Geophysical Research Letters, 2007, 34(4): L04601.
[12] Gay A, Lopez M, Berndt C, et al. Geological controls on focused fluid flow associated with seafloor seeps in the Lower Congo Basin [J]. Marine Geology, 2007, 244(1-4): 68-92. doi: 10.1016/j.margeo.2007.06.003
[13] 肖国林, 郑浚茂. 对南海北部陆坡至东海南部“残留特提斯”的几点认识[J]. 现代地质, 2004, 18(1):103-109 doi: 10.3969/j.issn.1000-8527.2004.01.015
XIAO Guolin, ZHENG Junmao. New opinions about “Residual Tethys” in northern South China Sea slope and southern East China Sea [J]. Geoscience, 2004, 18(1): 103-109. doi: 10.3969/j.issn.1000-8527.2004.01.015
[14] 殷树铮. 全球深水油气资源分布特征研究[D]. 中国石油大学(北京)硕士学位论文, 2018.
YIN Shuzheng. The global distribution of oil and gas resources in deep waters[D]. Master Dissertation of China University of Petroleum (Beijing), 2018.
[15] Stadnitskaia A, Ivanov M K, Poludetkina E N, et al. Sources of hydrocarbon gases in mud volcanoes from the Sorokin Trough, NE Black Sea, based on molecular and carbon isotopic compositions [J]. Marine and Petroleum Geology, 2008, 25(10): 1040-1057. doi: 10.1016/j.marpetgeo.2007.08.001
[16] Römer M, Sahling H, Pape T, et al. Geological control and magnitude of methane ebullition from a high-flux seep area in the Black Sea-the Kerch seep area [J]. Marine Geology, 2012, 319-322: 57-74. doi: 10.1016/j.margeo.2012.07.005
[17] 罗敏, 吴庐山, 陈多福. 海底麻坑研究现状及进展[J]. 海洋地质前沿, 2012, 28(5):33-42
LUO Min, WU Lushan, CHEN Duofu. Research status and progress of seabed pockmarks [J]. Marine Geology Frontiers, 2012, 28(5): 33-42.
[18] 王剑, 杜向东, 张树林, 等. 加蓬海岸盆地海底麻坑的成因机制及对油气勘探的指示[J]. 海洋地质与第四纪地质, 2015, 35(6):87-92
WANG Jian, DU Xiangdong, ZHANG Shulin, et al. Evolution and genesis of seabed pockmarks in Gabon coastal basin [J]. Marine Geology and Quaternary Geology, 2015, 35(6): 87-92.
[19] Lu Y T, Luan X W, Lyu F L, et al. Seismic evidence and formation mechanism of gas hydrates in the Zhongjiannan Basin, Western margin of the South China Sea [J]. Marine and Petroleum Geology, 2017, 84: 274-288. doi: 10.1016/j.marpetgeo.2017.04.005
[20] 李进, 王淑红, 颜文. 海底泥火山及其与油气和天然气水合物的关系[J]. 海洋地质与第四纪地质, 2017, 37(6):204-214
LI Jin, WANG Shuhong, YAN Wen. Seabed mud volcano and its bearing on oil-gas and gas hydrate [J]. Marine Geology and Quaternary Geology, 2017, 37(6): 204-214.
[21] Howarth V, Alves T M. Fluid flow through carbonate platforms as evidence for deep-seated reservoirs in Northwest Australia [J]. Marine Geology, 2016, 380: 17-43. doi: 10.1016/j.margeo.2016.06.011
[22] Spatola D, Micallef A, Sulli A, et al. The Graham Bank (Sicily Channel, central Mediterranean Sea): Seafloor signatures of volcanic and tectonic controls [J]. Geomorphology, 2018, 318: 375-389. doi: 10.1016/j.geomorph.2018.07.006
[23] Hillman J I T, Klaucke I, Bialas J, et al. Gas migration pathways and slope failures in the Danube Fan, Black Sea [J]. Marine and Petroleum Geology, 2018, 92: 1069-1084. doi: 10.1016/j.marpetgeo.2018.03.025
[24] Chen J X, Song H B, Guan Y X, et al. Geological and oceanographic controls on seabed fluid escape structures in the northern Zhongjiannan Basin, South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 38-47. doi: 10.1016/j.jseaes.2018.04.027
[25] Wang J L, Wu S G, Kong X, et al. Subsurface fluid flow at an active cold seep area in the Qiongdongnan Basin, northern South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 17-26. doi: 10.1016/j.jseaes.2018.06.001
[26] 杨树锋, 贾承造, 陈汉林, 等. 特提斯构造带的演化和北缘盆地群形成及塔里木天然气勘探远景[J]. 科学通报, 2002, 47(S1):36-43 doi: 10.1360/csb2002-47-S1-36
YANG Shufeng, JIA Chengzao, TAO Hanlin, et al. The evolution of the Tethyan structural belt and the formation of the northern marginal basin group and the prospects for natural gas exploration in Tarim [J]. Chinese Science Bulletin, 2002, 47(S1): 36-43. doi: 10.1360/csb2002-47-S1-36
[27] 张功成, 米立军, 屈红军, 等. 全球深水盆地群分布格局与油气特征[J]. 石油学报, 2011, 32(3):369-378 doi: 10.7623/syxb201103001
ZHANG Gongcheng, MI Lijun, QU Hongjun, et al. A basic distributional framework of global deepwater basins and hydrocarbon characteristics [J]. Acta Petrolei Sinica, 2011, 32(3): 369-378. doi: 10.7623/syxb201103001
[28] Baniasad A, Rabbani A R, Moallemi S A, et al. Petroleum system analysis of the northwestern part of the Persian Gulf, Iranian sector [J]. Organic Geochemistry, 2017, 107: 69-85. doi: 10.1016/j.orggeochem.2017.03.005
[29] 牛华伟, 郑军, 曾广东. 深水油气勘探开发——进展及启示[J]. 海洋石油, 2012, 32(4):1-6 doi: 10.3969/j.issn.1008-2336.2012.04.001
NIU Huawei, ZHENG Jun, ZENG Guangdong. Progress and enlightenment of oil & gas exploration and development in deep water [J]. Offshore Oil, 2012, 32(4): 1-6. doi: 10.3969/j.issn.1008-2336.2012.04.001
[30] Aali J, Rahimpour-Bonab H, Kamali M R. Geochemistry and origin of the world’s largest gas field from Persian Gulf, Iran [J]. Journal of Petroleum Science and Engineering, 2006, 50(3-4): 161-175. doi: 10.1016/j.petrol.2005.12.004
[31] 贾小乐, 何登发, 童晓光, 等. 全球大油气田分布特征[J]. 中国石油勘探, 2011, 16(3):1-7 doi: 10.3969/j.issn.1672-7703.2011.03.001
JIA Xiaole, HE Dengfa, TONG Xiaoguang, et al. Distribution of Global Giant Oil and Gas Fields [J]. China Petroleum Exploration, 2011, 16(3): 1-7. doi: 10.3969/j.issn.1672-7703.2011.03.001
[32] Alsharhan A S. Petroleum systems in the Middle East [J]. Geological Society, London, Special Publications, 2014, 392(1): 361-408. doi: 10.1144/SP392.19
[33] 康洪全, 贾怀存, 李明刚, 等. 地中海油气富集规律与未来勘探方向[J]. 科技导报, 2016, 34(23):120-126
KANG Hongquan, JIA Huaicun, LI Minggang, et al. The accumulation of hydrocarbon resources and the future explorative direction in Mediterranean [J]. Science & Technology Review, 2016, 34(23): 120-126.
[34] Aal A A, El Barkooky A, Gerrits M, et al. Tectonic evolution of the eastern Mediterranean basin and its significance for hydrocarbon prospectivity in the ultradeepwater of the Nile Delta [J]. The Leading Edge, 2000, 19(10): 1086-1102. doi: 10.1190/1.1438485
[35] Esestime P, Hewitt A, Hodgson N. Zohr-A newborn carbonate play in the Levantine Basin, East-Mediterranean [J]. First Break, 2016, 34(2): 87-93.
[36] 张功成, 屈红军, 赵冲, 等. 全球深水油气勘探40年大发现及未来勘探前景[J]. 天然气地球科学, 2017, 28(10):1447-1477
ZHANG Gongcheng, QU Hongjun, ZHAO Chong, et al. Giant discoveries of oil and gas exploration in global deepwaters in 40 years and the prospect of exploration [J]. Natural Gas Geoscience, 2017, 28(10): 1447-1477.
[37] 刘小兵, 张光亚, 温志新, 等. 东地中海黎凡特盆地构造特征与油气勘探[J]. 石油勘探与开发, 2017, 44(4):540-548
LIU Xiaobing, ZHANG Guangya, WEN Zhixin, et al. Structural characteristics and petroleum exploration of Levant Basin in East Mediterranean [J]. Petroleum Exploration and Development, 2017, 44(4): 540-548.
[38] Murray A, Edwards C, Long D. Canning basin-petroleum systems analysis [J]. ASEG Extended Abstracts, 2018, 2018(1): 1-9.
[39] 张迎朝, 徐新德, 甘军, 等. 琼东南盆地深水大气田地质特征、成藏模式及勘探方向研究[J]. 地质学报, 2017, 91(7):1620-1633 doi: 10.3969/j.issn.0001-5717.2017.07.013
ZHANG Yingzhao, XU Xinde, GAN Jun, et al. Study on the geological characteristics, accumulation model and exploration direction of the giant Deepwater gas field in the Qiongdongnan basin [J]. Acta Geologica Sinica, 2017, 91(7): 1620-1633. doi: 10.3969/j.issn.0001-5717.2017.07.013
[40] Merey S, Longinos S N. Investigation of gas seepages in Thessaloniki mud volcano in the Mediterranean Sea [J]. Journal of Petroleum Science and Engineering, 2018, 168: 81-97. doi: 10.1016/j.petrol.2018.05.014
[41] Ye J L, Wei J G, Liang J Q, et al. Complex gas hydrate system in a gas chimney, South China Sea [J]. Marine and Petroleum Geology, 2019, 104: 29-39. doi: 10.1016/j.marpetgeo.2019.03.023
[42] Römer M, Sahling H, Ferreira C D S, et al. Methane gas emissions of the Black Sea-mapping from the Crimean continental margin to the Kerch Peninsula slope [J]. Geo-Marine Letters, 2020, 40(4): 467-480. doi: 10.1007/s00367-019-00611-0
[43] Zhang G X, Liang J Q, Lu J A, et al. Geological features, controlling factors and potential prospects of the gas hydrate occurrence in the east part of the Pearl River Mouth Basin, South China Sea [J]. Marine and Petroleum Geology, 2015, 67: 356-367. doi: 10.1016/j.marpetgeo.2015.05.021
[44] Hui G G, Li S Z, Guo L L, et al. Source and accumulation of gas hydrate in the northern margin of the South China Sea [J]. Marine and Petroleum Geology, 2016, 69: 127-145. doi: 10.1016/j.marpetgeo.2015.10.009
[45] Fang Y X, Wei J G, Lu H L, et al. Chemical and structural characteristics of gas hydrates from the Haima cold seeps in the Qiongdongnan Basin of the South China Sea [J]. Journal of Asian Earth Sciences, 2019, 182: 103924. doi: 10.1016/j.jseaes.2019.103924
[46] Sun Q L, Wu S G, Cartwright J, et al. Shallow gas and focused fluid flow systems in the Pearl River Mouth Basin, northern South China Sea [J]. Marine Geology, 2012, 315-318: 1-14. doi: 10.1016/j.margeo.2012.05.003
[47] Feng D, Qiu J W, Hu Y, et al. Cold seep systems in the South China Sea: An overview [J]. Journal of Asian Earth Sciences, 2018, 168: 3-16. doi: 10.1016/j.jseaes.2018.09.021
[48] Hovland M, Judd A G. Seabed Pockmarks and Seepages. Impact on Geology, Biology and the Marine Environment[M]. London: Graham & Trotman Ltd., 1988.
[49] Milkov A V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates [J]. Marine Geology, 2000, 167(1-2): 29-42. doi: 10.1016/S0025-3227(00)00022-0
[50] Kopf A J. Significance of mud volcanism [J]. Reviews of Geophysics, 2002, 40(2): 1005. doi: 10.1029/2000RG000093
[51] 黄华谷, 邸鹏飞, 陈多福. 泥火山的全球分布和研究进展[J]. 矿物岩石地球化学通报, 2011, 30(2):189-197 doi: 10.3969/j.issn.1007-2802.2011.02.010
HUANG Huagu, DI Pengfei, CHEN Duofu. Global distribution and research progress of mud volcanoes [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(2): 189-197. doi: 10.3969/j.issn.1007-2802.2011.02.010
[52] Zitter T A C, Huguen C, Woodside J M. Geology of mud volcanoes in the eastern Mediterranean from combined sidescan sonar and submersible surveys [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2005, 52(3): 457-475. doi: 10.1016/j.dsr.2004.10.005
[53] Lykousis V, Alexandri S, Woodside J, et al. Mud volcanoes and gas hydrates in the Anaximander mountains (Eastern Mediterranean Sea) [J]. Marine and Petroleum Geology, 2009, 26(6): 854-872. doi: 10.1016/j.marpetgeo.2008.05.002
[54] Zeppilli D, Mea M, Corinaldesi C, et al. Mud volcanoes in the Mediterranean Sea are hot spots of exclusive meiobenthic species [J]. Progress in Oceanography, 2011, 91(3): 260-272. doi: 10.1016/j.pocean.2011.01.001
[55] Sahling H, Bohrmann G, Artemov Y G, et al. Vodyanitskii mud volcano, Sorokin trough, Black Sea: Geological characterization and quantification of gas bubble streams [J]. Marine and Petroleum Geology, 2009, 26(9): 1799-1811. doi: 10.1016/j.marpetgeo.2009.01.010
[56] Wu T T, Sahling H, Feseker T, et al. Morphology and activity of the Helgoland Mud Volcano in the Sorokin Trough, Northern Black Sea [J]. Marine and Petroleum Geology, 2019, 99: 227-236. doi: 10.1016/j.marpetgeo.2018.10.017
[57] Chen J X, Song H B, Guan Y X, et al. Morphologies, classification and genesis of pockmarks, mud volcanoes and associated fluid escape features in the northern Zhongjiannan Basin, South China Sea [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 122: 106-117. doi: 10.1016/j.dsr2.2015.11.007
[58] Wan Z F, Yao Y J, Chen K W, et al. Characterization of mud volcanoes in the northern Zhongjiannan Basin, western South China Sea [J]. Geological Journal, 2019, 54(1): 177-189. doi: 10.1002/gj.3168
[59] Sauter E J, Muyakshin S I, Charlou J L, et al. Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles [J]. Earth and Planetary Science Letters, 2006, 243(3-4): 354-365. doi: 10.1016/j.jpgl.2006.01.041
[60] Herbin J P, Saint-Germès M, Maslakov N, et al. Oil seeps from the "Boulganack" Mud Volcano in the Kerch Peninsula (Ukraine-Crimea), study of the mud and the gas: inferences for the petroleum potential [J]. Oil & Gas Science and Technology-Revue de l'IFP, 2008, 63(5): 609-628.
[61] 夏鹏, 印萍. 地中海海岭泥火山的构造特征及其油气意义[J]. 海洋地质动态, 2008, 24(4):1-6 doi: 10.3969/j.issn.1009-2722.2008.04.001
XIA Peng, YIN Ping. Structural feature and oil-gas implication of mud volcanoes in the Mediterranean ridge [J]. Marine Geology Letters, 2008, 24(4): 1-6. doi: 10.3969/j.issn.1009-2722.2008.04.001
[62] Suess E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions [J]. International Journal of Earth Sciences, 2014, 103(7): 1889-1916. doi: 10.1007/s00531-014-1010-0
[63] Fernández-Ibáñez F, Soto J I. Pore pressure and stress regime in a thick extensional basin with active shale diapirism (western Mediterranean) [J]. AAPG Bulletin, 2017, 101(2): 233-264. doi: 10.1306/07131615228
[64] Hustoft S, Dugan B, Mienert J. Effects of rapid sedimentation on developing the Nyegga pockmark field: Constraints from hydrological modeling and 3-D seismic data, offshore mid-Norway [J]. Geochemistry, Geophysics, Geosystems, 2009, 10(6): Q06012.
[65] Khlystov O M, Poort J, Mazzini A, et al. Shallow-rooted mud volcanism in Lake Baikal [J]. Marine and Petroleum Geology, 2019, 102: 580-589. doi: 10.1016/j.marpetgeo.2019.01.005
[66] Xing J H, Spiess V. Shallow gas transport and reservoirs in the vicinity of deeply rooted mud volcanoes in the central Black Sea [J]. Marine Geology, 2015, 369: 67-78. doi: 10.1016/j.margeo.2015.08.005
[67] Zhang K, Guan Y X, Song H B, et al. A preliminary study on morphology and genesis of giant and mega pockmarks near Andu Seamount, Nansha Region (South China Sea) [J]. Marine Geophysical Research, 2020, 41: 2. doi: 10.1007/s11001-020-09404-y
[68] Pilcher R, Argent J. Mega-pockmarks and linear pockmark trains on the West African continental margin [J]. Marine Geology, 2007, 244(1-4): 15-32. doi: 10.1016/j.margeo.2007.05.002
[69] Dimitrov L, Woodside J. Deep sea pockmark environments in the eastern Mediterranean [J]. Marine Geology, 2003, 195(1-4): 263-276. doi: 10.1016/S0025-3227(02)00692-8
[70] Moss J L, Cartwright J, Moore R. Evidence for fluid migration following pockmark formation: Examples from the Nile Deep Sea Fan [J]. Marine Geology, 2012, 303-306: 1-13. doi: 10.1016/j.margeo.2012.01.010
[71] Ingrassia M, Martorelli E, Bosman A, et al. The Zannone Giant Pockmark: First evidence of a giant complex seeping structure in shallow-water, central Mediterranean Sea, Italy [J]. Marine Geology, 2015, 363: 38-51. doi: 10.1016/j.margeo.2015.02.005
[72] Sun Q L, Wu S G, Hovland M, et al. The morphologies and genesis of mega-pockmarks near the Xisha Uplift, South China Sea [J]. Marine and Petroleum Geology, 2011, 28(6): 1146-1156. doi: 10.1016/j.marpetgeo.2011.03.003
[73] King L H, Maclean B. Pockmarks on the Scotian shelf [J]. GSA Bulletin, 1970, 81(10): 3141-3148. doi: 10.1130/0016-7606(1970)81[3141:POTSS]2.0.CO;2
[74] Mueller R J. Evidence for the biotic origin of seabed pockmarks on the Australian continental shelf [J]. Marine and Petroleum Geology, 2015, 64: 276-293. doi: 10.1016/j.marpetgeo.2014.12.016
[75] Hovland M, Svensen H, Forsberg C F, et al. Complex pockmarks with carbonate-ridges off mid-Norway: Products of sediment degassing [J]. Marine Geology, 2005, 218(1-4): 191-206. doi: 10.1016/j.margeo.2005.04.005
[76] Gay A, Lopez M, Cochonat P, et al. Isolated seafloor pockmarks linked to BSRs, fluid chimneys, polygonal faults and stacked Oligocene-Miocene turbiditic palaeochannels in the Lower Congo Basin [J]. Marine Geology, 2006, 226(1-2): 25-40. doi: 10.1016/j.margeo.2005.09.018
[77] Andreassen K, Nilssen E G, Ødegaard C M. Analysis of shallow gas and fluid migration within the Plio-Pleistocene sedimentary succession of the SW Barents Sea continental margin using 3D seismic data [J]. Geo-Marine Letters, 2007, 27(2-4): 155-171. doi: 10.1007/s00367-007-0071-5
[78] Pennino V, Sulli A, Caracausi A, et al. Fluid escape structures in the north Sicily continental margin [J]. Marine and Petroleum Geology, 2014, 55: 202-213. doi: 10.1016/j.marpetgeo.2014.02.007
[79] 陈多福, 陈先沛, 陈光谦. 冷泉流体沉积碳酸盐岩的地质地球化学特征[J]. 沉积学报, 2002, 20(1):34-40 doi: 10.3969/j.issn.1000-0550.2002.01.007
CHEN Duofu, CHEN Xianpei, CHEN Guangqian. Geology and geochemistry of cold seepage and venting-related carbonates [J]. Acta Sedimentologica Sinica, 2002, 20(1): 34-40. doi: 10.3969/j.issn.1000-0550.2002.01.007
[80] 陈林, 宋海斌. 海底天然气渗漏的地球物理特征及识别方法[J]. 地球物理学进展, 2005, 20(4):1067-1073 doi: 10.3969/j.issn.1004-2903.2005.04.030
CHEN Lin, SONG Haibin. Geophysical features and identification of natural gas seepage in marine environment [J]. Progress in Geophysics, 2005, 20(4): 1067-1073. doi: 10.3969/j.issn.1004-2903.2005.04.030
[81] 陈忠, 杨华平, 黄奇瑜, 等. 海底甲烷冷泉特征与冷泉生态系统的群落结构[J]. 热带海洋学报, 2007, 26(6):73-82 doi: 10.3969/j.issn.1009-5470.2007.06.013
CHEN Zhong, YANG Huaping, HUANG Chiyue, et al. Characteristics of cold seeps and structures of chemoauto-synthesis-based communities in seep sediments [J]. Journal of Tropical Oceanography, 2007, 26(6): 73-82. doi: 10.3969/j.issn.1009-5470.2007.06.013
[82] Levin L A. Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes [J]. Oceanography and Marine Biology, 2005, 43: 1-46.
[83] Bayon G, Loncke L, Dupré S, et al. Multi-disciplinary investigation of fluid seepage on an unstable margin: The case of the Central Nile deep sea fan [J]. Marine Geology, 2009, 261(1-4): 92-104. doi: 10.1016/j.margeo.2008.10.008
[84] Huang B J, Xiao X M, Li X S, et al. Spatial distribution and geochemistry of the nearshore gas seepages and their implications to natural gas migration in the Yinggehai Basin, offshore South China Sea [J]. Marine and Petroleum Geology, 2009, 26(6): 928-935. doi: 10.1016/j.marpetgeo.2008.04.009
[85] Smith A J, Flemings P B, Fulton P M. Hydrocarbon flux from natural deepwater Gulf of Mexico vents [J]. Earth and Planetary Science Letters, 2014, 395: 241-253. doi: 10.1016/j.jpgl.2014.03.055
[86] Römer M, Sahling H, Pape T, et al. Methane fluxes and carbonate deposits at a cold seep area of the Central Nile Deep Sea Fan, Eastern Mediterranean Sea [J]. Marine Geology, 2014, 347: 27-42. doi: 10.1016/j.margeo.2013.10.011
[87] Naudts L, Greinert J, Artemov Y, et al. Geological and morphological setting of 2778 methane seeps in the Dnepr paleo-delta, northwestern Black Sea [J]. Marine Geology, 2006, 227(3-4): 177-199. doi: 10.1016/j.margeo.2005.10.005
[88] Von Deimling J S, Rehder G, Greinert J, et al. Quantification of seep-related methane gas emissions at Tommeliten, North Sea [J]. Continental Shelf Research, 2011, 31(7-8): 867-878. doi: 10.1016/j.csr.2011.02.012
[89] Naudts L, Greinert J, Poort J, et al. Active venting sites on the gas-hydrate-bearing Hikurangi Margin, off New Zealand: Diffusive-versus bubble-released methane [J]. Marine Geology, 2010, 272(1-4): 233-250. doi: 10.1016/j.margeo.2009.08.002
[90] Torres M E, McManus J, Hammond D E, et al. Fluid and chemical fluxes in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR, I: Hydrological provinces [J]. Earth and Planetary Science Letters, 2002, 201(3-4): 525-540. doi: 10.1016/S0012-821X(02)00733-1
[91] 樊栓狮, 关进安, 梁德青, 等. 天然气水合物动态成藏理论[J]. 天然气地球科学, 2007, 18(6):819-826 doi: 10.3969/j.issn.1672-1926.2007.06.009
FAN Shuanshi, GUAN Jinan, LIANG Deqing, et al. A dynamic theory on natural gas hydrate reservoir formation [J]. Natural Gas Geoscience, 2007, 18(6): 819-826. doi: 10.3969/j.issn.1672-1926.2007.06.009
[92] 李灿苹, 刘学伟, 赵罗臣. 天然气水合物冷泉和气泡羽状流研究进展[J]. 地球物理学进展, 2013, 28(2):1048-1056 doi: 10.6038/pg20130259
LI Canping, LIU Xuewei, ZHAO Luochen. Progress on cold seeps and bubble plumes produced by gas hydrate [J]. Progress in Geophysics, 2013, 28(2): 1048-1056. doi: 10.6038/pg20130259
[93] 李灿苹, 尤加春, 朱文娟. 气泡羽状流的识别及其与资源环境相关性分析[J]. 地球物理学进展, 2016, 31(6):2747-2755 doi: 10.6038/pg20160653
LI Canping, YOU Jiachun, ZHU Wenjuan. Identification of bubble plumes and analysis of its correlation with resource environment [J]. Progress in Geophysics, 2016, 31(6): 2747-2755. doi: 10.6038/pg20160653
[94] 赵静, 梁前勇, 尉建功, 等. 南海北部陆坡西部海域“海马”冷泉甲烷渗漏及其海底表征[J]. 地球化学, 2020, 49(1):108-118
ZHAO Jing, LIANG Qianyong, WEI Jiangong, et al. Seafloor geology and geochemistry characteristic of methane seepage of the “Haima” cold seep, northwestern slope of the South China Sea [J]. Geochimica, 2020, 49(1): 108-118.
[95] 陈忠, 杨华平, 黄奇瑜, 等. 南海东沙西南海域冷泉碳酸盐岩特征及其意义[J]. 现代地质, 2008, 22(3):382-389 doi: 10.3969/j.issn.1000-8527.2008.03.006
CHEN Zhong, YANG Huaping, HUANG Chiyue, et al. Diagenetic Environment and implication of seep carbonate precipitations from the southwestern Dongsha area, South China Sea [J]. Geoscience, 2008, 22(3): 382-389. doi: 10.3969/j.issn.1000-8527.2008.03.006
[96] Omoregie E O, Niemann H, Mastalerz V, et al. Microbial methane oxidation and sulfate reduction at cold seeps of the deep Eastern Mediterranean Sea [J]. Marine Geology, 2009, 261(1-4): 114-127. doi: 10.1016/j.margeo.2009.02.001
[97] Loncke L, Mascle J, Parties F S. Mud volcanoes, gas chimneys, pockmarks and mounds in the Nile deep-sea fan (Eastern Mediterranean): geophysical evidences [J]. Marine and Petroleum Geology, 2004, 21(6): 669-689. doi: 10.1016/j.marpetgeo.2004.02.004
[98] Cita M B, Ryan W B F, Paggi L. Prometheus mud-breccia: an example of shale diapirism in the western Mediterranean ridge [J]. Annales Geologiques des Pays Helleniques, 1981, 30: 543-570.
[99] Camerlenghi A, Pini G A. Mud volcanoes, olistostromes and Argille scagliose in the Mediterranean region [J]. Sedimentology, 2009, 56(1): 319-365. doi: 10.1111/j.1365-3091.2008.01016.x
[100] Sautkin A, Talukder A R, Comas M C, et al. Mud volcanoes in the Alboran Sea: Evidence from micropaleontological and geophysical data [J]. Marine Geology, 2003, 195(1-4): 237-261. doi: 10.1016/S0025-3227(02)00691-6
[101] Holland C W, Etiope G, Milkov A V, et al. Mud volcanoes discovered offshore Sicily [J]. Marine Geology, 2003, 199(1-2): 1-6. doi: 10.1016/S0025-3227(03)00125-7
[102] Savini A, Malinverno E, Etiope G, et al. Shallow seep-related seafloor features along the Malta plateau (Sicily channel-Mediterranean Sea): Morphologies and geo-environmental control of their distribution [J]. Marine and Petroleum Geology, 2009, 26(9): 1831-1848. doi: 10.1016/j.marpetgeo.2009.04.003
[103] Merey Ş, Longinos S N. Does the Mediterranean Sea have potential for producing gas hydrates? [J]. Journal of Natural Gas Science and Engineering, 2018, 55: 113-134. doi: 10.1016/j.jngse.2018.04.029
[104] Werne J P, Haese R R, Zitter T, et al. Life at cold seeps: a synthesis of biogeochemical and ecological data from Kazan mud volcano, eastern Mediterranean Sea [J]. Chemical Geology, 2004, 205(3-4): 367-390. doi: 10.1016/j.chemgeo.2003.12.031
[105] Eruteya O E, Reshef M, Ben-Avraham Z, et al. Gas escape along the Palmachim disturbance in the Levant Basin, offshore Israel [J]. Marine and Petroleum Geology, 2018, 92: 868-879. doi: 10.1016/j.marpetgeo.2018.01.007
[106] Gontharet S, Pierre C, Blanc-Valleron M M, et al. Nature and origin of diagenetic carbonate crusts and concretions from mud volcanoes and pockmarks of the Nile deep-sea fan (eastern Mediterranean Sea) [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(11-13): 1292-1311. doi: 10.1016/j.dsr2.2007.04.007
[107] Jolivet L, Faccenna C, Piromallo C. From mantle to crust: Stretching the Mediterranean [J]. Earth and Planetary Science Letters, 2009, 285(1-2): 198-209. doi: 10.1016/j.jpgl.2009.06.017
[108] Tari E, Sahin M, Barka A, et al. Active tectonics of the Black Sea with GPS [J]. Earth, Planets and Space, 2000, 52(10): 747-751. doi: 10.1186/BF03352276
[109] Klaucke I, Sahling H, Weinrebe W, et al. Acoustic investigation of cold seeps offshore Georgia, eastern Black Sea [J]. Marine Geology, 2006, 231(1-4): 51-67. doi: 10.1016/j.margeo.2006.05.011
[110] Krastel S, Spiess V, Ivanov M, et al. Acoustic investigations of mud volcanoes in the Sorokin Trough, Black Sea [J]. Geo-Marine Letters, 2003, 23(3-4): 230-238. doi: 10.1007/s00367-003-0143-0
[111] Rangin C, Bader A G, Pascal G, et al. Deep structure of the Mid Black Sea High (offshore Turkey) imaged by multi-channel seismic survey (BLACKSIS cruise) [J]. Marine Geology, 2002, 182(3-4): 265-278. doi: 10.1016/S0025-3227(01)00236-5
[112] Dondurur D, Küçük H M, Çifçi G. Quaternary mass wasting on the western Black Sea margin, offshore of Amasra [J]. Global and Planetary Change, 2013, 103: 248-260. doi: 10.1016/j.gloplacha.2012.05.009
[113] Bahr A, Pape T, Abegg F, et al. Authigenic carbonates from the eastern Black Sea as an archive for shallow gas hydrate dynamics-Results from the combination of CT imaging with mineralogical and stable isotope analyses [J]. Marine and Petroleum Geology, 2010, 27(9): 1819-1829. doi: 10.1016/j.marpetgeo.2010.08.005
[114] Greinert J, Artemov Y, Egorov V, et al. 1300-m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea: Hydroacoustic characteristics and temporal variability [J]. Earth and Planetary Science Letters, 2006, 244(1-2): 1-15. doi: 10.1016/j.jpgl.2006.02.011
[115] Çifçi G, Dondurur D, Ergün M. Deep and shallow structures of large pockmarks in the Turkish shelf, Eastern Black Sea [J]. Geo-Marine Letters, 2003, 23(3-4): 311-322. doi: 10.1007/s00367-003-0138-x
[116] Meisner A, Krylov O, Nemčok M. Development and structural architecture of the Eastern Black Sea [J]. The Leading Edge, 2009, 28(9): 1046-1055. doi: 10.1190/1.3236374
[117] Mashhadi Z S, Rabbani A R, Kamali M R. Geochemical characteristics and hydrocarbon generation modeling of the Kazhdumi (Early Cretaceous), Gurpi (Late Cretaceous) and Pabdeh (Paleogene) formations, Iranian sector of the Persian Gulf [J]. Marine and Petroleum Geology, 2015, 66: 978-997. doi: 10.1016/j.marpetgeo.2015.08.008
[118] Kordi M. Sedimentary basin analysis of the Neo-Tethys and its hydrocarbon systems in the Southern Zagros fold-thrust belt and foreland basin [J]. Earth-Science Reviews, 2019, 191: 1-11. doi: 10.1016/j.earscirev.2019.02.005
[119] Al-Husseini M I. Origin of the arabian plate structures: amar collision and najd rift [J]. Geoarabia-Manama, 2000, 5(4): 527-542.
[120] Gundogar A S, Ross C M, Akin S, et al. Multiscale pore structure characterization of middle east carbonates [J]. Journal of Petroleum Science and Engineering, 2016, 146: 570-583. doi: 10.1016/j.petrol.2016.07.018
[121] Hosseinyar G, Moussavi-Harami R, Behbahani R. Shallow gas accumulations and seepage in the sediments of the Northeast Persian Gulf [J]. Acta Geophysica, 2014, 62(6): 1373-1386. doi: 10.2478/s11600-014-0236-3
[122] Uchupi E, Swift S A, Ross D A. Gas venting and late Quaternary sedimentation in the Persian (Arabian) Gulf [J]. Marine Geology, 1996, 129(3-4): 237-269. doi: 10.1016/0025-3227(96)83347-0
[123] Wang P C, Li S Z, Suo Y H, et al. Plate tectonic control on the formation and tectonic migration of Cenozoic basins in northern margin of the South China Sea [J]. Geoscience Frontiers, 2020, 11(4): 1231-1251. doi: 10.1016/j.gsf.2019.10.009
[124] Di P F, Feng D, Chen D F. In-situ and on-line measurement of gas flux at a hydrocarbon seep from the northern South China Sea [J]. Continental Shelf Research, 2014, 81: 80-87. doi: 10.1016/j.csr.2014.04.001
[125] Sun Q L, Wu S G, Cartwright J, et al. Focused fluid flow systems of the Zhongjiannan Basin and Guangle Uplift, South China Sea [J]. Basin Research, 2013, 25(1): 97-111. doi: 10.1111/j.1365-2117.2012.00551.x
[126] 张功成, 谢晓军, 王万银, 等. 中国南海含油气盆地构造类型及勘探潜力[J]. 石油学报, 2013, 34(4):611-627 doi: 10.7623/syxb201304001
ZHANG Gongcheng, XIE Xiaojun, WANG Wanyin, et al. Tectonic types of petroliferous basins and its exploration potential in the South China Sea [J]. Acta Petrolei Sinica, 2013, 34(4): 611-627. doi: 10.7623/syxb201304001
[127] 何家雄, 张伟, 卢振权, 等. 南海北部大陆边缘主要盆地含油气系统及油气有利勘探方向[J]. 天然气地球科学, 2016, 27(6):943-959 doi: 10.11764/j.issn.1672-1926.2016.06.0943
HE Jiaxiong, ZHANG Wei, LU Zhenquan, et al. Petroleum system and favorable exploration directions of the main marginal basins in the northern South China Sea [J]. Natural Gas Geoscience, 2016, 27(6): 943-959. doi: 10.11764/j.issn.1672-1926.2016.06.0943
[128] 杨力, 刘斌, 徐梦婕, 等. 南海北部琼东南海域活动冷泉特征及形成模式[J]. 地球物理学报, 2018, 61(7):2905-2914 doi: 10.6038/cjg2018L0374
YANG Li, LIU Bin, XU Mengjie, et al. Characteristics of active cold seepages in Qiongdongnan Sea Area of the northern South China Sea [J]. Chinese Journal of Geophysics, 2018, 61(7): 2905-2914. doi: 10.6038/cjg2018L0374
[129] He J X, Zhang W, Lu Z Q. Seepage system of oil-gas and its exploration in Yinggehai Basin located at northwest of South China Sea [J]. Journal of Natural Gas Geoscience, 2017, 2(1): 29-41. doi: 10.1016/j.jnggs.2017.01.001
[130] Zheng H, Sun X M, Wang P J, et al. Mesozoic tectonic evolution of the Proto-South China Sea: A perspective from radiolarian paleobiogeography [J]. Journal of Asian Earth Sciences, 2019, 179: 37-55. doi: 10.1016/j.jseaes.2019.04.009
[131] Paganoni M, King J J, Foschi M, et al. A natural gas hydrate system on the Exmouth Plateau (NW shelf of Australia) sourced by thermogenic hydrocarbon leakage [J]. Marine and Petroleum Geology, 2019, 99: 370-392. doi: 10.1016/j.marpetgeo.2018.10.029
[132] Hillis R R, Sandiford M, Reynolds S D, et al. Present-day stresses, seismicity and Neogene-to-Recent tectonics of Australia’s ‘passive’ margins: intraplate deformation controlled by plate boundary forces [J]. Geological Society, London, Special Publications, 2008, 306(1): 71-90. doi: 10.1144/SP306.3
[133] Wilson M E J. Equatorial carbonates: an earth systems approach [J]. Sedimentology, 2012, 59(1): 1-31. doi: 10.1111/j.1365-3091.2011.01293.x
[134] Rollet N, Logan G A, Ryan G, et al. Shallow gas and fluid migration in the northern Arafura Sea (offshore Northern Australia) [J]. Marine and Petroleum Geology, 2009, 26(1): 129-147. doi: 10.1016/j.marpetgeo.2007.07.010
[135] Rollet N, Logan G A, Kennard J M, et al. Characterisation and correlation of active hydrocarbon seepage using geophysical data sets: An example from the tropical, carbonate Yampi Shelf, Northwest Australia [J]. Marine and Petroleum Geology, 2006, 23(2): 145-164. doi: 10.1016/j.marpetgeo.2005.10.002
[136] Wenau S, Spiess V, Pape T, et al. Cold seeps at the salt front in the Lower Congo Basin II: The impact of spatial and temporal evolution of salt-tectonics on hydrocarbon seepage [J]. Marine and Petroleum Geology, 2015, 67: 880-893. doi: 10.1016/j.marpetgeo.2014.09.021
[137] Logan G A, Jones A T, Kennard J M, et al. Australian offshore natural hydrocarbon seepage studies, a review and re-evaluation [J]. Marine and Petroleum Geology, 2010, 27(1): 26-45. doi: 10.1016/j.marpetgeo.2009.07.002
[138] Van Tuyl J, Alves T M, Cherns L. Geometric and depositional responses of carbonate build-ups to Miocene sea level and regional tectonics offshore northwest Australia [J]. Marine and Petroleum Geology, 2018, 94: 144-165. doi: 10.1016/j.marpetgeo.2018.02.034
[139] Londoño J, Lorenzo J M. Geodynamics of continental plate collision during late tertiary foreland basin evolution in the Timor Sea: constraints from foreland sequences, elastic flexure and normal faulting [J]. Tectonophysics, 2004, 392(1-4): 37-54. doi: 10.1016/j.tecto.2004.04.007
[140] Keep M, Harrowfield M. Elastic flexure and distributed deformation along Australia's North West Shelf: Neogene tectonics of the Bonaparte and Browse basins [J]. Geological Society, London, Special Publications, 2008, 306(1): 185-200. doi: 10.1144/SP306.9
[141] Seebeck H, Tenthorey E, Consoli C, et al. Polygonal faulting and seal integrity in the Bonaparte Basin, Australia [J]. Marine and Petroleum Geology, 2015, 60: 120-135. doi: 10.1016/j.marpetgeo.2014.10.012
[142] 张功成, 屈红军, 张凤廉, 等. 全球深水油气重大新发现及启示[J]. 石油学报, 2019, 40(1):1-34 doi: 10.7623/syxb201901001
ZHANG Gongcheng, QU Hongjun, ZHANG Fenglian, et al. Major new discoveries of oil and gas in global deepwaters and enlightenment [J]. Acta Petrolei Sinica, 2019, 40(1): 1-34. doi: 10.7623/syxb201901001
[143] Roy K O L, Sibuet M, Fiala-Médioni A, et al. Cold seep communities in the deep eastern Mediterranean Sea: composition, symbiosis and spatial distribution on mud volcanoes [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2004, 51(12): 1915-1936. doi: 10.1016/j.dsr.2004.07.004
[144] Courgeon S, Bourget J, Jorry S J. A Pliocene-Quaternary analogue for ancient epeiric carbonate settings: The Malita intrashelf basin (Bonaparte Basin, northwest Australia) [J]. AAPG Bulletin, 2016, 100(4): 565-595. doi: 10.1306/02011613196