1991年皮纳图博火山灰沉降物对南海海洋环境及硅藻生长的影响

夏志颖, 冉莉华, MartinG Wiesner, 梁宇钊, 任健, 李冬玲. 1991年皮纳图博火山灰沉降物对南海海洋环境及硅藻生长的影响[J]. 海洋地质与第四纪地质, 2022, 42(2): 28-35. doi: 10.16562/j.cnki.0256-1492.2021051402
引用本文: 夏志颖, 冉莉华, MartinG Wiesner, 梁宇钊, 任健, 李冬玲. 1991年皮纳图博火山灰沉降物对南海海洋环境及硅藻生长的影响[J]. 海洋地质与第四纪地质, 2022, 42(2): 28-35. doi: 10.16562/j.cnki.0256-1492.2021051402
XIA Zhiying, RAN Lihua, MARTIN G Wiesner, LIANG Yuzhao, REN Jian, LI Dongling. Impact of ash precipitation on marine environments and diatoms: A case of 1991 from the Pinatubo volcano in the South China Sea[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 28-35. doi: 10.16562/j.cnki.0256-1492.2021051402
Citation: XIA Zhiying, RAN Lihua, MARTIN G Wiesner, LIANG Yuzhao, REN Jian, LI Dongling. Impact of ash precipitation on marine environments and diatoms: A case of 1991 from the Pinatubo volcano in the South China Sea[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 28-35. doi: 10.16562/j.cnki.0256-1492.2021051402

1991年皮纳图博火山灰沉降物对南海海洋环境及硅藻生长的影响

  • 基金项目: 国家重点基础研究发展计划项目“海洋微生物碳泵与生物泵的互作过程与储碳机制”(2016YFA0601101);南方海洋科学与工程广东省实验室(珠海)创新团队建设科研项目(SML311019006/311020006)
详细信息
    作者简介: 夏志颖(1997—),男,硕士研究生,从事海洋生物地球化学研究,E-mail:diatomxzy@163.com
    通讯作者: 冉莉华(1982—),女,博士,副研究员,从事海洋微体古生物学研究,E-mail:lihuaran@sio.org.cn
  • 中图分类号: P76

Impact of ash precipitation on marine environments and diatoms: A case of 1991 from the Pinatubo volcano in the South China Sea

More Information
  • 通过对菲律宾皮纳图博(Pinatubo)火山1991年6月爆发前后南海表层沉积物及沉降颗粒物中的硅藻丰度及群落组成进行分析,试图揭示皮纳图博火山爆发对南海硅藻生长的影响。研究发现,火山爆发后南海沉积物中硅藻相对丰度显著减少,原因主要在于皮纳图博火山喷发物大量沉积于南海深海,显著提高了南海沉积速率,同时稀释了沉积物中生源物质的含量。进一步对火山爆发前后同期南海中部深海沉降颗粒物开展研究发现,火山爆发次年同期沉降颗粒物总通量以及生物硅通量明显增加,而硅藻及其他硅质生物相对丰度和通量均显著降低,其中硅藻相对丰度从2.20×108 枚·g−1降到5.48×107 枚·g−1,通量从2.90×107 枚·m−2·d−1降到8.57×106 枚·m−2·d−1。1年后的南海中部深海沉降颗粒物中仍然有大量火山玻璃的存在,可能是导致湿化学法测量生物硅含量明显增加的主要原因,而硅藻乃至所有硅质生物通量及丰度的显著降低可能与火山灰沉降的负面影响有关,也可能与1991年厄尔尼诺对南海海洋环境的影响有关。总之,1991年6月皮纳图博火山爆发后南海的沉积物硅藻及沉降颗粒物硅藻丰度都出现了显著降低,但具体的环境调控机制仍有待进一步深入研究。

  • 加载中
  • 图 1  皮纳图博火山灰沉积范围及研究站位示意图

    Figure 1. 

    图 2  研究站位沉积剖面及火山爆发前后沉积硅藻相对丰度

    Figure 2. 

    图 3  火山爆发前(1991年5月)和爆发后(1992年5月)南海中部SCS-N站沉降颗粒物总通量及主要成分通量、硅质生物通量及硅质生物丰度变化

    Figure 3. 

    图 4  皮纳图博火山爆发前后沉降颗粒物中硅藻属种百分含量的变化

    Figure 4. 

    图 5  1991年5月(左)、1991年7月(中)、1992年5月(右)南海中部沉降颗粒物扫描电子显微照片

    Figure 5. 

    表 1  本研究所采用的箱式沉积物及沉积物捕获器站位信息

    Table 1.  Basic information of box core and sediment trap mooring stations

    站位号纬度经度水深/m
    1822514°23.0′119°36.0′2 511
    1822614°35.1'119°45.1'2 510
    1822714°45.8'119°38.4'2 576
    1822814°54.7'119°32.3'2 513
    1823415°33.9'118°10.8'3 686
    1823515°05.3'118°26.7'3 943
    SCS-C14°60.0′115°10.0′3 730
    下载: 导出CSV
  • [1]

    鄢全树, 石学法, 刘季花, 等. 中沙群岛近海表层沉积物中的火山灰及其对构造环境的响应[J]. 海洋地质与第四纪地质, 2007, 27(4):9-16

    YAN Quanshu, SHI Xuefa, LIU Jihua. Characteristics of volcanic ash in surface sediments around Zhongsha islands: response to tectonic setting in the north margin of the South China Sea [J]. Marine Geology & Quaternary Geology, 2007, 27(4): 9-16.

    [2]

    Lowe D J, Alloway B. Tephrochronology[M]//Jack R W, Thompson J W. Encyclopedia of Scientific Dating Methods. Dordrecht: Springer, 2015: 783-799.

    [3]

    Frogner P, Gislason S R, Óskarsson N. Fertilization potential of volcanic ash in ocean surface waters [J]. Journal of Conference Abstracts, 2000, 5(2): 415.

    [4]

    Lin I I, Hu C M, Lu Y H, et al. Fertilization potential of volcanic dust in the low-nutrient low-chlorophyll western North Pacific subtropical gyre: Satellite evidence and laboratory study [J]. Global Biogeochemical Cycles, 2011, 25(1): GB1006.

    [5]

    McKinley G A, Fay A R, Eddebbar Y A, et al. External forcing explains recent decadal variability of the ocean carbon sink [J]. AGU Advances, 2020, 1(2): e2019AV000149.

    [6]

    Song B, Buckner C T, Hembury D J, et al. Impact of volcanic ash on anammox communities in deep sea sediments [J]. Environmental Microbiology Reports, 2014, 6(2): 159-166. doi: 10.1111/1758-2229.12137

    [7]

    Tomas C R. Identifying marine phytoplankton[M]. Amsterdam: Elsevier, 1997.

    [8]

    王开发, 蒋辉, 冯文科. 南海深海盆地硅藻组合的发现及其地质意义[J]. 海洋学报, 1985, 7(5):590-597

    WANG Kaifa, JIANG Hui, FENG Wenke. Discovery of diatom assemblages in deep sea basins of South China Sea and its geological significance [J]. Acta Oceanogica Sinica, 1985, 7(5): 590-597.

    [9]

    孙美琴, 蓝东兆, 付萍, 等. 南海表层沉积硅藻的分布及其与环境因子的关系[J]. 应用海洋学学报, 2013, 32(1):46-51

    SUN Meiqin, LAN Dongzhao, FU Ping, et al. Diatom distribution in surface sediment and its relation with environment factors in the South China Sea [J]. Journal of Applied Oceanography, 2013, 32(1): 46-51.

    [10]

    Wiesner M G, Wang Y B, Zheng L F. Fallout of volcanic ash to the deep South China Sea induced by the 1991 eruption of Mount Pinatubo (Philippines) [J]. Geology, 1995, 23(10): 885-888. doi: 10.1130/0091-7613(1995)023<0885:FOVATT>2.3.CO;2

    [11]

    Wiesner M G, Wetzel A, Catane S G, et al. Grain size, areal thickness distribution and controls on sedimentation of the 1991 Mount Pinatubo tephra layer in the South China Sea [J]. Bulletin of Volcanology, 2004, 66(3): 226-242. doi: 10.1007/s00445-003-0306-x

    [12]

    Newhall C G, Self S. The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism [J]. Journal of Geophysical Research:Oceans, 1982, 87(C2): 1231-1238. doi: 10.1029/JC087iC02p01231

    [13]

    肖栋, 李建平. 皮纳图博火山爆发对20世纪90年代初平流层年代际变冷突变的影响机理[J]. 科学通报, 2011, 56(8):772-780 doi: 10.1007/s11434-010-4287-9

    XIAO Dong, LI Jianping. Mechanism of stratospheric decadal abrupt cooling in the Early 1990s as influenced by the Pinatubo eruption [J]. Chinese Science Bulletin, 2011, 56(8): 772-780. doi: 10.1007/s11434-010-4287-9

    [14]

    Chu P C, Edmons N L, Fan C W. Dynamical mechanisms for the South China Sea seasonal circulation and thermohaline variabilities [J]. Journal of Physical Oceanography, 1999, 29(11): 2971-2989. doi: 10.1175/1520-0485(1999)029<2971:DMFTSC>2.0.CO;2

    [15]

    Hu J Y, Kawamura H, Hong H S, et al. A review on the currents in the South China Sea: seasonal circulation, South China Sea warm current and Kuroshio intrusion [J]. Journal of Oceanography, 2000, 56(6): 607-624. doi: 10.1023/A:1011117531252

    [16]

    Wyrtki K. Physical oceanography of the Southeast Asian waters[R]. University of California, 1961.

    [17]

    黄玥, 冉莉华, 蒋辉. 南海北部陆坡晚更新世末期硅藻及其古环境意义[J]. 海洋地质与第四纪地质, 2006, 26(4):7-13

    HUANG Yue, RAN Yihua, JIANG Hui. Diatom from the south china sea during the latest pleistocene and their paleoenvironmental significance [J]. Marine Geology & Quaternary Geology, 2006, 26(4): 7-13.

    [18]

    Wong G T F, Ku T L, Mulholland M, et al. The SouthEast Asian time-series study (SEATS) and the biogeochemistry of the South China Sea—an overview [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2007, 54(14-15): 1434-1447. doi: 10.1016/j.dsr2.2007.05.012

    [19]

    Li H L, Wiesner M G, Chen J F, et al. Long-term variation of mesopelagic biogenic flux in the central South China Sea: Impact of monsoonal seasonality and mesoscale eddy [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2017, 126: 62-72. doi: 10.1016/j.dsr.2017.05.012

    [20]

    Mortlock R A, Froelich P N. A simple method for the rapid determination of biogenic opal in pelagic marine sediments [J]. Deep Sea Research Part A. Oceanographic Research Papers, 1989, 36(9): 1415-1426. doi: 10.1016/0198-0149(89)90092-7

    [21]

    Ran L H, Chen J F, Wiesner M G, et al. Variability in the abundance and species composition of diatoms in sinking particles in the northern South China Sea: Results from time-series moored sediment traps [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2015, 122: 15-24. doi: 10.1016/j.dsr2.2015.07.004

    [22]

    DeMaster D J. The supply and accumulation of silica in the marine environment [J]. Geochimica et Cosmochimica Acta, 1981, 45(10): 1715-1732. doi: 10.1016/0016-7037(81)90006-5

    [23]

    Shiga K, Koizumi I. Latest Quaternary oceanographic changes in the Okhotsk Sea based on diatom records [J]. Marine Micropaleontology, 1999, 38(2): 91-117. doi: 10.1016/S0377-8398(99)00041-9

    [24]

    Smol J P, Stoermer E F. The Diatoms: Applications for the Environmental and Earth Sciences[M]. Cambridge: Cambridge University Press, 2010.

    [25]

    Kuehl S A, Fuglseth T J, Thunell R C. Sediment mixing and accumulation rates in the Sulu and South China Seas: implications for organic carbon preservation in deep-sea environments [J]. Marine Geology, 1993, 111(1-2): 15-35. doi: 10.1016/0025-3227(93)90186-Y

    [26]

    Li C F, Lin J, Kulhanek D K, et al. Opening of the South China Sea and its implications for Southeast Asian tectonics, climates, and deep mantle processes since the Late Mesozoic[R]. Integrated Ocean Drilling Program: Preliminary Reports, 2014: 1.

    [27]

    Browning T J, Bouman H A, Henderson G M, et al. Strong responses of Southern Ocean phytoplankton communities to volcanic ash [J]. Geophysical Research Letters, 2014, 41(8): 2851-2857. doi: 10.1002/2014GL059364

    [28]

    Bryan S E, Cook A G, Evans J P, et al. Rapid, long-distance dispersal by pumice rafting [J]. PLoS One, 2012, 7(7): e40583. doi: 10.1371/journal.pone.0040583

    [29]

    Hoffmann L J, Breitbarth E, Ardelan M V, et al. Influence of trace metal release from volcanic ash on growth of Thalassiosira pseudonana and Emiliania huxleyi [J]. Marine Chemistry, 2012, 132-133: 28-33. doi: 10.1016/j.marchem.2012.02.003

    [30]

    Mélançon J, Levasseur M, Lizotte M, et al. Early response of the northeast subarctic Pacific plankton assemblage to volcanic ash fertilization [J]. Limnology and Oceanography, 2014, 59(1): 55-67. doi: 10.4319/lo.2014.59.1.0055

    [31]

    葛祥英. 四川盆地东部奥陶—志留纪交替时期事件沉积与有机质富集[D]. 中国地质大学(北京)博士学位论文, 2020

    GE Xiangying. The events across the Ordovician-Silurian transition and the organic enrichment of black shales in the east of Sichuan Basin[D]. Master Dissertation of China University of Geosciences (Beijing).

    [32]

    Flaathen T K, Gislason S R. The effect of volcanic eruptions on the chemistry of surface waters: The 1991 and 2000 eruptions of Mt. Hekla, Iceland [J]. Journal of Volcanology and Geothermal Research, 2007, 164(4): 293-316. doi: 10.1016/j.jvolgeores.2007.05.014

    [33]

    Kockum P C F, Herbert R B, Gislason S R. A diverse ecosystem response to volcanic aerosols [J]. Chemical Geology, 2006, 231(1-2): 57-66. doi: 10.1016/j.chemgeo.2005.12.008

    [34]

    Jones M T, Gislason S R. Rapid releases of metal salts and nutrients following the deposition of volcanic ash into aqueous environments [J]. Geochimica et Cosmochimica Acta, 2008, 72(15): 3661-3680. doi: 10.1016/j.gca.2008.05.030

    [35]

    Voskresenskaya E N, Zelenko A A, Polonsky A B. El Niño in 1991-1992 and its manifestations in the tropical Atlantic [J]. Physical Oceanography, 1993, 4(6): 487-495. doi: 10.1007/BF02197410

    [36]

    Wang C Z, Wang W Q, Wang D X, et al. Interannual variability of the South China Sea associated with El Niño [J]. Journal of Geophysical Research:Oceans, 2006, 111(C3): C03023.

    [37]

    Zhao H, Tang D L. Effect of 1998 El Niño on the distribution of phytoplankton in the South China Sea [J]. Journal of Geophysical Research:Oceans, 2006, 112(C2): C02017.

  • 加载中

(5)

(1)

计量
  • 文章访问数:  1973
  • PDF下载数:  79
  • 施引文献:  0
出版历程
收稿日期:  2021-05-14
修回日期:  2021-10-24
刊出日期:  2022-04-28

目录