基于ERT技术的含水合物沉积物可视化探测模拟实验

赵金环, 刘昌岭, 邹长春, 陈强, 孟庆国, 刘洋, 卜庆涛. 基于ERT技术的含水合物沉积物可视化探测模拟实验[J]. 海洋地质与第四纪地质, 2021, 41(6): 206-212. doi: 10.16562/j.cnki.0256-1492.2021060901
引用本文: 赵金环, 刘昌岭, 邹长春, 陈强, 孟庆国, 刘洋, 卜庆涛. 基于ERT技术的含水合物沉积物可视化探测模拟实验[J]. 海洋地质与第四纪地质, 2021, 41(6): 206-212. doi: 10.16562/j.cnki.0256-1492.2021060901
ZHAO Jinhuan, LIU Changling, ZOU Changchun, CHEN Qiang, MENG Qingguo, LIU Yang, BU Qingtao. An experimental study on visual detection of hydrate-bearing sediments based on ERT[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 206-212. doi: 10.16562/j.cnki.0256-1492.2021060901
Citation: ZHAO Jinhuan, LIU Changling, ZOU Changchun, CHEN Qiang, MENG Qingguo, LIU Yang, BU Qingtao. An experimental study on visual detection of hydrate-bearing sediments based on ERT[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 206-212. doi: 10.16562/j.cnki.0256-1492.2021060901

基于ERT技术的含水合物沉积物可视化探测模拟实验

  • 基金项目: 国家天然气水合物127专项“天然气水合物储层模拟与测试技术”(DD20190221);国家自然科学基金“裂隙充填型水合物声学响应机理研究”(41906067);山东省自然科学基金“基于声学-CT联合探测的水合物分解及其声学响应机理研究”(ZR2019BD051)
详细信息
    作者简介: 赵金环(1987—),女,博士后,主要从事油气测井解释和天然气水合物储层物性模拟实验研究,E-mail:446103042@qq.com
    通讯作者: 刘昌岭(1966—),男,研究员,主要从事天然气水合物研究工作,E-mail:qdliuchangling@163.com
  • 中图分类号: P733.6

An experimental study on visual detection of hydrate-bearing sediments based on ERT

More Information
  • 基于电阻率响应特征的储层识别和饱和度估算是天然气水合物储层评价的关键技术之一,在天然气水合物的勘探开发中发挥重要作用。本文开展了沉积物内水合物生成的物理模拟实验,采用电阻率层析成像技术,实现了分散状水合物和块状水合物生长过程的可视化探测,研究了两种赋存形态水合物的电阻率响应特征。研究表明:分散状水合物的高值电阻率零散分布,块状水合物的高值电阻率聚集分布;沉积物内的游离气导致块状水合物的电阻率层析成像位置发生偏移;分散状水合物和块状水合物的电阻率响应特征差异明显,与分散状水合物相比,块状水合物电阻率随着水合物的生成升高较快。

  • 加载中
  • 图 1  水合物电阻率层析成像实验装置

    Figure 1. 

    图 2  圆柱状水合物样品(模拟块状水合物)

    Figure 2. 

    图 3  分散状和块状水合物生成过程中温度和压力的变化

    Figure 3. 

    图 4  分散状和块状水合物生成过程每层平均电阻率的变化

    Figure 4. 

    图 5  分散状水合物生成过程中不同时刻电阻率图像

    Figure 5. 

    图 6  块状水合物生成过程中不同时刻电阻率图像

    Figure 6. 

  • [1]

    刘昌岭, 郝锡荦, 孟庆国, 等. 气体水合物基础特性研究进展[J]. 海洋地质前沿, 2020, 36(9):1-10

    LIU Changling, HAO Xiluo, MENG Qingguo, et al. Research progress in basic characteristics of gas hydrate [J]. Marine Geology Frontiers, 2020, 36(9): 1-10.

    [2]

    孙运宝, 蔡峰, 李清, 等. 海洋浅表层天然气水合物资源评价[J]. 海洋地质前沿, 2020, 36(9):87-93

    SUN Yunbao, CAI Feng, LI Qing, et al. Evaluation of natural gas hydrate resources in shallow marine sediments [J]. Marine Geology Frontiers, 2020, 36(9): 87-93.

    [3]

    Pearson C, Murphy J, Hermes R. Acoustic and resistivity measurements on rock samples containing tetrahydrofuran hydrates: Laboratory analogues to natural gas hydrate deposits [J]. Journal of Geophysical Research:Solid Earth, 1986, 91(B14): 14132-14138. doi: 10.1029/JB091iB14p14132

    [4]

    Lee J Y, Santamarina J C, Ruppel C. Parametric study of the physical properties of hydrate‐bearing sand, silt, and clay sediments: 1. Electromagnetic properties [J]. Journal of Geophysical Research:Solid Earth, 2010, 115(B11): B11104. doi: 10.1029/2009JB006669

    [5]

    Sun Y, Goldberg D, Collett T, et al. High-resolution well-log derived dielectric properties of gas-hydrate-bearing sediments, Mount Elbert gas hydrate stratigraphic test well, Alaska north slope [J]. Marine and Petroleum Geology, 2011, 28(2): 450-459. doi: 10.1016/j.marpetgeo.2010.03.001

    [6]

    Li F G, Sun C Y, Li S L, et al. Experimental studies on the evolvement of electrical resistivity during methane hydrate formation in sediments [J]. Energy & Fuels, 2012, 26(10): 6210-6217.

    [7]

    Collett T S, Lee M W, Zyrianova M V, et al. Gulf of Mexico gas hydrate joint industry project leg II logging-while-drilling data acquisition and analysis [J]. Marine and Petroleum Geology, 2012, 34(1): 41-61. doi: 10.1016/j.marpetgeo.2011.08.003

    [8]

    陈玉凤, 李栋梁, 梁德青, 等. 南海沉积物天然气水合物饱和度与电阻率的关系[J]. 石油学报, 2013, 34(3):507-512 doi: 10.7623/syxb201303012

    CHEN Yufeng, LI Dongliang, LIANG Deqing, et al. Relationship between gas hydrate saturation and resistivity in sediments of the South China Sea [J]. Acta Petrolei Sinica, 2013, 34(3): 507-512. doi: 10.7623/syxb201303012

    [9]

    Du Frane W L, Stern L A, Constable S, et al. Electrical properties of methane hydrate sediment mixtures [J]. Journal of Geophysical Research:Solid Earth, 2015, 120(7): 4773-4783. doi: 10.1002/2015JB011940

    [10]

    Lim D, Ro H, Seo Y J, et al. Electrical resistivity measurements of methane hydrate during N2/CO2 gas exchange [J]. Energy & Fuels, 2017, 31(1): 708-713.

    [11]

    Liu H, Guo P, Zhan S Y, et al. Experimental investigation into formation/dissociation characteristics of methane hydrate in consolidated sediments with resistance measurement [J]. Fuel, 2018, 234: 985-995. doi: 10.1016/j.fuel.2018.07.101

    [12]

    卜庆涛, 刘圣彪, 胡高伟, 等. 含水合物沉积物声学特性—实验模拟与数值模拟的对比分析[J]. 海洋地质前沿, 2020, 36(9):56-67

    BU Qingtao, LIU Shengbiao, HU Gaowei, et al. Acoustic characteristics of hydrate-bearing sediments: a comparative analysis of experimental and numerical simulations results [J]. Marine Geology Frontiers, 2020, 36(9): 56-67.

    [13]

    Lee M W, Collett T S. Gas hydrate saturations estimated from fractured reservoir at Site NGHP-01-10, Krishna-Godavari Basin, India [J]. Journal of Geophysical Research:Solid Earth, 2009, 114(B7): B07102.

    [14]

    Cook A E, Anderson B I, Rasmus J, et al. Electrical anisotropy of gas hydrate-bearing sand reservoirs in the Gulf of Mexico [J]. Marine and Petroleum Geology, 2012, 34(1): 72-84. doi: 10.1016/j.marpetgeo.2011.09.003

    [15]

    Wang X J, Liu B, Qian J, et al. Geophysical evidence for gas hydrate accumulation related to methane seepage in the Taixinan Basin, South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 27-37. doi: 10.1016/j.jseaes.2017.11.011

    [16]

    王秀娟, 钱进, LEE M. 天然气水合物和游离气饱和度评价方法及其在南海北部的应用[J]. 海洋地质与第四纪地质, 2017, 37(5):35-47

    WANG Xiujuan, QIAN Jin, LEE M. Methods for estimation of gas hydrate and free gas saturations and application to the northern slope of south China sea [J]. Marine Geology & Quaternary Geology, 2017, 37(5): 35-47.

    [17]

    Spangenberg E, Kulenkampff J. Influence of methane hydrate content on electrical sediment properties [J]. Geophysical Research Letters, 2006, 33(24): L24315. doi: 10.1029/2006GL028188

    [18]

    陈强, 刘昌岭, 邢兰昌, 等. 孔隙水垂向不均匀分布体系中水合物生成过程的电阻率变化[J]. 石油学报, 2016, 37(2):222-229 doi: 10.7623/syxb201602008

    CHEN Qiang, LIU Changling, XING Lanchang, et al. Resistivity variation during hydrate formation in vertical inhomogeneous distribution system of pore water [J]. Acta Petrolei Sinica, 2016, 37(2): 222-229. doi: 10.7623/syxb201602008

    [19]

    陈国旗, 李承峰, 刘昌岭, 等. 多孔介质中甲烷水合物的微观分布对电阻率的影响[J]. 新能源进展, 2019, 7(6):493-499

    CHEN Guoqi, LI Chengfeng, LIU Changling, et al. Effect of microscopic distribution of methane hydrate on resistivity in porous media [J]. Advances in New and Renewable Energy, 2019, 7(6): 493-499.

    [20]

    Lei L, Liu Z C, Seol Y, et al. An investigation of hydrate formation in unsaturated sediments using X‐Ray computed tomography [J]. Journal of Geophysical Research:Solid Earth, 2019, 124(4): 3335-3349. doi: 10.1029/2018JB016125

    [21]

    Walsh M, Ogra K, Hazineh W, et al. Laboratory and high-pressure flowloop investigationof gas hydrate formation and distribution using electrical tomography[C]//Proceedings of the 8th International Conference on Gas Hydrates. Beijing, 2014.

    [22]

    Priegnitz M, Thaler J, Spangenberg E, et al. Characterizing electrical properties and permeability changes of hydrate bearing sediments using ERT data [J]. Geophysical Journal International, 2015, 202(3): 1599-1612. doi: 10.1093/gji/ggv245

    [23]

    李彦龙, 孙海亮, 孟庆国, 等. 沉积物中天然气水合物生成过程的二维电阻层析成像观测[J]. 天然气工业, 2019, 39(10):132-138 doi: 10.3787/j.issn.1000-0976.2019.10.017

    LI Yanlong, SUN Hailiang, MENG Qingguo, et al. 2-D electrical resistivity tomography assessment of hydrate formation in sandy sediments [J]. Natural Gas Industry, 2019, 39(10): 132-138. doi: 10.3787/j.issn.1000-0976.2019.10.017

    [24]

    孙海亮, 李彦龙, 刘昌岭, 等. 电阻层析成像技术及其在水合物开采模拟实验中的应用[J]. 计量学报, 2019, 40(3):455-461 doi: 10.3969/j.issn.1000-1158.2019.03.17

    SUN Hailiang, LI Yanlong, LIU Changling, et al. Electrical resistance tomography and the application in the simulation experiment of hydrate mining [J]. Acta Metrologica Sinica, 2019, 40(3): 455-461. doi: 10.3969/j.issn.1000-1158.2019.03.17

    [25]

    李彦龙, 陈强, 吴能友, 等. 电阻率层析成像技术在岩芯尺度水合物可视化探测中的应用[J]. 地质论评, 2020, 66(S1):84-86

    LI Yanlong, CHEN Qiang, WU Nengyou, et al. Core-scale application of electrical resistivity tomography technology on visual detection of natural gas hydrate [J]. Geological Review, 2020, 66(S1): 84-86.

    [26]

    刘洋, 陈强, 邹长春, 等. 气体水合物生成实验过程动态监测: 一种新的ERT方法及其效果分析[J/OL]. 现代地质, 2021 (2021-07-21).https://t.cnki.net/kcms/detail?v=3uoqIhG8C46NmWw7YpEsKHTPvOGrUOOqX1coEOzL8AGxgg6Tl8ilwBvSZDnERhKJYb36_bwg5WzpUaR_8lt7MjRABTSiWpU2.

    LIU Yang, CHEN Qiang, ZOU Changchun, et al. Dynamic monitoring of experimental process of gas hydrate formation: a new ERT method and its effect analysis[J/OL]. Geoscience, 2021 (2021-07-21).https://t.cnki.net/kcms/detail?v=3uoqIhG8C46NmWw7YpEsKHTPvOGrUOOqX1coEOzL8AGxgg6Tl8ilwBvSZDnERhKJYb36_bwg5WzpUaR_8lt7MjRABTSiWpU2.

    [27]

    景鹏飞, 胡高伟, 卜庆涛, 等. 基于岩石物理模拟与声学实验识别孔隙—裂隙充填型水合物[J]. 海洋地质与第四纪地质, 2020, 40(6):208-218

    JING Pengfei, HU Gaowei, BU Qingtao, et al. Identification of pore-filling and fracture-filling hydrate by petrophysical simulation and acoustic experiment [J]. Marine Geology & Quaternary Geology, 2020, 40(6): 208-218.

    [28]

    苏丕波, 梁金强, 张伟, 等. 南海北部神狐海域天然气水合物成藏系统[J]. 天然气工业, 2020, 40(8):77-89 doi: 10.3787/j.issn.1000-0976.2020.08.006

    SU Pibo, LIANG Jinqiang, ZHANG Wei, et al. Natural gas hydrate accumulation system in the Shenhu sea area of the northern South China Sea [J]. Natural Gas Industry, 2020, 40(8): 77-89. doi: 10.3787/j.issn.1000-0976.2020.08.006

    [29]

    Chen L T, Li N, Sun C Y, et al. Hydrate formation in sediments from free gas using a one-dimensional visual simulator [J]. Fuel, 2017, 197: 298-309. doi: 10.1016/j.fuel.2017.02.034

    [30]

    Ren S R, Liu Y J, Liu Y X, et al. Acoustic velocity and electrical resistance of hydrate bearing sediments [J]. Journal of Petroleum Science and Engineering, 2010, 70(1-2): 52-56. doi: 10.1016/j.petrol.2009.09.001

    [31]

    Lei L, Seol Y, Choi J H, et al. Pore habit of methane hydrate and its evolution in sediment matrix-Laboratory visualization with phase-contrast micro-CT [J]. Marine and Petroleum Geology, 2019, 104: 451-467. doi: 10.1016/j.marpetgeo.2019.04.004

    [32]

    Lei L, Seol Y. High-saturation gas hydrate reservoirs-a pore scale investigation of their formation from free gas and dissociation in sediments [J]. Journal of Geophysical Research:Solid Earth, 2019, 124(12): 12430-12444. doi: 10.1029/2019JB018243

    [33]

    Liu T, Liu X W, Zhu T Y. Joint analysis of P-wave velocity and resistivity for morphology identification and quantification of gas hydrate [J]. Marine and Petroleum Geology, 2020, 112: 104036. doi: 10.1016/j.marpetgeo.2019.104036

    [34]

    Peng C, Zou C C, Lu Z Q, et al. Evidence of pore‐ and fracture‐filling gas hydrates from geophysical logs in consolidated rocks of the Muli area, Qinghai–Tibetan Plateau permafrost, China [J]. Journal of Geophysical Research: Solid Earth, 2019, 124(7): 6297-6301. doi: 10.1029/2018JB016041

  • 加载中

(6)

计量
  • 文章访问数:  2307
  • PDF下载数:  63
  • 施引文献:  0
出版历程
收稿日期:  2021-06-09
修回日期:  2021-08-23
刊出日期:  2021-12-28

目录