循环载荷下饱和岩石的摩擦阻力研究

张汉羽, 陈佼佼, 陈运平, 刘怀山. 循环载荷下饱和岩石的摩擦阻力研究[J]. 海洋地质与第四纪地质, 2022, 42(3): 194-203. doi: 10.16562/j.cnki.0256-1492.2021062101
引用本文: 张汉羽, 陈佼佼, 陈运平, 刘怀山. 循环载荷下饱和岩石的摩擦阻力研究[J]. 海洋地质与第四纪地质, 2022, 42(3): 194-203. doi: 10.16562/j.cnki.0256-1492.2021062101
ZHANG Hanyu, CHEN Jiaojiao, CHEN Yunping, LIU Huaishan. Internal friction resistance of saturated rocks under cyclic loading[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 194-203. doi: 10.16562/j.cnki.0256-1492.2021062101
Citation: ZHANG Hanyu, CHEN Jiaojiao, CHEN Yunping, LIU Huaishan. Internal friction resistance of saturated rocks under cyclic loading[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 194-203. doi: 10.16562/j.cnki.0256-1492.2021062101

循环载荷下饱和岩石的摩擦阻力研究

  • 基金项目: 国家自然科学重点基金“近海底地震海洋学立体探测与成像基础研究”(91958206);三亚崖州湾科技城重大项目“海底分布式光纤地震系统及应用示范”(SKJC-2020-01-009)
详细信息
    作者简介: 张汉羽(1989—),男,硕士,助理研究员,地震成像方法研究,E-mail:zhanghy@idsse.ac.cn
    通讯作者: 陈运平(1970—),男,博士,副教授,地球动力学和岩石物理学研究,E-mail:chyp@csu.edu.cn
  • 中图分类号: P589.1

Internal friction resistance of saturated rocks under cyclic loading

More Information
  • 在循环载荷下岩石发生应力-应变的非线性弹性行为是普遍的,孔隙流体、载荷频率、围压、层理方向是造成岩石应力应变滞后、能量衰减、刚性变化等特征的重要外部变量。基于来自大庆、南京、合肥等地的砂岩样品,利用电液闭环伺服控制压机系统,开展了不同饱和流体砂岩的应力-应变滞回曲线、不同载荷频率和饱和流体对岩石的衰减、不同层理方向加载和卸载对岩石杨氏模量影响的实验对比研究,阐明了饱和岩石的非线性响应特征,揭示了外界影响因素对岩石产生非线性形变的作用机制,探讨了岩石内部触面间摩擦阻力在岩石发生非线性形变过程中发挥的媒介作用,并推断接触面颗粒之间的摩擦阻力可能是导致岩石发生衰减、滞后等非线性行为的内在因素。本研究拟通过岩石内部小尺度的摩擦作用与构造尺度断层面上的摩擦滑移相似性,来揭示地震发生时岩体失稳的动力学过程。

  • 加载中
  • 图 1  不同饱和流体岩石的应力、应变-时间曲线

    Figure 1. 

    图 2  不同饱和流体岩石的应力-应变曲线

    Figure 2. 

    图 3  不同频率下泵油+沥青合肥砂岩的滞回面积随载荷周期的变化

    Figure 3. 

    图 4  不同状态下合肥砂岩滞回圈面积随循环次数的变化

    Figure 4. 

    图 5  杨氏模量与围压的关系

    Figure 5. 

    图 6  平行层理状态下不同饱和岩石的应变随载荷周期的变化

    Figure 6. 

    图 7  垂直层理状态下不同饱和流体岩石的应变随载荷周期的变化

    Figure 7. 

    图 8  干燥砂岩的杨氏模量随载荷周期的变化

    Figure 8. 

    图 9  饱泵油砂岩的杨氏模量随载荷周期的变化

    Figure 9. 

    表 1  不同载荷频率下饱和泵油+沥青合肥砂岩的滞回圈面积

    Table 1.  Hysteretic area data of Hefei sandstone saturated with pumped oil and asphalt under different cycle period and stress frequencies

    载荷
    周期
    123456789
    5 Hz0.1820.1810.1790.1770.1710.1720.1700.1730.173
    10 Hz0.1880.1790.1780.1750.1750.1730.1720.1750.171
    15 Hz0.190.1830.1780.1770.1740.1710.1710.1710.171
    下载: 导出CSV

    表 2  不同饱和流体下合肥砂岩的滞回圈面积

    Table 2.  Hysteretic area data of Hefei sandstone followed by loading cycle periods in different conditions

    载荷
    周期
    123456789
    饱水0.3890.3180.3080.2980.2990.2750.2630.2520.241
    干燥1.3441.2601.1171.1141.1121.1100.1051.1021.084
    饱泵油+沥青0.1430.1360.1240.1150.1130.0910.0710.0320.021
    下载: 导出CSV

    表 3  不同饱和流体砂岩的杨氏模量

    Table 3.  Young's modulus of sandstone with different saturated fluid

    杨氏模量/MPa 
    循环次数垂直层理平行层理
    加载阶段卸载阶段加载阶段卸载阶段
    饱泵油砂岩干燥砂岩饱泵油砂岩干燥砂岩饱泵油砂岩干燥砂岩饱泵油砂岩干燥砂岩
    114.44413.08414.81012.99916.06912.87116.14412.625
    514.37813.21014.46913.22216.04213.01016.07513.118
    1014.28313.25414.41113.24916.01213.06916.03113.098
    1514.23813.27514.25313.26116.00213.08216.00413.166
    2014.21113.29014.26613.31315.97113.10016.00513.181
    2514.18313.30414.18913.32115.96913.11216.02213.140
    3014.16013.30514.17013.28415.95013.12015.97613.208
    3514.15813.31714.20213.28615.95013.13215.88713.156
    4014.37713.19514.55513.21416.05012.91416.09712.949
    下载: 导出CSV
  • [1]

    Mayergoyz I D. Mathematical Models of Hysteresis and Their Applications[M]. Amsterdam: Academic Press, 2003.

    [2]

    李杰林, 洪流, 周科平, 等. 不同加卸载方式下饱和岩石力学特征的试验研究[J]. 矿冶工程, 2021, 41(2):15-19, 32 doi: 10.3969/j.issn.0253-6099.2021.02.004

    LI Jielin, HONG Liu, ZHOU Keping, et al. Experimental study on mechanical characteristics of saturated rock under different cyclic loading modes [J]. Mining and Metallurgical Engineering, 2021, 41(2): 15-19, 32. doi: 10.3969/j.issn.0253-6099.2021.02.004

    [3]

    单俊芳, 徐松林, 张磊, 等. 岩石节理动摩擦过程中的声发射和产热特性研究[J]. 实验力学, 2020, 35(1):41-57

    SHAN Junfang, XU Songlin, ZHANG Lei, et al. Investigation on acoustic emission and heat production characteristics on joint surfaces due to dynamic friction [J]. Journal of Experimental Mechanics, 2020, 35(1): 41-57.

    [4]

    徐松林, 章超, 黄俊宇, 等. 花岗岩压剪联合冲击特性与细观力学机制研究[J]. 岩石力学与工程学报, 2015, 34(10):1945-1958

    XU Songlin, ZHANG Chao, HUANG Junyu, et al. Dynamic and micromechanical behaviors of granite under combined compression and shear loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(10): 1945-1958.

    [5]

    张磊. 冲击载荷下节理面动摩擦特性研究[D]. 中国科学技术大学硕士学位论文, 2016.

    ZHANG Lei. Study on dynamic frictional properties of joint plane under impact load[D]. Master Dissertation of University of Science and Technology of China, 2016.

    [6]

    徐婕, 翟世奎, 于增慧, 等. 大洋岩石圈板块俯冲构造背景下流体的地质作用[J]. 海洋学报, 2021, 43(1):27-43

    XU Jie, ZHAI Shikui, YU Zenghui, et al. Geological processes of fluids in the oceanic lithosphere subduction [J]. Haiyang Xuebao, 2021, 43(1): 27-43.

    [7]

    金解放, 钟依禄, 余雄, 等. 岩石应力波分形分析方法的研究[J]. 有色金属科学与工程, 2021, 12(3):85-91

    JIN Jiefang, ZHONG Yilu, YU Xiong, et al. Study on the fractal analysis method of rock stress waves [J]. Nonferrous Metals Science and Engineering, 2021, 12(3): 85-91.

    [8]

    Brace W F, Byerlee J D. Stick-slip as a mechanism for earthquakes [J]. Science, 1966, 153(3739): 990-992. doi: 10.1126/science.153.3739.990

    [9]

    Mayergoyz I. Mathematical models of hysteresis [J]. IEEE Transactions on Magnetics, 1986, 22(5): 603-608. doi: 10.1109/TMAG.1986.1064347

    [10]

    Guyer R A, Johnson P A. Nonlinear mesoscopic elasticity: evidence for a new class of materials [J]. Physics Today, 1999, 52(4): 30-36. doi: 10.1063/1.882648

    [11]

    Gordon R B, Davis L A. Velocity and attenuation of seismic waves in imperfectly elastic rock [J]. Journal of Geophysical Research, 1968, 73(12): 3917-3935. doi: 10.1029/JB073i012p03917

    [12]

    McKavanagh B, Stacey F D. Mechanical hysteresis in rocks at low strain amplitudes and seismic frequencies [J]. Physics of the Earth and Planetary Interiors, 1974, 8(3): 246-250. doi: 10.1016/0031-9201(74)90091-0

    [13]

    Spencer J W. Stress relaxations at low frequencies in fluid-saturated rocks: Attenuation and modulus dispersion [J]. Journal of Geophysical Research:Solid Earth, 1981, 86(B3): 1803-1812. doi: 10.1029/JB086iB03p01803

    [14]

    Day S M, Minster J B. Numerical simulation of attenuated wavefields using a Padé approximant method [J]. Geophysical Journal International, 1984, 78(1): 105-118. doi: 10.1111/j.1365-246X.1984.tb06474.x

    [15]

    McCall K R, Guyer R A. Equation of state and wave propagation in hysteretic nonlinear elastic materials [J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B12): 23887-23897. doi: 10.1029/94JB01941

    [16]

    Holcomb D J. Memory, relaxation, and microfracturing in dilatant rock [J]. Journal of Geophysical Research:Solid Earth, 1981, 86(B7): 6235-6248. doi: 10.1029/JB086iB07p06235

    [17]

    陈运平, 刘干斌, 姚海林. 岩石滞后非线性弹性模拟的研究[J]. 岩土力学, 2006, 27(3):341-347 doi: 10.3969/j.issn.1000-7598.2006.03.001

    CHEN Yunping, LIU Ganbin, YAO Hailin. Study on simulation for hysteretic nonlinear elasticity of rock [J]. Rock and Soil Mechanics, 2006, 27(3): 341-347. doi: 10.3969/j.issn.1000-7598.2006.03.001

    [18]

    Messerschmidt U. Dislocation Dynamics during Plastic Deformation[M]. Berlin, Heidelberg: Springer, 2010.

    [19]

    尤明庆. 岩石试样的杨氏模量与围压的关系[J]. 岩石力学与工程学报, 2003, 22(1):53-60 doi: 10.3321/j.issn:1000-6915.2003.01.010

    YOU Mingqing. Effect of confining pressure on the Young’s modulus of rock specimen [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(1): 53-60. doi: 10.3321/j.issn:1000-6915.2003.01.010

    [20]

    席道瑛, 刘小燕, 张程远. 由宏观滞回曲线分析岩石的微细观损伤[J]. 岩石力学与工程学报, 2003, 22(2):182-187 doi: 10.3321/j.issn:1000-6915.2003.02.003

    XI Daoying, LIU Xiaoyan, ZHANG Chengyuan. Analysis on Micro and Meso-damage of rock by Macro-hysteresis curve [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(2): 182-187. doi: 10.3321/j.issn:1000-6915.2003.02.003

    [21]

    席道瑛, 徐松林. 岩石物理学基础[M]. 合肥: 中国科学技术大学出版社, 2012.

    XI Daoying, XU Songlin. Foundations of Rock Physics[M]. Hefei: University of Science and Technology of China Press, 2012.

    [22]

    陈颙, 黄庭芳. 岩石物理学[M]. 北京: 北京大学出版社, 2001.

    CHEN Yong, HUANG Tingfang. Rock Physics[M]. Beijing: Peking University Press, 2001.

    [23]

    Tullis T E, Weeks J D. Constitutive behavior and stability of frictional sliding of granite [J]. Pure and Applied Geophysics, 1986, 124(3): 383-414. doi: 10.1007/BF00877209

    [24]

    Delsanto P P, Scalerandi M. Modeling nonclassical nonlinearity, conditioning, and slow dynamics effects in mesoscopic elastic materials [J]. Physical Review B, 2003, 68(6): 064107. doi: 10.1103/PhysRevB.68.064107

    [25]

    Thompson P A, Robbins M O. Origin of stick-slip motion in boundary lubrication [J]. Science, 1990, 250(4982): 792-794. doi: 10.1126/science.250.4982.792

    [26]

    Van Den Abeele K E A, Carmeliet J, Johnson P A, et al. Influence of water saturation on the nonlinear elastic mesoscopic response in Earth materials and the implications to the mechanism of nonlinearity [J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B6): ECV 4-1-ECV 4-11.

    [27]

    赖勇. 围压对杨氏模量的影响分析[J]. 重庆交通大学学报:自然科学版, 2009, 28(2):246-249, 278

    LAI Yong. Effect analysis of confining pressure on Young’s modulus [J]. Journal of Chongqing Jiaotong University:Natural Sciences, 2009, 28(2): 246-249, 278.

    [28]

    陈运平, 王思敬. 多级循环荷载下饱和岩石的弹塑性响应[J]. 岩土力学, 2010, 31(4):1030-1034 doi: 10.3969/j.issn.1000-7598.2010.04.004

    CHEN Yunping, WANG Sijing. Elastoplastic response of saturated rocks subjected to multilevel cyclic loading [J]. Rock and Soil Mechanics, 2010, 31(4): 1030-1034. doi: 10.3969/j.issn.1000-7598.2010.04.004

    [29]

    Brennan B J, Stacey F D. Frequency dependence of elasticity of rock——Test of seismic velocity dispersion [J]. Nature, 1977, 268(5617): 220-222. doi: 10.1038/268220a0

    [30]

    席道瑛, 陈运平, 陶月赞, 等. 岩石的非线性弹性滞后特征[J]. 岩石力学与工程学报, 2006, 25(6):1086-1093 doi: 10.3321/j.issn:1000-6915.2006.06.002

    XI Daoying, CHEN Yunping, TAO Yuezan, et al. Nonlinear elastic hysteric characteristics of rocks [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(6): 1086-1093. doi: 10.3321/j.issn:1000-6915.2006.06.002

    [31]

    Passchier C W, Trouw R A J. Microtectonics[M]. Berlin: Springer, 1996.

    [32]

    Stipp M, Stünitz H, Heilbronner R, et al. The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700°C [J]. Journal of Structural Geology, 2002, 24(12): 1861-1884. doi: 10.1016/S0191-8141(02)00035-4

    [33]

    Vernon R H. Review of microstructural evidence of magmatic and solid-state flow [J]. Visual Geosciences, 2000, 5(2): 1-23. doi: 10.1007/s10069-000-0002-3

    [34]

    Poirier J P. Creep of Crystals: High-Temperature Deformation Processes in Metals, Ceramics and Minerals[M]. Cambridge: Cambridge University Press, 1985.

    [35]

    陈运平, 席道瑛, 薛彦伟. 循环荷载下饱和岩石的滞后和衰减[J]. 地球物理学报, 2004, 47(4):672-679 doi: 10.3321/j.issn:0001-5733.2004.04.018

    CHEN Yunping, XI Daoying, XUE Yanwei. Hysteresis and attenuation of saturated rocks under cyclic loading [J]. Chinese Journal of Geophysics, 2004, 47(4): 672-679. doi: 10.3321/j.issn:0001-5733.2004.04.018

    [36]

    Raterron P, Chen J, Li L, et al. Pressure-induced slip-system transition in forsterite: Single-crystal rheological properties at mantle pressure and temperature [J]. American Mineralogist, 2007, 92(8-9): 1436-1445. doi: 10.2138/am.2007.2474

    [37]

    张磊, 王文帅, 苗春贺, 等. 花岗岩粗糙表面动摩擦形态演化[J]. 高压物理学报, 2021, 35(3):031201 doi: 10.11858/gywlxb.20200640

    ZHANG Lei, WANG Wenshuai, MIAO Chunhe, et al. Rough surface morphology of granite subjected to dynamic friction [J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 031201. doi: 10.11858/gywlxb.20200640

    [38]

    汪泓, 杨天鸿, 刘洪磊, 等. 循环载荷下干燥及饱和砂岩的变形及声发射特征[J]. 东北大学学报:自然科学版, 2016, 37(8):1161-1165

    WANG Hong, YANG Tianhong, LIU Honglei, et al. Deformation and acoustic emission characteristics of dry and saturated sand under cyclic loading and unloading process [J]. Journal of Northeastern University:Natural Science, 2016, 37(8): 1161-1165.

    [39]

    刘燕, 杨小彬, 汪洋, 等. 基于裂纹的岩石摩擦滑移位移演化实验研究[J]. 矿业科学学报, 2021, 6(4):438-444

    LIU Yan, YANG Xiaobin, WANG Yang, et al. Experimental study on the displacement evolution of rock interface friction slip based on crack [J]. Journal of Mining Science and Technology, 2021, 6(4): 438-444.

    [40]

    王来贵, 赵国超, 刘向峰, 等. 滑动过程中砂岩节理摩擦系数演化规律研究[J]. 煤炭学报, 2021:1-10

    WANG Laigui, ZHAO Guochao, LIU Xiangfeng, et al. Analysis the Evolution of Friction Coefficient of Sandstone Joint during Sliding Process [J]. Journal of China Coal Society, 2021: 1-10.

    [41]

    Uchaikin V V. Fractional derivatives for physicists and engineers[M]. Berlin: Springer, 2013.

    [42]

    席道瑛, 刘爱文, 刘卫. 低频条件下饱和流体砂岩的衰减研究[J]. 地震学报, 1995(04):477-481

    XI Daoying, LIU Aiwen, LIU Wei. Attenuation of saturated fluid sandstone at low frequency [J]. Acta Seismologica Sinica, 1995(04): 477-481.

  • 加载中

(9)

(3)

计量
  • 文章访问数:  2022
  • PDF下载数:  104
  • 施引文献:  0
出版历程
收稿日期:  2021-06-21
修回日期:  2021-07-23
刊出日期:  2022-06-28

目录