-
摘要:
在循环载荷下岩石发生应力-应变的非线性弹性行为是普遍的,孔隙流体、载荷频率、围压、层理方向是造成岩石应力应变滞后、能量衰减、刚性变化等特征的重要外部变量。基于来自大庆、南京、合肥等地的砂岩样品,利用电液闭环伺服控制压机系统,开展了不同饱和流体砂岩的应力-应变滞回曲线、不同载荷频率和饱和流体对岩石的衰减、不同层理方向加载和卸载对岩石杨氏模量影响的实验对比研究,阐明了饱和岩石的非线性响应特征,揭示了外界影响因素对岩石产生非线性形变的作用机制,探讨了岩石内部触面间摩擦阻力在岩石发生非线性形变过程中发挥的媒介作用,并推断接触面颗粒之间的摩擦阻力可能是导致岩石发生衰减、滞后等非线性行为的内在因素。本研究拟通过岩石内部小尺度的摩擦作用与构造尺度断层面上的摩擦滑移相似性,来揭示地震发生时岩体失稳的动力学过程。
Abstract:The stress-strain loop hysteretic nonlinear behavior of a rock is generally adopted in uniaxial cyclic loading experiments. Pore fluid, cyclic loading frequency, confining pressure and bedding direction are important external variables that cause stress and strain hysteresis, energy attenuation and rigidity change of rocks. In this paper, three comparative experiments have been carried out under the Material Testing System (MTS) for the stress-strain hysteresis with different saturated fluids, the rock energy attenuation by loading different frequency stress and saturated fluids, and Young’s modulus effect for the sandstones with different bedding directions sampled from Daqing, Nanjing, Hefei, etc. Based on the results, we clarified the nonlinear elastoplastic response characteristics of saturated rocks, and revealed the nonlinear deformation mechanism induced by external factors. And the mediating role of friction resistance on internal particle contact surfaces during rocks nonlinear elastic deformation process is proved. It is inferred that the sliding friction resistance of particles in macro-cracks may be the main internal factor resulted in the attenuation and hysteresis of rocks. This paper attempts to further reveal the dynamics process of earthquakes and rock instability based on the similarity of frictional sliding between the fine-scale rock particles and the earth-scale tectonic faults.
-
-
表 1 不同载荷频率下饱和泵油+沥青合肥砂岩的滞回圈面积
Table 1. Hysteretic area data of Hefei sandstone saturated with pumped oil and asphalt under different cycle period and stress frequencies
载荷
周期1 2 3 4 5 6 7 8 9 5 Hz 0.182 0.181 0.179 0.177 0.171 0.172 0.170 0.173 0.173 10 Hz 0.188 0.179 0.178 0.175 0.175 0.173 0.172 0.175 0.171 15 Hz 0.19 0.183 0.178 0.177 0.174 0.171 0.171 0.171 0.171 表 2 不同饱和流体下合肥砂岩的滞回圈面积
Table 2. Hysteretic area data of Hefei sandstone followed by loading cycle periods in different conditions
载荷
周期1 2 3 4 5 6 7 8 9 饱水 0.389 0.318 0.308 0.298 0.299 0.275 0.263 0.252 0.241 干燥 1.344 1.260 1.117 1.114 1.112 1.110 0.105 1.102 1.084 饱泵油+沥青 0.143 0.136 0.124 0.115 0.113 0.091 0.071 0.032 0.021 表 3 不同饱和流体砂岩的杨氏模量
Table 3. Young's modulus of sandstone with different saturated fluid
杨氏模量/MPa 循环次数 垂直层理 平行层理 加载阶段 卸载阶段 加载阶段 卸载阶段 饱泵油砂岩 干燥砂岩 饱泵油砂岩 干燥砂岩 饱泵油砂岩 干燥砂岩 饱泵油砂岩 干燥砂岩 1 14.444 13.084 14.810 12.999 16.069 12.871 16.144 12.625 5 14.378 13.210 14.469 13.222 16.042 13.010 16.075 13.118 10 14.283 13.254 14.411 13.249 16.012 13.069 16.031 13.098 15 14.238 13.275 14.253 13.261 16.002 13.082 16.004 13.166 20 14.211 13.290 14.266 13.313 15.971 13.100 16.005 13.181 25 14.183 13.304 14.189 13.321 15.969 13.112 16.022 13.140 30 14.160 13.305 14.170 13.284 15.950 13.120 15.976 13.208 35 14.158 13.317 14.202 13.286 15.950 13.132 15.887 13.156 40 14.377 13.195 14.555 13.214 16.050 12.914 16.097 12.949 -
[1] Mayergoyz I D. Mathematical Models of Hysteresis and Their Applications[M]. Amsterdam: Academic Press, 2003.
[2] 李杰林, 洪流, 周科平, 等. 不同加卸载方式下饱和岩石力学特征的试验研究[J]. 矿冶工程, 2021, 41(2):15-19, 32 doi: 10.3969/j.issn.0253-6099.2021.02.004
LI Jielin, HONG Liu, ZHOU Keping, et al. Experimental study on mechanical characteristics of saturated rock under different cyclic loading modes [J]. Mining and Metallurgical Engineering, 2021, 41(2): 15-19, 32. doi: 10.3969/j.issn.0253-6099.2021.02.004
[3] 单俊芳, 徐松林, 张磊, 等. 岩石节理动摩擦过程中的声发射和产热特性研究[J]. 实验力学, 2020, 35(1):41-57
SHAN Junfang, XU Songlin, ZHANG Lei, et al. Investigation on acoustic emission and heat production characteristics on joint surfaces due to dynamic friction [J]. Journal of Experimental Mechanics, 2020, 35(1): 41-57.
[4] 徐松林, 章超, 黄俊宇, 等. 花岗岩压剪联合冲击特性与细观力学机制研究[J]. 岩石力学与工程学报, 2015, 34(10):1945-1958
XU Songlin, ZHANG Chao, HUANG Junyu, et al. Dynamic and micromechanical behaviors of granite under combined compression and shear loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(10): 1945-1958.
[5] 张磊. 冲击载荷下节理面动摩擦特性研究[D]. 中国科学技术大学硕士学位论文, 2016.
ZHANG Lei. Study on dynamic frictional properties of joint plane under impact load[D]. Master Dissertation of University of Science and Technology of China, 2016.
[6] 徐婕, 翟世奎, 于增慧, 等. 大洋岩石圈板块俯冲构造背景下流体的地质作用[J]. 海洋学报, 2021, 43(1):27-43
XU Jie, ZHAI Shikui, YU Zenghui, et al. Geological processes of fluids in the oceanic lithosphere subduction [J]. Haiyang Xuebao, 2021, 43(1): 27-43.
[7] 金解放, 钟依禄, 余雄, 等. 岩石应力波分形分析方法的研究[J]. 有色金属科学与工程, 2021, 12(3):85-91
JIN Jiefang, ZHONG Yilu, YU Xiong, et al. Study on the fractal analysis method of rock stress waves [J]. Nonferrous Metals Science and Engineering, 2021, 12(3): 85-91.
[8] Brace W F, Byerlee J D. Stick-slip as a mechanism for earthquakes [J]. Science, 1966, 153(3739): 990-992. doi: 10.1126/science.153.3739.990
[9] Mayergoyz I. Mathematical models of hysteresis [J]. IEEE Transactions on Magnetics, 1986, 22(5): 603-608. doi: 10.1109/TMAG.1986.1064347
[10] Guyer R A, Johnson P A. Nonlinear mesoscopic elasticity: evidence for a new class of materials [J]. Physics Today, 1999, 52(4): 30-36. doi: 10.1063/1.882648
[11] Gordon R B, Davis L A. Velocity and attenuation of seismic waves in imperfectly elastic rock [J]. Journal of Geophysical Research, 1968, 73(12): 3917-3935. doi: 10.1029/JB073i012p03917
[12] McKavanagh B, Stacey F D. Mechanical hysteresis in rocks at low strain amplitudes and seismic frequencies [J]. Physics of the Earth and Planetary Interiors, 1974, 8(3): 246-250. doi: 10.1016/0031-9201(74)90091-0
[13] Spencer J W. Stress relaxations at low frequencies in fluid-saturated rocks: Attenuation and modulus dispersion [J]. Journal of Geophysical Research:Solid Earth, 1981, 86(B3): 1803-1812. doi: 10.1029/JB086iB03p01803
[14] Day S M, Minster J B. Numerical simulation of attenuated wavefields using a Padé approximant method [J]. Geophysical Journal International, 1984, 78(1): 105-118. doi: 10.1111/j.1365-246X.1984.tb06474.x
[15] McCall K R, Guyer R A. Equation of state and wave propagation in hysteretic nonlinear elastic materials [J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B12): 23887-23897. doi: 10.1029/94JB01941
[16] Holcomb D J. Memory, relaxation, and microfracturing in dilatant rock [J]. Journal of Geophysical Research:Solid Earth, 1981, 86(B7): 6235-6248. doi: 10.1029/JB086iB07p06235
[17] 陈运平, 刘干斌, 姚海林. 岩石滞后非线性弹性模拟的研究[J]. 岩土力学, 2006, 27(3):341-347 doi: 10.3969/j.issn.1000-7598.2006.03.001
CHEN Yunping, LIU Ganbin, YAO Hailin. Study on simulation for hysteretic nonlinear elasticity of rock [J]. Rock and Soil Mechanics, 2006, 27(3): 341-347. doi: 10.3969/j.issn.1000-7598.2006.03.001
[18] Messerschmidt U. Dislocation Dynamics during Plastic Deformation[M]. Berlin, Heidelberg: Springer, 2010.
[19] 尤明庆. 岩石试样的杨氏模量与围压的关系[J]. 岩石力学与工程学报, 2003, 22(1):53-60 doi: 10.3321/j.issn:1000-6915.2003.01.010
YOU Mingqing. Effect of confining pressure on the Young’s modulus of rock specimen [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(1): 53-60. doi: 10.3321/j.issn:1000-6915.2003.01.010
[20] 席道瑛, 刘小燕, 张程远. 由宏观滞回曲线分析岩石的微细观损伤[J]. 岩石力学与工程学报, 2003, 22(2):182-187 doi: 10.3321/j.issn:1000-6915.2003.02.003
XI Daoying, LIU Xiaoyan, ZHANG Chengyuan. Analysis on Micro and Meso-damage of rock by Macro-hysteresis curve [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(2): 182-187. doi: 10.3321/j.issn:1000-6915.2003.02.003
[21] 席道瑛, 徐松林. 岩石物理学基础[M]. 合肥: 中国科学技术大学出版社, 2012.
XI Daoying, XU Songlin. Foundations of Rock Physics[M]. Hefei: University of Science and Technology of China Press, 2012.
[22] 陈颙, 黄庭芳. 岩石物理学[M]. 北京: 北京大学出版社, 2001.
CHEN Yong, HUANG Tingfang. Rock Physics[M]. Beijing: Peking University Press, 2001.
[23] Tullis T E, Weeks J D. Constitutive behavior and stability of frictional sliding of granite [J]. Pure and Applied Geophysics, 1986, 124(3): 383-414. doi: 10.1007/BF00877209
[24] Delsanto P P, Scalerandi M. Modeling nonclassical nonlinearity, conditioning, and slow dynamics effects in mesoscopic elastic materials [J]. Physical Review B, 2003, 68(6): 064107. doi: 10.1103/PhysRevB.68.064107
[25] Thompson P A, Robbins M O. Origin of stick-slip motion in boundary lubrication [J]. Science, 1990, 250(4982): 792-794. doi: 10.1126/science.250.4982.792
[26] Van Den Abeele K E A, Carmeliet J, Johnson P A, et al. Influence of water saturation on the nonlinear elastic mesoscopic response in Earth materials and the implications to the mechanism of nonlinearity [J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B6): ECV 4-1-ECV 4-11.
[27] 赖勇. 围压对杨氏模量的影响分析[J]. 重庆交通大学学报:自然科学版, 2009, 28(2):246-249, 278
LAI Yong. Effect analysis of confining pressure on Young’s modulus [J]. Journal of Chongqing Jiaotong University:Natural Sciences, 2009, 28(2): 246-249, 278.
[28] 陈运平, 王思敬. 多级循环荷载下饱和岩石的弹塑性响应[J]. 岩土力学, 2010, 31(4):1030-1034 doi: 10.3969/j.issn.1000-7598.2010.04.004
CHEN Yunping, WANG Sijing. Elastoplastic response of saturated rocks subjected to multilevel cyclic loading [J]. Rock and Soil Mechanics, 2010, 31(4): 1030-1034. doi: 10.3969/j.issn.1000-7598.2010.04.004
[29] Brennan B J, Stacey F D. Frequency dependence of elasticity of rock——Test of seismic velocity dispersion [J]. Nature, 1977, 268(5617): 220-222. doi: 10.1038/268220a0
[30] 席道瑛, 陈运平, 陶月赞, 等. 岩石的非线性弹性滞后特征[J]. 岩石力学与工程学报, 2006, 25(6):1086-1093 doi: 10.3321/j.issn:1000-6915.2006.06.002
XI Daoying, CHEN Yunping, TAO Yuezan, et al. Nonlinear elastic hysteric characteristics of rocks [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(6): 1086-1093. doi: 10.3321/j.issn:1000-6915.2006.06.002
[31] Passchier C W, Trouw R A J. Microtectonics[M]. Berlin: Springer, 1996.
[32] Stipp M, Stünitz H, Heilbronner R, et al. The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700°C [J]. Journal of Structural Geology, 2002, 24(12): 1861-1884. doi: 10.1016/S0191-8141(02)00035-4
[33] Vernon R H. Review of microstructural evidence of magmatic and solid-state flow [J]. Visual Geosciences, 2000, 5(2): 1-23. doi: 10.1007/s10069-000-0002-3
[34] Poirier J P. Creep of Crystals: High-Temperature Deformation Processes in Metals, Ceramics and Minerals[M]. Cambridge: Cambridge University Press, 1985.
[35] 陈运平, 席道瑛, 薛彦伟. 循环荷载下饱和岩石的滞后和衰减[J]. 地球物理学报, 2004, 47(4):672-679 doi: 10.3321/j.issn:0001-5733.2004.04.018
CHEN Yunping, XI Daoying, XUE Yanwei. Hysteresis and attenuation of saturated rocks under cyclic loading [J]. Chinese Journal of Geophysics, 2004, 47(4): 672-679. doi: 10.3321/j.issn:0001-5733.2004.04.018
[36] Raterron P, Chen J, Li L, et al. Pressure-induced slip-system transition in forsterite: Single-crystal rheological properties at mantle pressure and temperature [J]. American Mineralogist, 2007, 92(8-9): 1436-1445. doi: 10.2138/am.2007.2474
[37] 张磊, 王文帅, 苗春贺, 等. 花岗岩粗糙表面动摩擦形态演化[J]. 高压物理学报, 2021, 35(3):031201 doi: 10.11858/gywlxb.20200640
ZHANG Lei, WANG Wenshuai, MIAO Chunhe, et al. Rough surface morphology of granite subjected to dynamic friction [J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 031201. doi: 10.11858/gywlxb.20200640
[38] 汪泓, 杨天鸿, 刘洪磊, 等. 循环载荷下干燥及饱和砂岩的变形及声发射特征[J]. 东北大学学报:自然科学版, 2016, 37(8):1161-1165
WANG Hong, YANG Tianhong, LIU Honglei, et al. Deformation and acoustic emission characteristics of dry and saturated sand under cyclic loading and unloading process [J]. Journal of Northeastern University:Natural Science, 2016, 37(8): 1161-1165.
[39] 刘燕, 杨小彬, 汪洋, 等. 基于裂纹的岩石摩擦滑移位移演化实验研究[J]. 矿业科学学报, 2021, 6(4):438-444
LIU Yan, YANG Xiaobin, WANG Yang, et al. Experimental study on the displacement evolution of rock interface friction slip based on crack [J]. Journal of Mining Science and Technology, 2021, 6(4): 438-444.
[40] 王来贵, 赵国超, 刘向峰, 等. 滑动过程中砂岩节理摩擦系数演化规律研究[J]. 煤炭学报, 2021:1-10
WANG Laigui, ZHAO Guochao, LIU Xiangfeng, et al. Analysis the Evolution of Friction Coefficient of Sandstone Joint during Sliding Process [J]. Journal of China Coal Society, 2021: 1-10.
[41] Uchaikin V V. Fractional derivatives for physicists and engineers[M]. Berlin: Springer, 2013.
[42] 席道瑛, 刘爱文, 刘卫. 低频条件下饱和流体砂岩的衰减研究[J]. 地震学报, 1995(04):477-481
XI Daoying, LIU Aiwen, LIU Wei. Attenuation of saturated fluid sandstone at low frequency [J]. Acta Seismologica Sinica, 1995(04): 477-481.
-