-
摘要:
随着深水油气资源开发、天然气水合物试采和海底管线铺设等人类工程活动的日益增多,影响资源开采和工程施工的深海地质灾害备受关注。深海滑坡作为主要深海灾害,其不稳定性研究具有重要的科学意义和实际价值。本文总结了国内外深海滑坡的研究历程,梳理了深海滑坡的形态结构及类型、深海滑坡研究的方法手段,讨论了地震与断层活动、天然气水合物分解两个重要因素对深海斜坡不稳定性的影响。近十年来,随着一些新方法的涌现,研究热点已由深海滑坡的形态结构及分类等转移到深海滑坡的触发机制、滑动过程原位观测等方面。但现场调查技术、物理模拟试验和数值模拟试验仍是深海滑坡研究的主要方法手段,ROV/HOV等非常规技术也在逐步应用于深海滑坡的研究中。深海滑坡的产生通常是由海床内部地质作用和外部水动力作用共同引起,多种触发机制对深海滑坡的耦合作用及新触发机制对深海滑坡的影响仍是未来研究的重点。
Abstract:Human engineering activities under the sea, such as the exploitation of deep-water oil and gas, the trial production of marine gas hydrates, and the construction of submarine pipelines, are rapidly increasing with time. They have attracted great attention from the geosociety since deep-sea geohazards often occur with those submarine resource extraction and engineering activities. Landslide is a kind of geohazard often happened in the deep sea, so the instability study of deep-sea landslides has become an important subject of marine scientific research. This paper is devoted to the research status and progress of deep-sea landslides both at home and abroad, and the morphological classification as well as research methods and means. The effects of earthquake, fault activity and gas hydrate decomposition on the instability of deep-sea slopes are discussed. In the past decade, with the emergence of some new research methods, the research focus of deep-sea landslide has shifted from the morphological classification to the trigger mechanisms and in-situ observation of deep-sea landslides. However, field investigation, physical simulation and numerical simulation still remain as the main means for the study of deep-sea landslides, and unconventional techniques, such as ROV/HOV are also gradually applied. Deep-sea landslides are usually caused by joint internal and external geological and hydrodynamic factors. The coupling effect of trigger mechanisms and the impact of new trigger mechanisms are still the focuses for future researches.
-
Key words:
- deep-water landslide /
- morphological structure /
- landslide types /
- stability analysis
-
图 2 块体搬运体系的结构示意图[16]
Figure 2.
图 3 通过侧扫声纳技术获取的海底滑坡图[32]
Figure 3.
图 4 海底滑坡的地震反射特征[33]
Figure 4.
图 6 观测海底沉积物变形和地震活动的OBT设备及模型[43]
Figure 6.
图 7 海底变形滑动观测系统及组成部分[47]
Figure 7.
图 8 模拟海底滑坡的试验设备[49]
Figure 8.
图 9 海底滑坡诱因及其相互关系[61]
Figure 9.
图 10 海底滑坡触发因素[61]
Figure 10.
图 11 白云滑坡体部滑移区断层作为流体运移通道的地震特征[64]
Figure 11.
图 12 水合物分解导致海底滑坡模式图[76]
Figure 12.
图 13 Storegga滑坡位置及诱发海啸图[80]
Figure 13.
图 14 南海北部陆坡滑坡[85]
Figure 14.
-
[1] Randolph M F, Gaudin C, Gourvenec S M, et al. Recent advances in offshore geotechnics for deep water oil and gas developments [J]. Ocean Engineering, 2011, 38(7): 818-834. doi: 10.1016/j.oceaneng.2010.10.021
[2] Thibodeaux L J, Valsaraj K T, John V T, et al. Marine oil fate: Knowledge gaps, basic research, and development needs; A perspective based on the deepwater horizon spill [J]. Environmental Engineering Science, 2011, 28(2): 87-93. doi: 10.1089/ees.2010.0276
[3] Vanneste M, Sultan N, Garziglia S, et al. Seafloor instabilities and sediment deformation processes: The need for integrated, multi-disciplinary investigations [J]. Marine Geology, 2014, 352: 183-214. doi: 10.1016/j.margeo.2014.01.005
[4] Yuan F, Li L L, Guo Z, et al. Landslide impact on submarine pipelines: Analytical and numerical analysis [J]. Journal of Engineering Mechanics, 2015, 141(2): 04014109. doi: 10.1061/(ASCE)EM.1943-7889.0000826
[5] Sultan N, Voisset M, Marsset B, et al. Potential role of compressional structures in generating submarine slope failures in the Niger Delta [J]. Marine Geology, 2007, 237(3-4): 169-190. doi: 10.1016/j.margeo.2006.11.002
[6] 朱超祁, 贾永刚, 刘晓磊, 等. 海底滑坡分类及成因机制研究进展[J]. 海洋地质与第四纪地质, 2015, 35(6):153-163
ZHU Chaoqi, JIA Yonggang, LIU Xiaolei, et al. Classification and genetic machanism of submarine landslide: a review [J]. Marine Geology & Quaternary Geology, 2015, 35(6): 153-163.
[7] Jeong S W, Leroueil S, Locat J. Applicability of power law for describing the rheology of soils of different origins and characteristics [J]. Canadian Geotechnical Journal, 2009, 46(9): 1011-1023. doi: 10.1139/T09-031
[8] 董友扣, 马家杰, 王栋, 等. 深海滑坡灾害的物质点法模拟[J]. 海洋工程, 2019, 37(5):141-147
DONG Youkou, MA Jiajie, WANG Dong, et al. Investigation of landslide in deep sea using material point method [J]. The Ocean Engineering, 2019, 37(5): 141-147.
[9] 汪发武. 地震诱发的高速远程滑坡过程中土结构破坏和土粒子破碎引起的两种不同的液化机理[J]. 工程地质学报, 2019, 27(1):98-107
WANG Fawu. Liquefactions caused by structure collapse and grain crushing of soils in rapid and long runout landslides triggered by earthquakes [J]. Journal of Engineering Geology, 2019, 27(1): 98-107.
[10] Heezen B C, Ewing W M. Turbidity currents and submarine slumps, and the 1929 Grand Banks [Newfoundland] earthquake [J]. American Journal of Science, 1952, 250(12): 849-873. doi: 10.2475/ajs.250.12.849
[11] 陈自生. 海底滑坡问题的初义[M]. 北京: 中国铁道出版社, 1988: 154-160
CHEN Zisheng. A preliminary discussion of the research on submrne landslides[M]. Beijing: China Railway Publishing House, 1988: 154-160.
[12] PRIOR D B, 金波. 海底滑坡: 形态和命名[J]. 海洋石油, 1983, 3(6):1-5
PRIOR D B, JIN Bo. Submarine landslides: morphology and naming [J]. Offshore Oil, 1983, 3(6): 1-5.
[13] Cruden D M, Varnes D J. Landslide Types and Processes[Z]. Washington: US National Research Council, 1996, 247: 36-75.
[14] Hampton M A, Lee H J, Locat J. Submarine landslides [J]. Reviews of Geophysics, 1996, 34(1): 33-59. doi: 10.1029/95RG03287
[15] Bull S, Cartwright J, Huuse M. A review of kinematic indicators from mass-transport complexes using 3D seismic data [J]. Marine and Petroleum Geology, 2009, 26(7): 1132-1151. doi: 10.1016/j.marpetgeo.2008.09.011
[16] 秦磊, 毛金昕, 倪凤玲, 等. 浅谈深水块体搬运复合体的结构、成因分类以及识别方法[J]. 地球科学进展, 2020, 35(6):632-642
QIN Lei, MAO Jinxin, NI Fengling, et al. A brief introduction to deep-water mass-transport complexes: Structures, genetic classifications and identification methods [J]. Advances in Earth Science, 2020, 35(6): 632-642.
[17] Varnes D J. Slope movement Types and Processes[Z]. Washington: Transportation Research Board, 1978: 11-33.
[18] Canals M, Lastras G, Urgeles R, et al. Slope failure dynamics and impacts from seafloor and shallow sub-seafloor geophysical data: case studies from the COSTA project [J]. Marine Geology, 2004, 213(1-4): 9-72. doi: 10.1016/j.margeo.2004.10.001
[19] Li J, Li W, Alves T M, et al. Different origins of seafloor undulations in a submarine canyon system, northern South China Sea, based on their seismic character and relative location [J]. Marine Geology, 2019, 413: 99-111. doi: 10.1016/j.margeo.2019.04.007
[20] Li W, Alves T M, Wu S G, et al. A giant, submarine creep zone as a precursor of large-scale slope instability offshore the Dongsha Islands (South China Sea) [J]. Earth and Planetary Science Letters, 2016, 451: 272-284. doi: 10.1016/j.jpgl.2016.07.007
[21] 贾永刚, 单红仙. 黄河口海底斜坡不稳定性调查研究[J]. 中国地质灾害与防治学报, 2000, 11(1):1-5 doi: 10.3969/j.issn.1003-8035.2000.01.001
JIA Yonggang, SHAN Hongxian. Investigation and study of slope unstability of subaqueous delta of modern Yellow River [J]. The Chinese Journal of Geological Hazard and Control, 2000, 11(1): 1-5. doi: 10.3969/j.issn.1003-8035.2000.01.001
[22] 王大伟, 吴时国, 秦志亮, 等. 南海陆坡大型块体搬运体系的结构与识别特征[J]. 海洋地质与第四纪地质, 2009, 29(5):65-72
WANG Dawei, WU Shiguo, QIN Zhiliang, et al. Architecture and identification of large quaternary mass transport depositions in the slope of South China Sea [J]. Marine Geology & Quaternary Geology, 2009, 29(5): 65-72.
[23] Weimer P, Slatt R M. Introduction to the petroleum geology of deep-water settings[C]//AAPG Studies in Geology 57. Tulsa: SEPM Special Publication, 2007.
[24] Shanmugam G, Wang Y. The landslide problem [J]. Journal of Palaeogeography, 2015, 4(2): 109-166. doi: 10.3724/SP.J.1261.2015.00071
[25] 殷坤龙, 韩再生, 李志中. 国际滑坡研究的新进展[J]. 水文地质工程地质, 2000, 27(5):1-4 doi: 10.3969/j.issn.1000-3665.2000.05.001
YIN Kunlong, HAN Zaisheng, LI Zhizhong. Progress of landslide researches in the world [J]. Hydrogeology and Engineering Geology, 2000, 27(5): 1-4. doi: 10.3969/j.issn.1000-3665.2000.05.001
[26] 贾永刚, 王振豪, 刘晓磊, 等. 海底滑坡现场调查及原位观测方法研究进展[J]. 中国海洋大学学报, 2017, 47(10):61-72
JIA Yonggang, WANG Zhenhao, LIU Xiaolei, et al. The research progress of field investigation and in-situ observation methods for submarine landslide [J]. Periodical of Ocean University of China, 2017, 47(10): 61-72.
[27] De Blasio F V, Elverhøi A, Issler D, et al. On the dynamics of subaqueous clay rich gravity mass flows—the giant Storegga slide, Norway [J]. Marine and Petroleum Geology, 2005, 22(1-2): 179-186. doi: 10.1016/j.marpetgeo.2004.10.014
[28] 周庆杰. 南海北部陆坡白云凹陷区海底滑坡的识别与特征分析[D]. 国家海洋局第一海洋研究所硕士学位论文, 2015
ZHOU Qingjie. Identification of submarine landslides and characteristics analysis in the Baiyun Sag of the South China Sea Northern solpe[D]. Master Dissertation of the First Institute of Oceanography, State Oceanic Administration, 2015.
[29] McAdoo B G, Pratson L F, Orange D L. Submarine landslide geomorphology, US continental slope [J]. Marine Geology, 2000, 169(1-2): 103-136. doi: 10.1016/S0025-3227(00)00050-5
[30] 胡光海. 东海陆坡海底滑坡识别及致滑因素影响研究[D]. 中国海洋大学博士学位论文, 2010
HU Guanghai. Identification of submarine landslides along the continental slope of the East China Sea and analysis of factors causing submarine landslides[D]. Doctor Dissertation of Ocean University of China, 2010.
[31] 王磊, 吴时国, 李伟. 人机交互地貌解释技术在海底滑坡研究中的应用[J]. 地球物理学进展, 2013, 28(6):3299-3306 doi: 10.6038/pg20130659
WANG Lei, WU Shiguo, LI Wei. The application for interactive geomorphologic interpretation technique in research on submarine landslides [J]. Progress in Geophysics, 2013, 28(6): 3299-3306. doi: 10.6038/pg20130659
[32] Harders R, Ranero C R, Weinrebe W, et al. Submarine slope failures along the convergent continental margin of the Middle America Trench [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(6): Q05S32.
[33] Chen D X, Wang X J, Völker D, et al. Three dimensional seismic studies of deep-water hazard-related features on the northern slope of South China Sea [J]. Marine and Petroleum Geology, 2016, 77: 1125-1139. doi: 10.1016/j.marpetgeo.2016.08.012
[34] 蓝先洪, 温珍河, 李日辉, 等. 海底地质取样的技术标准[J]. 海洋地质前沿, 2014, 30(2):50-55
LAN Xianhong, WEN Zhenhe, LI Rihui, et al. Study on thchnological standard for submarine geological sampling [J]. Marine Geology Frontiers, 2014, 30(2): 50-55.
[35] 杨慧良, 陆凯, 褚宏宪. 海洋地质地球物理调查技术方法发展趋势探讨[J]. 海洋地质前沿, 2019, 35(9):1-5
YANG Huiliang, LU Kai, CHU Hongxian. Future development trend of marine geological and geophysical survey techniques and methods [J]. Marine Geology Frontiers, 2019, 35(9): 1-5.
[36] 朱俊江, 李三忠, 陆敬安, 等. 南海北部神狐海域地质环境综合调查及科学意义[J]. 地球科学, 2020, 45(4):1416-1426
ZHU Junjiang, LI Sanzhong, LU Jing’an, et al. Scientific implications and preliminary surveying results of geological and physical oceanography environment in the Shenhu area of the Northern South China Sea [J]. Earth Science, 2020, 45(4): 1416-1426.
[37] 耿雪樵, 徐行, 刘方兰, 等. 我国海底取样设备的现状与发展趋势[J]. 地质装备, 2009, 10(4):11-16 doi: 10.3969/j.issn.1009-282X.2009.04.002
GENG Xueqiao, XU Xing, LIU Fanglan, et al. The current status and development trends of marine sampling equipment [J]. Equipment for Geotechnical Engineering, 2009, 10(4): 11-16. doi: 10.3969/j.issn.1009-282X.2009.04.002
[38] Yenes M, Monterrubio S, Nespereira J, et al. Apparent overconsolidation and its implications for submarine landslides [J]. Engineering Geology, 2020, 264: 105375. doi: 10.1016/j.enggeo.2019.105375
[39] Richards A F, Øten K, Keller G H, et al. Differential piezometer probe for an in situ measurement of sea-floor [J]. Géotechnique, 1975, 25(2): 229-238.
[40] Bennett R H. Pore-water pressure measurements: Mississippi delta submarine sediments [J]. Marine Geotechnology, 1977, 2(1-4): 177-189. doi: 10.1080/10641197709379778
[41] Sultan N, Cattaneo A, Sibuet J C, et al. Deep sea in situ excess pore pressure and sediment deformation off NW Sumatra and its relation with the December 26, 2004 Great Sumatra-Andaman Earthquake [J]. International Journal of Earth Sciences, 2009, 98(4): 823-837. doi: 10.1007/s00531-008-0334-z
[42] Sultan N, Marsset B, Ker S, et al. Hydrate dissolution as a potential mechanism for pockmark formation in the Niger delta [J]. Journal of Geophysical Research:Solid Earth, 2010, 115(B8): B08101.
[43] Fabian M, Villinger H. Long-term tilt and acceleration data from the Logatchev Hydrothermal Vent Field, Mid-Atlantic Ridge, measured by the Bremen Ocean Bottom Tiltmeter [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(7): Q07016.
[44] Yokoyama T, Shimoyama M, Matsuda S, et al. Monitoring system for seafloor deformation during methane hydrate production test[C]//Proceedings of the Tenth ISOPE Ocean Mining and Gas Hydrates Symposium. Szczecin, Poland: International Society of Offshore and Polar Engineers, 2013: 132-135.
[45] Stenvold T, Eiken O, Zumberge M, et al. High-precision relative depth and subsidence mapping from seafloor water-pressure measurements [J]. SPE Journal, 2006, 11(3): 380-389. doi: 10.2118/97752-PA
[46] Wallace L M, Webb S C, Ito Y, et al. Slow slip near the trench at the Hikurangi subduction zone, New Zealand [J]. Science, 2016, 352(6286): 701-704. doi: 10.1126/science.aaf2349
[47] 贾永刚, 王振豪, 刘晓磊, 等. 海床侧向变形与滑动观测装置及方法: 中国, 201510717982.0[P]. 2016-02-03
JIA Yonggang, WANG Zhenhao, LIU Xiaolei, et al. Seabed deformation observation device and method: CN, 201510717982.0[P]. 2016-02-03.
[48] 邓检良, 张向霞. 基于旋转水槽试验的水下泥石流底部水压研究[J]. 工程地质学报, 2020, 28(5):1000-1006
DENG Jianliang, ZHANG Xiangxia. Study on water pressure at bottom of subaqueous debris flow in rotating flume test [J]. Journal of Engineering Geology, 2020, 28(5): 1000-1006.
[49] Wang F W, Dai Z L, Nakahara Y, et al. Experimental study on impact behavior of submarine landslides on undersea communication cables [J]. Ocean Engineering, 2018, 148: 530-537. doi: 10.1016/j.oceaneng.2017.11.050
[50] Liu T, Lu Y Y, Zhou L, et al. Experiment and analysis of submarine landslide model caused by elevated pore pressure [J]. Journal of Marine Science and Engineering, 2019, 7(5): 146. doi: 10.3390/jmse7050146
[51] Fan N, Nian T K, Jiao H B, et al. Evaluation of the mass transfer flux at interfaces between submarine sliding soils and ambient water [J]. Ocean Engineering, 2020, 216: 108069. doi: 10.1016/j.oceaneng.2020.108069
[52] Gue C S. Submarine landslide flows simulation through centrifuge modelling[D]. Doctor Dissertation of University of Cambridge, 2012.
[53] 孙柏涛. 海底滑坡的离心模型试验研究[D]. 大连理工大学硕士学位论文, 2014
SUN Baitao. Centrifuge modeling test on submarine landslides[D]. Master Dissertation of Dalian University of Technology, 2014.
[54] 霍沿东, 年廷凯, 焦厚滨, 等. 基于极限分析上限方法的海底斜坡地震稳定性[J]. 工程地质学报, 2019, 27(2):408-414
HUO Yandong, NIAN Tingkai, JIAO Houbin, et al. Seismic stability of submarine clay slopes based on upper bound approach [J]. Journal of Engineering Geology, 2019, 27(2): 408-414.
[55] 施家杰, 张巍, 厉成阳, 等. 水合物分解诱发能源土滑坡的物质点法模拟[J]. 工程地质学报, 2019, 27(5):1164-1171
SHI Jiajie, ZHANG Wei, LI Chengyang, et al. Simulation of energy soil landslide induced by hydrate dissociation using material point method [J]. Journal of Engineering Geology, 2019, 27(5): 1164-1171.
[56] 朱晨光, 刘春, 许强, 等. 滑坡滑带摩擦热离散元数值模拟研究[J]. 工程地质学报, 2019, 27(3):651-658
ZHU Chenguang, LIU Chun, XU Qiang, et al. Discrete element numerical simulation research on friction heat in sliding zone of the landslide [J]. Journal of Engineering Geology, 2019, 27(3): 651-658.
[57] 马林伟, 吴时国. 海底滑坡过程的分段模拟研究[C]//第十五届国家安全地球物理专题研讨会论文集. 张掖, 2019: 57-61
MA Linwei, WU Shiguo. Subsection simulation of submarine landslide process[C]// Proceedings of the 15th National Security Geophysics Symposium. Zhangye, 2019: 57-61.
[58] Mi Y, Wang J H. Finite-element modeling of submarine landslide triggered by seismic loading in saturated cohesive soil deposits [J]. Bulletin of Engineering Geology and the Environment, 2021, 80(2): 951-965. doi: 10.1007/s10064-020-02005-4
[59] Locat J, Lee H J. Submarine landslides: advances and challenges [J]. Canadian Geotechnical Journal, 2002, 39(1): 193-212. doi: 10.1139/t01-089
[60] Hance J J. Development of a database and assessment of seafloor slope stability based on published literature[D]. Master Dissertation of the University of Texas at Austin, 2003.
[61] Prior D B, Coleman J M. Active slides and flows in underconsolidated marine sediments on the slopes of the Mississippi Delta[M]//Saxov S, Nieuwenhuis J K. Marine Slides and Other Mass Movements. NATO Conference Series, vol. 6. Boston, MA: Springer, 1982: 21-49.
[62] Cartwright J, Huuse M, Aplin A. Seal bypass systems [J]. AAPG Bulletin, 2007, 91(8): 1141-1166. doi: 10.1306/04090705181
[63] Sun Q L, Wu S G, Cartwright J, et al. Shallow gas and focused fluid flow systems in the Pearl River Mouth Basin, northern South China Sea [J]. Marine Geology, 2012, 315-318: 1-14. doi: 10.1016/j.margeo.2012.05.003
[64] 李伟. 南海北部海底滑坡的地震特征及成因分析[D]. 中国科学院研究生院(海洋研究所)硕士学位论文, 2013
LI Wei. Seismic characteristics and trigger mechanisms of submarine landslides in northern South China Sea[D]. Master Dissertation of the Institute of Oceanology, Chinese Academy of Science, 2013.
[65] Fryer G J, Watts P, Pratson L F. Source of the great tsunami of 1 April 1946: a landslide in the upper Aleutian forearc [J]. Marine Geology, 2004, 203(3-4): 201-218. doi: 10.1016/S0025-3227(03)00305-0
[66] Ide S, Baltay A, Beroza G C. Shallow dynamic overshoot and energetic deep rupture in the 2011 Mw 9.0 Tohoku-Oki earthquake [J]. Science, 2011, 332(6036): 1426-1429. doi: 10.1126/science.1207020
[67] Fujiwara T, Kodaira S, No T, et al. The 2011 Tohoku-Oki earthquake: Displacement reaching the trench axis [J]. Science, 2011, 334(6060): 1240. doi: 10.1126/science.1211554
[68] Nian T K, Guo X S, Zheng D F, et al. Susceptibility assessment of regional submarine landslides triggered by seismic actions [J]. Applied Ocean Research, 2019, 93: 101964. doi: 10.1016/j.apor.2019.101964
[69] Chigira M, Yagi H. Geological and geomorphological characteristics of landslides triggered by the 2004 Mid Niigta prefecture earthquake in Japan [J]. Engineering Geology, 2006, 82(4): 202-221. doi: 10.1016/j.enggeo.2005.10.006
[70] Ripmeester J A, Tse J S, Ratcliffe C I, et al. A new clathrate hydrate structure [J]. Nature, 1987, 325(6100): 135-136. doi: 10.1038/325135a0
[71] Chong Z R, Yang S H B, Babu P, et al. Review of natural gas hydrates as an energy resource: Prospects and challenges [J]. Applied Energy, 2016, 162: 1633-1652. doi: 10.1016/j.apenergy.2014.12.061
[72] Xu W Y, Germanovich L N. Excess pore pressure resulting from methane hydrate dissociation in marine sediments: A theoretical approach [J]. Journal of Geophysical Research:Solid Earth, 2006, 111(B1): B01104.
[73] Max M D, Clifford S M. The state, potential distribution, and biological implications of methane in the Martian crust [J]. Journal of Geophysical Research:Planets, 2000, 105(E2): 4165-4171. doi: 10.1029/1999JE001119
[74] Handwerger A L, Rempel A W, Skarbek R M. Submarine landslides triggered by destabilization of high-saturation hydrate anomalies [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(7): 2429-2445. doi: 10.1002/2016GC006706
[75] Li X P, He S M. Progress in stability analysis of submarine slopes considering dissociation of gas hydrates [J]. Environmental Earth Sciences, 2012, 66(3): 741-747. doi: 10.1007/s12665-011-1282-7
[76] Elger J, Berndt C, Rüpke L, et al. Submarine slope failures due to pipe structure formation [J]. Nature Communications, 2018, 9(1): 715. doi: 10.1038/s41467-018-03176-1
[77] Nian T K, Song X L, Zhao W, et al. Submarine slope failure due to overpressure fluid associated with gas hydrate dissociation [J]. Environmental Geotechnics, 2020: 1-16.(. doi: 10.1680/jenge.19.00070
[78] Bouriak S, Vanneste M, Saoutkine A. Inferred gas hydrates and clay diapirs near the Storegga Slide on the southern edge of the Vøring Plateau, offshore Norway [J]. Marine Geology, 2000, 163(1-4): 125-148. doi: 10.1016/S0025-3227(99)00115-2
[79] Glasby G P. Potential impact on climate of the exploitation of methane hydrate deposits offshore [J]. Marine and Petroleum Geology, 2003, 20(2): 163-175. doi: 10.1016/S0264-8172(03)00021-7
[80] Bondevik S, Løvholt F, Harbitz C, et al. The Storegga Slide tsunami—comparing field observations with numerical simulations [J]. Marine and Petroleum Geology, 2005, 22(1-2): 195-208. doi: 10.1016/j.marpetgeo.2004.10.003
[81] 冯文科, 石要红, 陈玲辉. 南海北部外陆架和上陆坡海底滑坡稳定性研究[J]. 海洋地质与第四纪地质, 1994, 14(2):81-94
FENG Wenke, SHI Yaohong, CHEN Linghui. Research for seafloor landslide stability on the outer continental shelf and the upper continental slope in the northern South China Sea [J]. Marine Geology & Quaternary Geology, 1994, 14(2): 81-94.
[82] 孙运宝, 吴时国, 王志君, 等. 南海北部白云大型海底滑坡的几何形态与变形特征[J]. 海洋地质与第四纪地质, 2008, 28(6):69-77
SUN Yunbao, WU Shiguo, WANG Zhijun, et al. The geometry and deformation characteristics of Baiyun submarine landslide [J]. Marine Geology & Quaternary Geology, 2008, 28(6): 69-77.
[83] 吴时国, 秦志亮, 王大伟, 等. 南海北部陆坡块体搬运沉积体系的地震响应与成因机制[J]. 地球物理学报, 2011, 54(12):3184-3195 doi: 10.3969/j.issn.0001-5733.2011.12.018
WU Shiguo, QIN Zhiliang, WANG Dawei, et al. Seismic characteristics and triggering mechanism analysis of mass transport deposits in the northern continental slope of the South China Sea [J]. Chinese Journal of Geophysics, 2011, 54(12): 3184-3195. doi: 10.3969/j.issn.0001-5733.2011.12.018
[84] 王磊, 吴时国, 李清平, 等. 珠江口盆地陆架坡折带海底滑坡及其影响因素[J]. 海洋科学, 2016, 40(5):131-141 doi: 10.11759/hykx20140115002
WANG Lei, WU Shiguo, LI Qingping, et al. Submarine slides and influencing factors in the continental shelf break area of the Pearl River Mouth Basin [J]. Marine Sciences, 2016, 40(5): 131-141. doi: 10.11759/hykx20140115002
[85] Zhu C Q, Cheng S, Li Q P, et al. Giant submarine landslide in the South China Sea: Evidence, causes, and implications [J]. Journal of Marine Science and Engineering, 2019, 7(5): 152. doi: 10.3390/jmse7050152