新西兰Hikurangi俯冲带沉积物成岩作用示踪研究:来自孔隙流体Sr同位素证据

孔丽茹, 罗敏, 陈多福. 新西兰Hikurangi俯冲带沉积物成岩作用示踪研究:来自孔隙流体Sr同位素证据[J]. 海洋地质与第四纪地质, 2021, 41(6): 115-123. doi: 10.16562/j.cnki.0256-1492.2021071202
引用本文: 孔丽茹, 罗敏, 陈多福. 新西兰Hikurangi俯冲带沉积物成岩作用示踪研究:来自孔隙流体Sr同位素证据[J]. 海洋地质与第四纪地质, 2021, 41(6): 115-123. doi: 10.16562/j.cnki.0256-1492.2021071202
KONG Liru, LUO Min, CHEN Duofu. A tracing study of sediment diagenesis in the Hikurangi subduction zone, New Zealand: Evidence from Sr isotope of pore fluid[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 115-123. doi: 10.16562/j.cnki.0256-1492.2021071202
Citation: KONG Liru, LUO Min, CHEN Duofu. A tracing study of sediment diagenesis in the Hikurangi subduction zone, New Zealand: Evidence from Sr isotope of pore fluid[J]. Marine Geology & Quaternary Geology, 2021, 41(6): 115-123. doi: 10.16562/j.cnki.0256-1492.2021071202

新西兰Hikurangi俯冲带沉积物成岩作用示踪研究:来自孔隙流体Sr同位素证据

  • 基金项目: 国家重点研发计划课题“冷泉系统元素迁移转换过程及影响因素”(2018YFC0310003);国家自然科学基金面上项目“新西兰Hikurangi俯冲带孔隙流体来源和水岩作用示踪研究:对流体活动和慢滑移事件的指示”(42076057)
详细信息
    作者简介: 孔丽茹(1996—),女,硕士研究生,主要从事海洋地质研究,E-mail:m190200562@st.shou.edu.cn
    通讯作者: 罗敏(1987—),男,副研究员,主要从事海洋地球化学研究,E-mail:mluo@shou.edu.cn
  • 中图分类号: P736.4

A tracing study of sediment diagenesis in the Hikurangi subduction zone, New Zealand: Evidence from Sr isotope of pore fluid

More Information
  • 俯冲带是地球上地质活动最活跃的地带之一,对地球表面和内部的演化具有重要意义。俯冲带慢滑移事件作为一种重要的断层滑动方式在近十几年才逐渐被地球物理学家所认识。浅源慢滑移可以使浅部断层发生破裂至海底,引发大规模海啸。了解孔隙流体来源和俯冲带沉积物成岩作用有助于认识慢滑移事件的成因机制。以国际大洋发现计划(IODP)375航次在新西兰Hikurangi俯冲板块钻探站位(U1520)和变形前缘逆冲断层钻探站位(U1518)为研究对象,对两个站位沉积物孔隙流体的SO42-、Ca2+、Mg2+和Sr2+浓度以及放射性Sr同位素(87Sr/86Sr)进行了分析。结果显示两个站位Ca2+与Mg2+浓度、Sr2+浓度与87Sr/86Sr呈负相关关系是由于火山灰蚀变作用导致的。两个站位浅层0~14.3和0~37.3 mbsf沉积物孔隙水中的Ca2+、Mg2+浓度同时降低,表明发生了自生碳酸盐沉淀。同时,俯冲板块U1520站位的岩性单元IV(509.82~848.45 mbsf)Mg2+浓度随深度减小,Ca2+、Sr2+浓度则增加,但87Sr/86Sr基本保持不变,显示了碳酸盐重结晶作用。在其下部以火山碎屑岩为主的岩性单元V(848.45~1 016.24 mbsf)沉积物孔隙水的SO42-、Ca2+、Mg2+浓度均趋近海水值,这可能是由于海水在渗透性较好的火山碎屑岩中发生横向流动导致。因此,推测俯冲板片的岩性和成岩作用是高度的不均一,容易促使俯冲板片进入俯冲带后形成特殊的应力场和异常的流体压力,进而可能与Hikurangi俯冲带频发的慢滑移事件有关。

  • 加载中
  • 图 1  研究区和采样站位位置[27]

    Figure 1. 

    图 2  岩性柱状图及孔隙流体SO42-、Ca2+、Mg2+、Sr2+浓度以及放射性Sr同位素组成(87Sr/86Sr)[28-29]

    Figure 2. 

    图 3  火山灰层及火山玻璃[28-29]

    Figure 3. 

    图 4  孔隙流体Ca2+与Mg2+浓度关系图[28-29]

    Figure 4. 

    图 5  1/Sr-87Sr/86Sr关系图[28-29]

    Figure 5. 

  • [1]

    Stern J R. Subduction zones [J]. Reviews of Geophysics, 2002, 40(4): 1012. doi: 10.1029/2001RG000108

    [2]

    Zheng Y F, Chen Y X. Continental versus oceanic subduction zones [J]. National Science Review, 2016, 3(4): 495-519. doi: 10.1093/nsr/nww049

    [3]

    唐盼, 郭顺. 绿帘石记录俯冲带变质流体活动[J]. 岩石学报, 2019, 35(7):2045-2060 doi: 10.18654/1000-0569/2019.07.07

    TANG Pan, GUO Shun. Epidote records subduction-zone metamorphic fluid actions [J]. Acta Petrologica Sinica, 2019, 35(7): 2045-2060. doi: 10.18654/1000-0569/2019.07.07

    [4]

    Davis D, Suppe J, Dahlen F A. Mechanics of fold-and-thrust belts and accretionary wedges [J]. Journal of Geophysical Research:Solid Earth, 1983, 88(B2): 1153-1172. doi: 10.1029/JB088iB02p01153

    [5]

    Huene R V, Ranero C R, Vannucchi P. Generic model of subduction erosion [J]. Geology, 2004, 32(10): 913-916. doi: 10.1130/G20563.1

    [6]

    Moore C J, Saffer D. Updip limit of the seismogenic zone beneath the accretionary prism of southwest Japan: An effect of diagenetic to low-grade metamorphic processes and increasing effective stress [J]. Geology, 2001, 29(2): 183-186. doi: 10.1130/0091-7613(2001)029<0183:ULOTSZ>2.0.CO;2

    [7]

    Schnabel M, Flueh E R, Klaeschen D, et al. AVA analysis reveals in situ sediment diagenesis at the Costa Rican décollement [J]. Sedimentary Geology, 2007, 196(1-4): 269-277. doi: 10.1016/j.sedgeo.2006.06.003

    [8]

    于在平. 俯冲带的流体地质作用[J]. 地学前缘, 1995, 2(1-2):175-182

    YU Zaiping. Fluids in subduction zones [J]. Earth Science Frontiers, 1995, 2(1-2): 175-182.

    [9]

    Deyhle A, Kopf A, Frape S, et al. Evidence for fluid flow in the Japan Trench forearc using isotope geochemistry (Cl, Sr, B): Results from ODP Site 1150 [J]. Island Arc, 2004, 13(1): 258-270. doi: 10.1111/j.1440-1738.2003.00424.x

    [10]

    Clough G W, Sitar N, Bachus R C, et al. Cemented sands under static loading [J]. Journal of the Geotechnical Engineering Division, 1981, 107(6): 799-817. doi: 10.1061/AJGEB6.0001152

    [11]

    Karig D E. Reconsolidation tests and sonic velocity measurements of clay-rich sediments from the Nankai Trough [J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1993, 131: 247-260.

    [12]

    White R J, Spinelli G A, Mozley P S, et al. Importance of volcanic glass alteration to sediment stabilization: offshore Japan [J]. Sedimentology, 2011, 58(5): 1138-1154. doi: 10.1111/j.1365-3091.2010.01198.x

    [13]

    Kameda J, Hina S, Kobayashi K, et al. Silica diagenesis and its effect on interplate seismicity in cold subduction zones [J]. Earth and Planetary Science Letters, 2012, 317-318: 136-144. doi: 10.1016/j.jpgl.2011.11.041

    [14]

    Harris R, Yamano M, Kinoshita M, et al. A synthesis of heat flow determinations and thermal modeling along the Nankai Trough, Japan [J]. Journal of Geophysical Research:Solid Earth, 2013, 118(6): 2687-2702. doi: 10.1002/jgrb.50230

    [15]

    Audet P, Bostock M G, Christensen N I, et al. Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing [J]. Nature, 2009, 457(7225): 76-78. doi: 10.1038/nature07650

    [16]

    Bell R, Sutherland R, Barker D H N, et al. Seismic reflection character of the Hikurangi subduction interface, New Zealand, in the region of repeated Gisborne slow slip events [J]. Geophysical Journal International, 2010, 180(1): 34-48. doi: 10.1111/j.1365-246X.2009.04401.x

    [17]

    Song T R A, Helmberger D V, Brudzinski M R, et al. Subducting slab ultra-slow velocity layer coincident with silent earthquakes in southern Mexico [J]. Science, 2009, 324(5926): 502-506. doi: 10.1126/science.1167595

    [18]

    Veizer J. Strontium isotopes in seawater through time [J]. Annual Review of Earth and Planetary Sciences, 1989, 17: 141-167. doi: 10.1146/annurev.ea.17.050189.001041

    [19]

    Teichert B M A, Torres M E, Bohrmann G, et al. Fluid sources, fluid pathways and diagenetic reactions across an accretionary prism revealed by Sr and B geochemistry [J]. Earth and Planetary Science Letters, 2005, 239(1-2): 106-121. doi: 10.1016/j.jpgl.2005.08.002

    [20]

    Torres M E, Teichert B M A, Tréhu A M, et al. Relationship of pore water freshening to accretionary processes in the Cascadia margin: Fluid sources and gas hydrate abundance [J]. Geophysical Research Letters, 2004, 31(22): L22305.

    [21]

    Mccarthy M, Zirkle B, Torres M E, et al. Data report: 87Sr/86Sr in pore fluids from Expedition 362[R]. Proceedings of the International Ocean Discovery Program, 2019, 362.

    [22]

    Murray N A, McManus J, Palmer M R, et al. Diagenesis in tephra-rich sediments from the Lesser Antilles Volcanic Arc: Pore fluid constraints [J]. Geochimica et Cosmochimica Acta, 2018, 228: 119-135. doi: 10.1016/j.gca.2018.02.039

    [23]

    Gieskes J M, Elderfield H, Palmer M R. Strontium and its isotopic composition in interstitial waters of marine carbonate sediments [J]. Earth and Planetary Science Letters, 1986, 77(2): 229-235. doi: 10.1016/0012-821X(86)90163-9

    [24]

    Wallace L M, Beavan J, McCaffrey R, et al. Subduction zone coupling and tectonic block rotations in the North Island, New Zealand [J]. Journal of Geophysical Research:Solid Earth, 2004, 109(B12): B12406. doi: 10.1029/2004JB003241

    [25]

    Pedley K L, Barnes P M, Pettinga J R, et al. Seafloor structural geomorphic evolution of the accretionary frontal wedge in response to seamount subduction, Poverty Indentation, New Zealand [J]. Marine Geology, 2010, 270(1-4): 119-138. doi: 10.1016/j.margeo.2009.11.006

    [26]

    Wallace L M, Beavan J. Diverse slow slip behavior at the Hikurangi subduction margin, New Zealand [J]. Journal of Geophysical Research:Solid Earth, 2010, 115(B12): B12402. doi: 10.1029/2010JB007717

    [27]

    Wallace L M, Saffer D M, Barnes P M, et al. Hikurangi subduction margin coring, logging, and observatories[R]. Proceedings of the International Ocean Discovery Program, 2019, 372B.

    [28]

    Saffer D M, Wallace L M, Barnes P M, et al. Site U1518[R]. Proceedings of the International Ocean Discovery Program, 2019, 372B.

    [29]

    Barnes P M, Wallace L M, Saffer D M, et al. Site U1520[R]. Proceedings of the International Ocean Discovery Program, 2019, 372B.

    [30]

    Gieskes J M, Lawrence J R. Alteration of volcanic matter in deep sea sediments: evidence from the chemical composition of interstitial waters from deep sea drilling cores [J]. Geochimica et Cosmochimica Acta, 1981, 45(10): 1687-1703. doi: 10.1016/0016-7037(81)90004-1

    [31]

    Gieskes J M. The chemistry of interstitial waters of deep sea sediments: Interpretation of deep sea drilling data[M]//Riley J P, Chester R. Chemical Oceanography. London: Academic Press, 1983, 8: 221-269.

    [32]

    Hein J R, O'Neil J R, Jones M G. Origin of authigenic carbonates in sediment from the deep Bering Sea [J]. Sedimentology, 1979, 26(5): 681-705. doi: 10.1111/j.1365-3091.1979.tb00937.x

    [33]

    Gieskes J M, Lawrence J R, Perry E A, et al. Chemistry of interstitial waters and sediments in the Norwegian-Greenland Sea, Deep Sea Drilling Project Leg 38 [J]. Chemical Geology, 1987, 63(1-2): 143-155. doi: 10.1016/0009-2541(87)90081-7

    [34]

    Scholz F, Hensen C, Schmidt M, et al. Submarine weathering of silicate minerals and the extent of pore water freshening at active continental margins [J]. Geochimica et Cosmochimica Acta, 2013, 100: 200-216. doi: 10.1016/j.gca.2012.09.043

    [35]

    Martin J B, Kastner M, Henry P, et al. Chemical and isotopic evidence for sources of fluids in a mud volcano field seaward of the Barbados accretionary wedge [J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B9): 20325-20345. doi: 10.1029/96JB00140

    [36]

    James R H, Palmer M R. Marine geochemical cycles of the alkali elements and boron: the role of sediments [J]. Geochimica et Cosmochimica Acta, 2000, 64(18): 3111-3122. doi: 10.1016/S0016-7037(00)00418-X

    [37]

    Mcduff R E, Gieskes J M. Calcium and magnesium profiles in DSDP interstitial waters: Diffusion or reaction? [J]. Earth and Planetary Science Letters, 1976, 33(1): 1-10. doi: 10.1016/0012-821X(76)90151-5

    [38]

    Lyons T W, Murray R W, Pearson D G. 19. A comparative study of diagenetic pathways in sediments of the Caribbean Sea: highlights from pore-water results [J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1995, 165: 287-298.

    [39]

    Gieskes J M, Vrolijk P, Blanc G. Hydrogeochemistry, ODP Leg 110: An Overview [J]. Proceedings of the Ocean Drilling Program, Scientific results, 1986, 110: 395-408.

    [40]

    Aller R C. Sedimentary diagenesis, depositional environments, and benthic fluxes[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier Ltd., 2014, 8: 293-334.

    [41]

    Hesse R, Schacht U. Early diagenesis of deep-sea sediments [J]. Developments in Sedimentology, 2011, 63: 557-713.

    [42]

    Joseph C, Torres M E, Martin R A, et al. Using the 87Sr/86Sr of modern and paleoseep carbonates from northern Cascadia to link modern fluid flow to the past [J]. Chemical Geology, 2012, 334: 122-130. doi: 10.1016/j.chemgeo.2012.10.020

    [43]

    Sample J C, Torres M E, Fisher A, et al. Geochemical constraints on the temperature and timing of carbonate formation and lithification in the Nankai Trough, NanTroSEIZE transect [J]. Geochimica et Cosmochimica Acta, 2017, 198: 92-114. doi: 10.1016/j.gca.2016.10.013

    [44]

    Perry E A Jr, Gieskes J M, Lawrence J R. Mg, Ca and exchange in the sediment-pore water system, hole 149, DSDP [J]. Geochimica et Cosmochimica Acta, 1976, 40(4): 413-423. doi: 10.1016/0016-7037(76)90006-5

    [45]

    Higgins J A, Schrag D P. Records of Neogene seawater chemistry and diagenesis in deep-sea carbonate sediments and pore fluids [J]. Earth and Planetary Science Letters, 2012, 357-358: 386-396. doi: 10.1016/j.jpgl.2012.08.030

    [46]

    Saffer D M, Tobin H J. Hydrogeology and mechanics of subduction zone forearcs: Fluid flow and pore pressure [J]. Annual Review of Earth and Planetary Sciences, 2011, 39(1): 157-186. doi: 10.1146/annurev-earth-040610-133408

    [47]

    Saffer D M, Wallace L M. The frictional, hydrologic, metamorphic and thermal habitat of shallow slow earthquakes [J]. Nature Geoscience, 2015, 8(8): 594-600. doi: 10.1038/ngeo2490

    [48]

    Torres M E, Cox T, Hong W L, et al. Crustal fluid and ash alteration impacts on the biosphere of Shikoku Basin sediments, Nankai Trough, Japan [J]. Geobiology, 2015, 13(6): 562-580. doi: 10.1111/gbi.12146

    [49]

    Morgan J K, Karig D E, Maniatty A. The estimation of diffuse strains in the toe of the western Nankai accretionary prism: A kinematic solution [J]. Journal of Geophysical Research:Solid Earth, 1994, 99(B4): 7019-7032. doi: 10.1029/93JB03367

    [50]

    Saidi F, Bernabé Y, Reuschlé T. The mechanical behaviour of synthetic, poorly consolidated granular rock under uniaxial compression [J]. Tectonophysics, 2003, 370(1-4): 105-120. doi: 10.1016/S0040-1951(03)00180-X

    [51]

    Schnaid F, Prietto P D M, Consoli N C. Characterization of cemented sand in triaxial compression [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(10): 857-868. doi: 10.1061/(ASCE)1090-0241(2001)127:10(857)

    [52]

    Spinelli G A, Mozley P S, Tobin H J, et al. Diagenesis, sediment strength, and pore collapse in sediment approaching the Nankai Trough subduction zone [J]. GSA Bulletin, 2007, 119(3-4): 377-390. doi: 10.1130/B25920.1

    [53]

    McDuff R E. Major cation gradients in DSDP interstitial waters: the role of diffusive exchange between seawater and upper oceanic crust [J]. Geochimica et Cosmochimica Acta, 1981, 45(10): 1705-1713. doi: 10.1016/0016-7037(81)90005-3

  • 加载中

(5)

计量
  • 文章访问数:  1457
  • PDF下载数:  39
  • 施引文献:  0
出版历程
收稿日期:  2021-07-12
修回日期:  2021-08-09
刊出日期:  2021-12-28

目录