西太平洋采薇海山和徐福海山富钴结壳稀土元素地球化学特征及来源

高晶晶, 刘季花, 张辉, 闫仕娟, 汪虹敏, 崔菁菁, 何连花. 西太平洋采薇海山和徐福海山富钴结壳稀土元素地球化学特征及来源[J]. 海洋地质与第四纪地质, 2022, 42(3): 87-99. doi: 10.16562/j.cnki.0256-1492.2021071302
引用本文: 高晶晶, 刘季花, 张辉, 闫仕娟, 汪虹敏, 崔菁菁, 何连花. 西太平洋采薇海山和徐福海山富钴结壳稀土元素地球化学特征及来源[J]. 海洋地质与第四纪地质, 2022, 42(3): 87-99. doi: 10.16562/j.cnki.0256-1492.2021071302
GAO Jingjing, LIU Jihua, ZHANG Hui, YAN Shijuan, WANG Hongmin, CUI Jingjing, HE Lianhua. Geochemistry and sources of rare earth elements in cobalt-rich crusts from the Caiwei and Xufu seamounts, West Pacific Ocean[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 87-99. doi: 10.16562/j.cnki.0256-1492.2021071302
Citation: GAO Jingjing, LIU Jihua, ZHANG Hui, YAN Shijuan, WANG Hongmin, CUI Jingjing, HE Lianhua. Geochemistry and sources of rare earth elements in cobalt-rich crusts from the Caiwei and Xufu seamounts, West Pacific Ocean[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 87-99. doi: 10.16562/j.cnki.0256-1492.2021071302

西太平洋采薇海山和徐福海山富钴结壳稀土元素地球化学特征及来源

  • 基金项目: 青岛海洋科学与技术试点国家实验室山东省专项经费 “多金属结核和富钴结壳关键金属分布规律与评价利用”(2021QNLM020003-2);国际海域资源调查开发“十三五”资源环境课题“合同区海山富钴结壳伴生有用元素成矿机制与多组分综合评价指标体系研究”(DY135-C1-1-04);国家自然科学基金项目“太平洋富钴铁锰结壳铂族元素赋存状态及其富集机制研究”(40976038)
详细信息
    作者简介: 高晶晶(1980—),女,工程师,主要从事海洋地球化学分析研究,E-mail:gaojingjing8@163.com
  • 中图分类号: P736.4

Geochemistry and sources of rare earth elements in cobalt-rich crusts from the Caiwei and Xufu seamounts, West Pacific Ocean

  • 利用X射线衍射法、等离子体发射光谱法和等离子体质谱法分析了西太平洋采薇海山和徐福海山富钴结壳矿物相组成以及常微量元素含量,探讨稀土元素地球化学特征和物质来源。研究表明,富钴结壳样品主要结晶矿物为水羟锰矿,次要矿物包括石英、斜长石、钾长石和碳氟磷灰石,同时含有大量非晶态铁氧/氢氧化物。富钴结壳的Mn和Fe含量最高,Mn含量为16.20%~26.62%,Fe含量为8.56%~18.19%,老壳层(IV和V)发生了磷酸盐化作用。富钴结壳的稀土元素明显富集,轻稀土元素明显高于重稀土元素,稀土总量为1 842~2 854 µg/g,其中,Ce约占50%。老壳层中稀土元素含量明显高于新壳层,这可能与老壳层发生磷酸盐化作用有关。稀土元素配分模式呈现Ce正异常、Eu无异常,具有明显Ce富集特征。富钴结壳的稀土元素与Ce、Y、CaO、P2O5、Ba和Sr具有正相关性关系,与Fe、Al2O3、Na2O、K2O、MgO、TiO2、Pb和V具有负相关性关系,与Mn、Co、Cu、Ni和Zn相关性不明显。利用聚类分析方法,可以把富钴结壳的元素分成4组:①磷酸盐组:REE、Ce、Y、CaO、P2O5、Ba和Sr; ②亲锰元素组:Mn、Co、Cu、Ni和Zn;③亲铁元素组:Fe、TiO2、Pb和V;④碎屑元素组:Al2O3、Na2O、K2O和MgO。西太平洋采薇海山和徐福海山富钴结壳是水成沉积成因,稀土元素的来源推测为海水中稀土元素随磷酸盐组分共同沉淀而进入富钴结壳,从而导致稀土元素的富集。

  • 加载中
  • 图 1  富钴结壳CD16和XD3样品采集站位位置

    Figure 1. 

    图 2  富钴结壳CD16和XD3样品照片及分层取样图

    Figure 2. 

    图 3  富钴结壳CD16和XD3样品X射线衍射图谱

    Figure 3. 

    图 4  富钴结壳成因判别三角图[26]

    Figure 4. 

    图 5  富钴结壳CD16和XD3样品稀土元素配分曲线图

    Figure 5. 

    图 6  富钴结壳特征元素相关性图[30]

    Figure 6. 

    图 7  富钴结壳稀土元素和常量元素之间相关性关系图

    Figure 7. 

    图 8  富钴结壳元素聚类谱图

    Figure 8. 

    表 1  富钴结壳CD16和XD3不同构造层样品描述

    Table 1.  Description of different structural layer in cobalt-rich crust samples CD16 and XD3

    样品编号构造层深度/mm样品描述
    CD16(I)第I构造层0~16褐黑色,较致密,表层葡萄体状突起,柱状构造
    CD16(II)第II构造层16~26黑色,致密,柱状构造
    CD16(III)第III构造层26~60黄褐色,疏松,黏土较多,树丛状构造
    CD16(IV)第IV构造层60~88黑色,致密,发育磷酸盐脉,斑杂状构造
    CD16(V)第V构造层88~98亮黑色,致密,较多磷酸盐脉,水平层纹状构造
    XD3(I)第I构造层0~14褐黑色,较致密,表层鲕粒状突起,柱状构造
    XD3(II)第II构造层14~24黑色,致密,柱状构造
    XD3(III)第III构造层24~56黄褐色,疏松,黏土较多,树枝状构造
    XD3(IV)第IV构造层56~82黑色,致密,磷酸盐化严重,斑杂状构造
    XD3(V)第V构造层82~120亮黑色,致密,较多磷酸盐脉,水平纹状构造
    下载: 导出CSV

    表 2  富钴结壳CD16和XD3样品常量元素含量

    Table 2.  Major elements contents of the cobalt-rich crust samples of CD16 and XD3

    元素CD16(I)CD16(II)CD16(III)CD16(IV)CD16(V)XD3(I)XD3(II)XD3(III)XD3(IV)XD3(V)
    Mn16.2022.7818.8518.5220.2620.2324.2026.6217.7221.12
    Fe17.1016.2616.6210.788.5618.1915.6211.289.719.80
    CaO2.653.163.4617.1217.322.863.374.7517.9512.39
    P2O50.800.821.209.459.590.880.781.4310.186.49
    Al2O31.671.492.811.040.661.521.541.981.230.44
    Na2O2.462.572.612.151.972.202.162.281.921.73
    MgO1.701.901.971.641.511.731.802.211.551.34
    TiO21.891.841.891.381.221.961.751.511.411.62
    K2O0.790.600.830.490.470.590.500.720.590.43
    Co0.430.630.460.400.550.550.620.730.300.58
    Ni0.290.440.360.440.420.310.460.780.400.27
    Cu0.090.130.120.120.150.150.170.180.130.09
    Pb0.180.160.160.120.110.190.170.140.110.15
    Ba0.100.140.150.170.190.120.140.170.160.26
    Sr0.110.140.130.160.160.140.150.140.140.18
    V629621561504512621592582452569
    Zn460564597626617502586837545585
    Mn/Fe0.951.401.131.722.371.111.552.361.822.16
    CaO/P2O53.313.852.881.811.813.254.323.321.761.91
      注:表中元素Mn-Sr单位为%,V-Zn单位为µg/g。
    下载: 导出CSV

    表 3  富钴结壳CD16和XD3样品稀土元素含量

    Table 3.  REE contents of the cobalt-rich crust sample of CD16 and XD3

    元素CD16(I)CD16(II)CD16(III)CD16(IV)CD16(V)XD3(I)XD3(II)XD3(III)XD3(IV)XD3(V)
    La179220213304323277297286309375
    Ce6007527371 0781 1018209248861 1141 459
    Pr33.544.241.047.847.958.865.359.765.776.4
    Nd138174162195186235256234261302
    Sm27.835.733.336.435.046.849.247.049.658.9
    Eu7.188.908.419.489.1411.512.111.312.214.6
    Gd34.341.840.550.950.858.058.253.160.368.5
    Tb5.276.195.897.036.789.319.318.198.7110.0
    Dy31.338.937.047.345.654.053.549.250.759.3
    Ho6.617.787.5010.810.210.311.39.610.311.7
    Er19.423.621.732.631.432.031.630.029.633.7
    Tm2.903.533.204.674.734.574.544.224.164.90
    Yb19.423.421.030.831.629.728.826.827.131.9
    Lu3.023.563.215.005.044.484.354.024.044.76
    Y115147131364383191202175306344
    REE1 2231 5311 4662 2232 2711 8422 0071 8852 3132 854
    LREE9861 2351 1951 6701 7021 4491 6041 5251 8122 286
    HREE237296271553569393404360501569
    LREE/HREE4.154.184.413.022.993.683.974.233.624.02
    Y/Ho17.418.917.533.637.618.517.818.229.629.4
    LaN/YbN0.900.910.980.960.990.901.001.041.101.14
    δCe1.671.651.701.901.871.401.441.471.701.87
    δEu1.021.011.010.970.950.970.990.990.981.01
      注:表中元素La-HREE单位为µg/g,轻稀土元素(LREE)=La+Ce+Pr+Nd+Sm+Eu,重稀土元素(HREE)=Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu+Y,δCe=2CeN/(LaN+PrN),δEu=2EuN/(SmN+GdN),LaN、CeN、PrN、SmN、EuN、GdN均为北美页岩标准化后的值。北美页岩数据引自文献[27]。
    下载: 导出CSV

    表 4  富钴结壳元素之间相关系数矩阵

    Table 4.  Element Correlation matrix of the cobalt-rich crusts

    元素MnFeCaOP2O5Al2O3Na2OK2OMgOTiO2CoCuNiBaSrPbVZnYCeREE
    Mn1
    Fe−0.0611
    CaO−0.322−0.879**1
    P2O5−0.365−0.859**0.999**1
    Al2O30.0770.634*−0.674*−0.668*1
    Na2O0.0030.746*−0.719*−0.710*0.815**1
    K2O−0.1690.545−0.592−0.5770.876**0.776**1
    MgO0.5350.442−0.655*−0.673*0.815**0.742*0.665*1
    TiO2−0.0380.941**−0.882**−0.862**0.5650.6210.5140.3401
    Co0.901**0.113−0.493−0.5290.0510.115−0.0930.4710.1551
    Cu0.727*−0.028−0.155−0.1840.2090.032−0.0750.552−0.1920.5361
    Ni0.735*−0.263−0.065−0.1050.2580.1390.1410.705*−0.3550.5260.742*1
    Ba0.211−0.761*0.5750.554−0.590−0.711*−0.591−0.478−0.5440.168−0.1770.0071
    Sr0.288−0.659*0.5830.560−0.724*−0.756*−0.875**−0.534−0.5390.2140.029−0.0220.869**1
    Pb0.0760.902**−0.895**−0.882**0.4220.4910.3760.2890.945**0.311−0.087−0.307−0.509−0.4421
    V0.3010.775**−0.899**−0.899**0.3240.5410.3320.4010.808**0.590−0.003−0.073−0.406−0.3690.903**1
    Zn0.720*−0.4610.0910.0490.137−0.0530.0140.532−0.4620.5510.5820.897**0.3810.278−0.409−0.1741
    Y−0.141−0.852**0.930**0.921**−0.813**−0.838**−0.806**−0.721*−0.833**−0.255−0.074−0.0990.704*0.806**−0.758*−0.738*0.1211
    Ce0.075−0.804**0.740*0.725*−0.762*−0.912**−0.782**−0.679*−0.630−0.048−0.137−0.1010.911**0.906**−0.569−0.5690.1950.863**1
    REE0.127−0.790**0.734*0.717*−0.767**−0.941**−0.822**−0.652*−0.643*−0.022−0.015−0.0500.857**0.908**−0.558−0.5730.2130.872**0.988**1
      注:相关系数为pearson简单系数,n=10;**表示置信度P为99%;*表示置信度P为95%。
    下载: 导出CSV

    表 5  富钴结壳元素因子分析及方差贡献

    Table 5.  Element factor analysis and variance contribution of the cobalt-rich crusts

    元素成份
    F1F2F3
    Sr0.93−0.170.16
    K2O−0.900.130.02
    REE0.90−0.360.04
    Ce0.90−0.37−0.01
    Al2O3−0.850.220.22
    Na2O−0.850.350.09
    Ba0.81−0.260.15
    Y0.75−0.62−0.10
    MgO−0.690.220.68
    V−0.210.930.09
    Pb−0.270.93−0.15
    TiO2−0.420.84−0.24
    CaO0.50−0.84−0.19
    P2O50.48−0.84−0.23
    Fe−0.580.76−0.20
    Ni−0.19−0.240.93
    Mn0.220.310.91
    Zn0.06−0.280.91
    Cu−0.08−0.020.80
    Co0.220.560.76
    特征值7.675.974.52
    方差贡献/%38.3429.8422.62
    累计方差贡献/%38.3468.1790.79
    下载: 导出CSV
  • [1]

    Marino E, González F J, Somoza L, et al. Strategic and rare elements in Cretaceous-Cenozoic cobalt-rich ferromanganese crusts from seamounts in the Canary Island Seamount Province (northeastern tropical Atlantic) [J]. Ore Geology Reviews, 2017, 87: 41-61. doi: 10.1016/j.oregeorev.2016.10.005

    [2]

    Josso P, Rushton J, Lusty P, et al. Late Cretaceous and Cenozoic paleoceanography from north-east Atlantic ferromanganese crust microstratigraphy [J]. Marine Geology, 2020, 422: 106122. doi: 10.1016/j.margeo.2020.106122

    [3]

    Gueguen B, Rouxel O, Fouquet Y. Nickel isotopes and rare earth elements systematics in marine hydrogenetic and hydrothermal ferromanganese deposits [J]. Chemical Geology, 2021, 560: 119999. doi: 10.1016/j.chemgeo.2020.119999

    [4]

    Azami K, Hirano N, Machida S, et al. Rare earth elements and yttrium (REY) variability with water depth in hydrogenetic ferromanganese crusts [J]. Chemical Geology, 2018, 493: 224-233. doi: 10.1016/j.chemgeo.2018.05.045

    [5]

    Zawadzki D, Maciąg Ł, Kotliński R A, et al. Geochemistry of cobalt-rich ferromanganese crusts from the Perth Abyssal Plain (E Indian Ocean) [J]. Ore Geology Reviews, 2018, 101: 520-531. doi: 10.1016/j.oregeorev.2018.08.004

    [6]

    Astakhova N V. Noble metals in ferromanganese crusts from marginal seas of the Northwest Pacific [J]. Marine Geology, 2017, 57(4): 618-627.

    [7]

    Hein J R, Koschinsky A. Deep-ocean ferromanganese crusts and nodules[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier Ltd. , 2014: 273-291.

    [8]

    Hein J R, Mizell K, Koschinsky A, et al. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources [J]. Ore Geology Reviews, 2013, 51: 1-14. doi: 10.1016/j.oregeorev.2012.12.001

    [9]

    Hein J R, Spinardi F, Okamoto N, et al. Critical metals in manganese nodules from the Cook Islands EEZ, abundances and distributions [J]. Ore Geology Reviews, 2015, 68: 97-116. doi: 10.1016/j.oregeorev.2014.12.011

    [10]

    Konstantinova N, Hein J R, Mizell K, et al. Changes in sediment source areas to the Amerasia Basin, Arctic Ocean, over the past 5.5 million years based on radiogenic isotopes (Sr, Nd, Pb) of detritus from ferromanganese crusts [J]. Marine Geology, 2020, 428: 106280. doi: 10.1016/j.margeo.2020.106280

    [11]

    Jiang X D, Sun X M, Chou Y M, et al. Geochemistry and origins of carbonate fluorapatite in seamount Fe-Mn crusts from the Pacific Ocean [J]. Marine Geology, 2020, 423: 106135. doi: 10.1016/j.margeo.2020.106135

    [12]

    Novikov G V, Mel’nikov M E, Bogdanova O Y, et al. Nature of Co-bearing ferromanganese crusts of the Magellan seamounts (Pacific Ocean): communication 1. Geology, mineralogy, and geochem-istry [J]. Lithology and Mineral Resources, 2014, 49(1): 1-22. doi: 10.1134/S0024490213060072

    [13]

    Hein J R, Conrad T, Mizell K, et al. Controls on ferromanganese crust composition and reconnaissance resource potential, Ninetyeast Ridge, Indian Ocean [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2016, 110: 1-19. doi: 10.1016/j.dsr.2015.11.006

    [14]

    Surya P L, Ray D, Nagender N B, et al. Anomalous phase association of REE in ferromanganese crusts from Indian mid-oceanic ridges: Evidence for large scale dispersion of hydrothermal iron [J]. Chemical Geology, 2020, 549: 119679. doi: 10.1016/j.chemgeo.2020.119679

    [15]

    Mikhailik P E, Mikhailik E V, Zarubina N V, et al. Distribution of rare-earth elements and yttrium in hydrothermal sedimentary ferromanganese crusts of the Sea of Japan (from phase analysis results) [J]. Russian Geology and Geophysics, 2017, 58(12): 1530-1542. doi: 10.1016/j.rgg.2017.11.013

    [16]

    Khanchuk A I, Mikhailik P E, Mikhailik E V, et al. Peculiarities of the distribution of rare-earth elements and yttrium in mineral phases of the ferromanganese crusts from the Detroit Guyot (Pacific Ocean) [J]. Doklady Earth Sciences, 2015, 465(4): 1243-1247.

    [17]

    Mohwinkel D, Kleint C, Koschinsky A. Phase associations and potential selective extraction methods for selected high-tech metals from ferromanganese nodules and crusts with siderophores [J]. Applied Geochemistry, 2014, 43: 13-21. doi: 10.1016/j.apgeochem.2014.01.010

    [18]

    Koschinsky A, Hein J R, Kraemer D, et al. Platinum enrichment and phase associations in marine ferromanganese crusts and nodules based on a multi-method approach [J]. Chemical Geology, 2020, 539: 119426. doi: 10.1016/j.chemgeo.2019.119426

    [19]

    Koschinsky A, Hein J R. Uptake of elements from seawater by ferromanganese crusts: Solid-phase associations and seawater speciation [J]. Marine Geology, 2003, 198(3-4): 331-351. doi: 10.1016/S0025-3227(03)00122-1

    [20]

    Koschinsky A, Halbach P. Sequential leaching of marine ferroman-ganese precipitates: Genetic implications [J]. Geochimica et Cosm-ochimica Acta, 1995, 59(24): 5113-5132. doi: 10.1016/0016-7037(95)00358-4

    [21]

    Wen X, De Carlo E H, Li Y H. Interelement relationships in ferromanganese crusts from the central Pacific ocean: Their implications for crust genesis [J]. Marine Geology, 1997, 136(3-4): 277-297. doi: 10.1016/S0025-3227(96)00064-3

    [22]

    任向文, 石学法, 朱爱美, 等. 麦哲伦海山群MK海山富钴结壳稀土元素的赋存相态[J]. 吉林大学学报:地球科学版, 2011, 41(3):707-714

    REN Xiangwen, SHI Xuefa, ZHU Aimei, et al. Existing phase of rare earth elements in Co-rich Fe-Mn crusts from seamount MK of Magellan Seamount cluster [J]. Journal of Jilin University:Earth Science Edition, 2011, 41(3): 707-714.

    [23]

    杨胜雄, 龙晓军, 祁奇, 等. 西太平洋富钴结壳矿物学和地球化学特征: 以麦哲伦海山和马尔库斯-威克海山富钴结壳为例[J]. 中国海洋大学学报, 2016, 46(2):105-116

    YANG Shengxiong, LONG Xiaojun, QI Qi, et al. The mineralogical and geochemical characteristics of co-rich crusts from the western Pacific: Taking the co-rich crusts from Magellan and Marcus-wake seamounts as an example [J]. Periodical of Ocean University of China, 2016, 46(2): 105-116.

    [24]

    任江波, 何高文, 姚会强, 等. 西太平洋海山富钴结壳的稀土和铂族元素特征及其意义[J]. 地球科学, 2016, 41(10):1745-1757

    REN Jiangbo, HE Gaowen, YAO Huiqiang, et al. Geochemistry and significance of REE and PGE of the cobalt-rich crusts from west Pacific Ocean seamounts [J]. Earth Science, 2016, 41(10): 1745-1757.

    [25]

    潘家华, 刘淑琴, 杨忆, 等. 西太平洋海山磷酸盐的常量、微量和稀土元素地球化学研究[J]. 地质论评, 2002, 48(5):534-541 doi: 10.3321/j.issn:0371-5736.2002.05.012

    PAN Jiahua, LIU Shuqin, YANG Yi, et al. Research on geochemical characteristics of major, trace and Rare-Earth Elements in phosphates from the west Pacific Seamounts [J]. Geological Review, 2002, 48(5): 534-541. doi: 10.3321/j.issn:0371-5736.2002.05.012

    [26]

    Bonatti E, kraemer T F, Rydell H. Classification and genesis of submarine iron-manganese deposits[C]//Ferromanganese Deposits on the Ocean Floor. Palisades: Lamont Doherty Geological Observatory of Columbia University, 1972: 149-166.

    [27]

    王中刚, 于学元, 赵振华, 等. 稀土元素地球化学[M]. 北京: 科学出版社, 1989: 1-535

    WANG Zhonggang, YU Xueyuan, ZHAO Zhenhua, et al. Rare earth elements geochemistry[M]. Beijing: Science Publishing House, 1989: 1-535.

    [28]

    何高文, 孙晓明, 杨胜雄, 等. 太平洋多金属结核和富钴结壳稀土元素地球化学对比及其地质意义[J]. 中国地质, 2011, 38(2):462-472 doi: 10.3969/j.issn.1000-3657.2011.02.020

    HE Gaowen, SUN Xiaoming, YANG Shengxiong, et al. A comparison of REE geochemistry between polymetallic nodules and cobalt-rich crusts in the Pacific Ocean [J]. Geology in China, 2011, 38(2): 462-472. doi: 10.3969/j.issn.1000-3657.2011.02.020

    [29]

    崔迎春, 刘季花, 任向文, 等. 中太平洋M海山富钴结壳稀土元素地球化学[J]. 中国稀土学报, 2008, 26(6):760-768 doi: 10.3321/j.issn:1000-4343.2008.06.018

    CUI Yingchun, LIU Jihua, REN Xiangwen, et al. Geochemistry of rare earth elements in cobalt-rich crusts from the Mid-Pacific M Seamount [J]. Journal of the Chinese Rare Earth Society, 2008, 26(6): 760-768. doi: 10.3321/j.issn:1000-4343.2008.06.018

    [30]

    Bau M, Schmidt K, Koschinsky A, et al. Discriminating between different genetic types of marine ferromanganese crusts and nodules based on rare earth elements and yttrium [J]. Chemical Geology, 2014, 381: 1-9. doi: 10.1016/j.chemgeo.2014.05.004

    [31]

    何高文, 薛婷, 孙晓明, 等. 西太平洋富钴结壳元素组合特征及其地质意义[J]. 矿物岩石地球化学通报, 2005, 24(2):125-129 doi: 10.3969/j.issn.1007-2802.2005.02.006

    HE Gaowen, XUE Ting, SUN Xiaoming, et al. The elemental association characterisitics and the geological significance of cobalt-rich Nodules in the west Pacific Ocean [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2005, 24(2): 125-129. doi: 10.3969/j.issn.1007-2802.2005.02.006

    [32]

    Halbach P E, Jahn A, Cherkashov G. Marine co-rich ferromanganese crust deposits: description and formation, occurrences and distribution, estimated world-wide resources[M]//Sharma R. Deep-Sea Mining. Cham: Springer, 2017: 65-140.

    [33]

    Bau M, Koschinsky A. Oxidative scavenging of cerium on hydrous Fe oxide: evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts [J]. Geochemical Journal, 2009, 43(1): 37-47. doi: 10.2343/geochemj.1.0005

    [34]

    高晶晶, 刘季花, 李先国, 等. 富钴结壳中稀土元素化学相态分析方法及其应用[J]. 分析化学, 2015, 43(2):1895-1900

    GAO Jingjing, LIU Jihua, LI Xianguo, et al. Chemical phase analysis of rare earth elements in cobalt-rich crusts and its application [J]. Chinese Journal of Analytical Chemistry, 2015, 43(2): 1895-1900.

    [35]

    高晶晶, 刘季花, 张辉, 等. 太平洋海山富钴结壳中铂族元素赋存状态与富集机理[J]. 海洋学报, 2019, 41(8):115-124

    GAO Jingjing, LIU Jihua, Zhang Hui, et al. Occurrence phase and enrichment mechanism of platinum group elements in the Pacific cobalt-rich Crusts [J]. Acta Oceanologica Sinica, 2019, 41(8): 115-124.

    [36]

    Hein J R. Cobalt-rich ferromanganese crusts: Global distribution, composition, origin and research activities[C]//Minerals Other than Polymetallic Nodules of the International Seabed Area. Kingston Jamaica: International Seabed Authority, 2004: 188-256.

    [37]

    Hein J R, Koschinsky A, Bau M, et al. Cobalt-rich ferromanganese crusts in the Pacific[M]//Cronan D S. Handbook of Marine Mineral Deposits. Boca Raton: CRC Press, 2000: 239-279.

    [38]

    Koschinsky A, Stascheit A, Bau M, et al. Effects of phosphatization on the geochemical and mineralogical composition of marine ferromanganese crusts [J]. Geochimica et Cosmochimica Acta, 1997, 61(19): 4079-4094. doi: 10.1016/S0016-7037(97)00231-7

    [39]

    Pan J H, De Carlo E H, Yang Y, et al. Effect of phosphatization on element concentration of cobalt-rich ferromanganese crusts [J]. Acta Geologica Sinica, 2005, 79(3): 349-355. doi: 10.1111/j.1755-6724.2005.tb00900.x

    [40]

    任江波, 何高文, 姚会强, 等. 磷酸盐化作用对富钴结壳中稀土元素的影响[J]. 海洋地质与第四纪地质, 2017, 37(2):33-43

    REN Jiangbo, HE Gaowen, YAO Huiqiang, et al. The effects of phosphatization on the REY of co-rich Fe-Mn crusts [J]. Marine Geology & Quaternary Geology, 2017, 37(2): 33-43.

  • 加载中

(8)

(5)

计量
  • 文章访问数:  2264
  • PDF下载数:  60
  • 施引文献:  0
出版历程
收稿日期:  2021-07-13
修回日期:  2021-09-24
刊出日期:  2022-06-28

目录