-
摘要:
含水合物地层的地球物理异常响应(包括似海底反射、纵波速度倒转、弹性参数异常等)是天然气水合物存在的直接证据之一,全波形反演作为一种高精度的速度建模及成像手段,也在含水合物地层的识别方面发挥了重要作用。国内外相关研究成果表明,针对含水合物地层的波形反演,涉及正演模拟方法、震源子波、初始模型、目标函数以及优化算法等多项关键技术。本文在大量文献调研的基础上,阐述了波形反演对刻画含水合物地层的技术优势,归纳总结了适用于含水合物地层的波形反演流程,为后续的研究工作提供了基础思路,同时提出多参数联合反演在未来具有广阔的应用前景。
Abstract:The geophysical responses to the hydrate bearing formations, such as BSR, velocity reversion of P wave, elastic parameter anomalies, etc. are indicators of the existence of gas hydrates. Full waveform inversion used as a high-precision velocity modeling and imaging method, also played an important role in the identification of hydrate bearing formations. Relevant research results suggest that the waveform inversion of hydrate bearing formations involves a number of key techniques, such as forward simulation methods, source wavelets, initial models, objective functions, and optimization algorithms. Based on the investigations of literatures, this paper expounded the technical advantages of waveform inversion for characterizing hydrate bearing formations, summarized the waveform inversion process suitable for hydrate bearing formations, and provided some basic ideas for subsequent research. It is proposed that multi-parameter inversion has broad application prospects in the future.
-
Key words:
- gas hydrate /
- full waveform inversion /
- wavelet estimation /
- initial model /
- forward modeling
-
南海被欧亚大陆、印度-澳大利亚板块以及太平洋板块等包围,受多板块联合作用,构造背景复杂,沉积演化各异,形成了诸多大型的含油气沉积盆地[1-6]。南海南部新生代以来经历了多次大规模的构造运动,如礼乐运动、南沙运动等[7-10],这一系列构造事件一方面奠定了南海南部现今的基本构造格局,另一方面造就了其丰富的油气资源前景。
前人通过研究[8,11-13],在南海南部划分出万安盆地、南薇西盆地和两盆地之间的广雅隆起三部分,张莉等根据最新地震资料研究后发现:广雅隆起区发育最大厚度达7 km的新生代沉积地层;万安与南薇西盆地之间的区域空间重力背景场形态相似,无明显的分区界线;万安与南薇西盆地的二级构造单元线和主控断裂在平面上具有延续性,主体呈北东向展布;万安与南薇西盆地间厚度具有连续性,未出现厚度突变现象;万安与南薇西盆地的构造样式具有相似性。因此认为万安盆地、南薇西盆地和广雅隆起区同属一个大型沉积盆地,并命名为南安盆地。盆地已有油气勘探开发表明,该盆地具有极好的油气资源潜力[4-5,12-13]。
根据南安盆地二维地震剖面,结合国内外最新的研究成果,重新梳理南安盆地的层序地层格架,通过对盆地典型地震相-地震岩相-沉积相特征进行分析,结合南海区域构造背景,开展南安盆地重要时期构造演化控制下的沉积充填特征研究,并提出南安盆地区域成藏模式。希望对于认识南安盆地构造-沉积演化过程和盆地的油气勘探具有一定的指导意义。
1. 地质背景
南安盆地位于南海西南部,包括陆架、陆坡和深水区,总体走向为北东—南西向,北靠中建南盆地,南接北康盆地和曾母盆地,东与西南次海盆和南薇东盆地相连,水深200~3000 m,盆地面积约16×104 km2,为一新生代陆缘裂陷沉积盆地。盆地的构造及沉积演化特征与北康盆地、曾母盆地具有一定的相似性,主要经历了初始裂陷阶段、主裂陷阶段、断拗转换阶段和拗陷热沉降阶段[5-7,14-16],广泛接受晚始新世以来的沉积物源,早期以河流、湖泊相沉积为主,渐新世开始演变为海相沉积,新生代最大沉积厚度超过10 km,可划分为北部坳陷、北部隆起、中部坳陷、中部隆起、南部坳陷、南部隆起和东南坳陷、西北断阶带、西部坳陷和西南斜坡10个二级构造单元(图1)。
2. 层序地层学特征
南安盆地是整体发育在晚白垩世基底之上的裂谷盆地。新生代地层发育齐全,根据地震资料与DH-1X、Dua-1X和AM-1X钻井资料[17-20](图2),厘定主要不整合界面时代,南安盆地形成演化主要经历了礼乐、西卫、南海、南沙和广雅5次构造运动的影响[1,5-6,21-25],自下而上发育了Tg、T5、T4、T3、T2五个区域性的不整合反射界面,可划分SQ1、SQ2、SQ3和SQ4四套地震层序(图3、图4)。
2.1 主要地震反射界面特征
T2反射界面为上新世和中新世的分界,在全区大部分地区为整合的界面。T2界面为低频、强振幅、连续的反射界面,全区可很好追踪与对比,其在大陆架具有较高的振幅和较好的连续性。该界面对应于广雅运动。
T3反射界面为中中新统和早中新统的分界,在全区特征最明显,是一个区域性的大型角度不整合面,与下伏地层呈削截、角度不整合接触。T3界面表现为中频、连续、中-强振幅地震反射特征,可能与婆罗洲造山运动有关[26-28]。该界面对应于南沙运动,其上为拗陷热沉降期沉积。
T4反射界面为中新统和渐新统的分界,该界面特征没有T3界面明显,但也是一个覆盖全区的大型不整合面,与下伏地层呈假整合接触,多表现为中-低频、强振幅、较连续的强反射特征。在北康、曾母盆地,该界面一般认为是新南海的扩张响应,但在南安盆地,认为是西南次海盆扩张响应[21-25]。该界面对应于南海运动,其上为断拗转换期沉积。
T5反射界面为晚始新统和中始新统的分界,该界面与T4界面特征相似,但总体表现为中-低频、不连续反射特征,振幅多变。在半地堑盆地的斜坡处,与Tg界面混合。该界面对应于西卫运动,其上为主裂陷期沉积。
Tg反射界面为古新统和白垩系分界,该界面为南安盆地新生界基底,反映了中南半岛从挤压隆升到裂陷的转换过程,为盆地初始破裂不整合面,总体表现为中-低频、强振幅、不连续反射。当埋藏较深时,反射模糊、间断,难以追踪。该界面对应于礼乐运动,其上为初始裂陷期沉积。
2.2 层序发育特征
SQ1层序为发育在T5和Tg界面间的人骏组[17,22-25]沉积,该层序具有中高振幅、中等频率和不连续反射。其外部形态为楔形或半地堑状填充物。钻井未钻到该层序,推断其沉积环境为陆相冲积扇河流-湖泊,含砂砾岩,化石较少。
SQ2层序为发育在T4和T5界面间的西卫组[17,22-25]沉积,该层序具有中高振幅、中等频率和连续或不连续反射。Dua-1X和AM-1X井遇到SQ2层序[17-20],其下沉积环境为冲积扇河流-湖泊,其上为滨海平原-陆棚,含煤层、生物碎屑、超微化石和有孔虫。该层序为南安盆地主力烃源岩发育层。
SQ3层序为发育在T3和T4界面间的万安组和李准组[17,22-25]沉积,其中,万安组具有中等振幅、中等连续性、平行或发散结构、楔形外反射等特征;李准组具有中等振幅、中等频率、连续反射的地震特征。DH-1X、Dua-1X和AM-1X井钻遇到SQ3层序[17-20],万安组沉积环境为河流湖泊、陆棚-开阔浅海;李准组为近海-陆棚-深海。该层序含煤层、灰岩层、钙质层、超微化石和有孔虫,为南安盆地主力砂岩储层发育层,并发育碳酸盐岩储层。
SQ4层序为发育在T2和T3界面间的昆仑组[17,22-25]沉积,该层序具有中等振幅和连续反射。DH-1X、Dua-1X和AM-1X井钻遇到SQ4层序[17-20],其沉积环境为碳酸盐岩台地、陆棚-深海,含超微化石和有孔虫。该层序为南安盆地主力碳酸盐岩储层发育层和区域性盖层发育层[26-29]。
3. 地震相-地震岩相-沉积相特征
通过开展地震资料精细解释,根据地震反射特征识别出南安盆地5类地震相类型,即楔形、S型(丘状)、席状、滩状(杂乱状)和充填状[30-32];7类地震岩相类型,包括砂包泥岩、砂泥岩互层、砂砾岩、泥岩、火山岩等[33-34];8类主要沉积相,包括扇三角洲、河流三角洲、冲积平原、滨浅海等[35-36](表1)。
表 1. 南安盆地主要地震相和地震岩相类型及特征Table 1. Types and characteristics of main seismic facies and seismic lithofacies in Nan’an Basin3.1 楔形地震相
在地震反射上表现出中-低频、中-弱振幅、较差连续性特征,内部结构为杂乱前积型,发育于斜坡区或大型断层下盘。中-低频表明沉积速率较快、沉积厚度大;弱振幅表明其内部波阻抗差异较小,局部因砂泥岩分界面较大的波阻抗差异而产生中振幅;连续性差表明存在短轴状砂岩,故推断其岩相主要为砂包泥岩相。沉积相解释为扇三角洲相。
3.2 丘状(S型)地震相
在地震反射上表现出中频、中-强振幅、较好连续性的特征,内部结构沿走向为叠瓦状前积、斜交S型,垂直走向为丘状,发育于滨岸平原区。中频反映其具有一定沉积速率,沉积厚度中等;中-强振幅表明存在波阻抗差异的砂泥岩分界面;连续性好表明沉积环境稳定且沉积范围广阔,故推断其岩相主要为砂泥岩互层相。沉积相解释为河流三角洲相。
3.3 席状地震相
该类型地震相在南安盆地主要有3种表现形式:
第一种在地震反射上表现出中-低频、中-强振幅、连续性差的特征,内部结构为亚平行/乱岗状,发育于陆上区。与楔形地震相类似,推断其岩相主要为砂砾岩相。沉积相解释为冲积平原相。
第二种在地震反射上表现出中频、中-强振幅、连续性较好的特征,内部结构为亚平行,发育于中-外陆架区。中频表明沉积速率比楔形地震相小;中-强振幅表明存在波阻抗差异的砂泥岩分界面;连续性好表明沉积环境稳定且沉积范围广阔,故推断其岩相主要为砂泥岩互层相。沉积相解释为滨浅海相。
第三种在地震反射上表现出中-高频、弱振幅、连续反射的特征,内部结构为平行-亚平行,发育于外陆架或深水盆地区。中-高频反映沉积速率低,弱振幅表明其内部波阻抗差异较小,连续反射表明沉积环境稳定且沉积范围广阔,故推断其岩相主要为静水泥岩(页岩)相或粉砂质泥岩相。沉积相解释为深海-半深海相。
3.4 滩状(杂乱状)地震相
在地震反射上表现出中-低频、强-极强振幅、连续性好或较差的特征,内部结构为杂乱或近空白反射,具有侧积或刺穿特征,发育于外陆棚-斜坡区。中-低频反映了较快的沉积速率;强-极强振幅表明含钙质、灰质或火山碎屑物;连续性好的推断为灰岩相,连续性较差的推断为火山岩相。沉积相解释为台地礁滩相或火山岩相。
3.5 充填状地震相
在地震反射上表现出中-低频、弱振幅背景中的中-强振幅、连续性较差的特征,内部结构为上超/侧积充填,发育于滨岸平原、内陆架和斜坡区。中-低频反映了沉积速率较快、沉积厚度大;弱振幅表明泥质含量高,中-强振幅为存在波阻抗差异的砂泥岩分界面;连续性差表明存在短轴状砂岩,故推断其岩相主要为泥包(夹)砂岩相。沉积相解释为下切河道。
4. 沉积演化特征
根据南海构造运动背景和盆地地质构造与不整合的发育特征,结合前人对万安、曾母和北康盆地构造演化的研究成果,南安盆地构造演化可分为4个阶段,即初始裂陷、主裂陷、断拗转换和拗陷热沉降阶段[5-7,14-16,26-28]。基于地震相识别及沉积相解释,结合南安盆地构造演化特征,编制了新生代以来不同时期的沉积相图,明确了南安盆地不同时期沉积演化特征。
4.1 古新世—中始新世(Tg-T5)
中生代末—古近纪早期,由于太平洋板块以北西西向俯冲至欧亚板块,导致整体应力场由早期的北西-南东向挤压转为拉张[2-3,7-9,15-16,37],由此形成了一个个被北东向断裂分隔开的孤立地堑和半地堑,这是南安盆地早期的雏形,范围比较小,基底起伏较大,以发育张性正断层为主,且控制着许多小型沉积中心。
该时期南安盆地处于演化早期。盆地处于陆内裂谷的初始裂陷阶段,裂陷强度及沉降速率较低,坳陷分隔性强,差异沉降显著,盆内断裂对沉积具有重要的控制作用,主沉积中心位于盆地中部和东部,次沉积中心位于北部;沉积物源主要以盆内局部物源及周缘物源为主,以发育滨浅湖、半深湖-深湖以及近源粗粒扇三角洲沉积为特征(图5)。
4.2 晚始新世—早渐新世(T5-T4)
晚始新世,受印度-澳大利亚板块与欧亚板块之间发生碰撞影响,在南海地区产生了向东南方向流动的上地幔流,导致南沙地块脱离中沙-西沙地块而向东南方向运动[8-9,15-16,37-39]。南安盆地在西南海盆扩张作用下,构造沉降速率加快,沉积厚度增大,早期的断陷得以进一步加深加大,盆地进入发育鼎盛期。晚始新世,盆地部分地区发生构造抬升而遭受剥蚀,随后在拉张应力作用下,盆地又迅速沉降,北东、北北东向张性断层强烈活动,盆地面积扩大,开始发育断坳和海相沉积。
该时期南安盆地处于主裂陷阶段,裂陷演化程度达到鼎盛,断层活动强烈、断距大,以整体断陷为特征,盆地沉降提速,前期局部坳陷得到进一步联通,水体从盆地东部进入,且面积扩大。由于整体断陷作用,相比较裂陷初期,盆内物源逐渐淹没,盆地面积扩大,捕获远源大型物源的能力得到增强。该时期以发育远源大型三角洲及扇三角洲、滨浅湖、半深湖-深湖为特征(图6)。
4.3 晚渐新世—中中新世(T4-T3)
中新世早期开始,盆地逐渐减缓构造沉降速率,随着南沙地块与婆罗洲地块在沙巴区域发生碰撞,古南海消亡,新南海西南次海盆张裂停止,盆地定位于现今位置。中中新世末期,受南沙运动影响,盆地再次整体抬升遭受剥蚀[7-9,15-16,37-40]。
该时期南安盆地处于断拗转换阶段,断层活动减弱。随着南海进一步扩张与海平面的上升,呈现自东向西进一步海侵特征,局部物源被淹没,在盆地南部的局部构造隆起高地发育有大量的碳酸盐岩沉积,东部地区部分隆起区剥蚀形成扇三角洲,盆地西部仍然以开阔海背景下的单向物源为主,发育远源形大型三角洲、滨浅海,同时在三角洲前缘可能发育由滑塌形成的浊积扇体(图7)。
4.4 晚中新世至今(T3-T0)
中中新世以后,断层大多活动已停止,在约5.3 Ma之前,受菲律宾板块和欧亚板块在民都洛岛的碰撞以及澳大利亚板块和欧亚板块在苏拉威西岛碰撞的影响[15-17,37-40],盆地总体沉降进入一个低速期,各次级构造带沉降速率均降低;在5.3 Ma之后,受盆缘走滑断裂活化和裂后热沉降共同作用[15-17,37-40],盆地进入加速沉降阶段,沉降速率由西向东加大,尤其是位于盆地中东部的中部凹陷。
该时期南安盆地进入拗陷热沉降阶段,随着相对海平面上升,水深进一步加大,陆架边缘三角洲尚未推进至盆地东部区域,整体为半深海-深海陆坡、海底平原环境,沉积类型以深水水道、海底扇等深水沉积体为主,物源方向主要来自西部。同时盆地内部局部隆起仍然发育了广泛的碳酸盐岩台地(图8)。
5. 区域成藏模式
南安盆地古新世—中始新世(Tg-T5)处于初始裂陷阶段,从古新世开始湖盆规模逐渐扩大,该时期烃源岩以半深湖-深湖沉积为主,由于目前未有钻井钻遇,参考珠江盆地始新世烃源岩有机质分布特征,推测该区TOC含量范围为0.5%~3.5%,干酪根为I-Ⅱ型,是主要烃源岩形成期;储层主要为近源粗粒扇三角洲或砂砾岩储层。晚始新世—早渐新世(T5-T4)随着裂陷作用进一步加强,中深湖分布范围扩大,湖盆面积达到最大,推测该时期湖泊生产力高,营养丰富,依据南安盆地内已有钻井,推测该时期烃源岩TOC分布范围为0.5%~4.0%,干酪根为I-Ⅱ型,发育主力湖相烃源岩;储层主要为远源大型三角洲及扇三角洲。晚渐新世—中中新世(T4-T3)随着海侵作用不断加强,发育有海陆过渡相泥岩及三角洲煤系,TOC值为1%~10%,干酪根为Ⅱ型;下中新统半封闭海相泥岩及三角洲煤系、陆源海相泥岩TOC值一般为1%左右,局部为1%~10%,干酪根为Ⅱ-Ⅲ型,为次要烃源岩;中中新统浅海相泥岩,TOC值大部分小于1%,干酪根为Ⅲ型,属差烃源岩[41-43];储层主要为河流三角洲或滨浅海相砂岩储层,局部发育碳酸盐岩储层。
参考万安盆地烃源岩成熟史数值模拟[44-46],结合南安盆地的地质情况,本次的热演化史分析表明,中始新统推测的烃源岩在23.8~10.4 Ma陆续进入生排烃高峰期,现今洼陷中心以生气为主,洼陷周边以生油为主。上始新统—渐新统烃源岩在10.4~0 Ma陆续进入生排烃高峰期,洼陷中心烃源岩以生油为主。油气沿着控源断裂向上运移,侧向输导,就近聚集在砂岩储层(三角洲相带的砂体)内成藏,形成断块、断背斜、披覆背斜及构造岩性复合等圈闭。中始新世—渐新世油气藏为自生自储,早期成藏;中新世油气藏为下生上储,晚期成藏。中中新世以后发育的海相泥岩为该区主要的区域盖层,其他层系的上覆泥岩为局部盖层(图9)。
6. 结论
(1)南安盆地新生代以来自下而上发育了Tg、T5、T4、T3、T2五个区域性的不整合反射界面,可划分出SQ1、SQ2、SQ3和SQ4四套地震层序。
(2)南安盆地主要发育5类地震相类型,即楔形、S型(丘状)、席状、滩状(杂乱状)和充填状;7类地震岩相类型,包括砂包泥岩、砂泥岩互层、砂砾岩、泥岩、泥包砂岩和灰岩或火山岩;8类主要沉积相,主要有扇三角洲、河流三角洲、冲积平原、滨浅海、深海-半深海、台地礁滩或火山岩以及下切河道。
(3)南安盆地构造演化可分为初始裂陷、主裂陷、断拗转换和拗陷热沉降4个阶段。其中,初始裂陷阶段以发育滨浅湖、半深湖-深湖以及近源粗粒扇三角洲沉积为特征;主裂陷阶段以发育远源大型三角洲及扇三角洲、滨浅湖、半深湖-深湖为特征;断拗转换阶段发育远源形大型三角洲、滨浅海、碳酸盐岩,同时在三角洲前缘可能发育源自滑塌的浊积扇体;拗陷热沉降阶段以深水水道、海底扇等深水沉积体为主,局部隆起仍然发育广泛的碳酸盐岩台地。
(4)南安盆地具有生烃能力大的湖相烃源岩,以砂岩储层为主,中中新世发育碳酸盐岩储层,盖层厚且分布范围广,并形成了早期的自生自储和晚期的下生上储两类油气成藏系统,具有很好的油气资源潜力。
-
图 1 BSR及其下方气体在波形反演结果中的显示[26]
Figure 1.
图 2 全波形反演流程图[21]
Figure 2.
图 3 Marmousi 模型的声波方程正演(左)和弹性波方程正演(右)[48]
Figure 3.
图 4 Marmousi 准确模型(上)以及子波错误时的全波形反演结果(下)[59]
Figure 4.
-
[1] Tarantola A. Inversion of seismic reflection data in the Acoustic approximation [J]. Geophysics, 1984, 49(8): 1259-1266. doi: 10.1190/1.1441754
[2] Pratt R G, Worthington M H. Inverse theory applied to Multi-source cross-hole tomography. Part 1: Acoustic wave-Equation method [J]. Geophysical Prospecting, 1990, 38(3): 287-310. doi: 10.1111/j.1365-2478.1990.tb01846.x
[3] Pratt R G, Shin C, Hicks G J. Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion [J]. Geophysical Journal International, 1998, 133(2): 341-362. doi: 10.1046/j.1365-246X.1998.00498.x
[4] Pratt R G. Seismic waveform inversion in the frequency Domain, Part 1: Theory and verification in a physical scale Model [J]. Geophysics, 1999, 64(3): 888-901. doi: 10.1190/1.1444597
[5] Pratt R G, Shipp R M. Seismic waveform inversion in the Frequency domain, Part 2: Fault delineation in sediments using crosshole data [J]. Geophysics, 1999, 64(3): 902-914. doi: 10.1190/1.1444598
[6] Shin C, Cha Y H. Waveform inversion in the Laplace domain [J]. Geophysical Journal International, 2008, 173(3): 922-931. doi: 10.1111/j.1365-246X.2008.03768.x
[7] Gauthier O, Virieux J, Tarantola A. Two-dimensional nonlinear inversion of seismic waveforms: numerical Results [J]. Geophysics, 1986, 51(7): 1387-1403. doi: 10.1190/1.1442188
[8] Mora P. Nonlinear two-dimensional elastic inversion of multioffset seismic data [J]. Geophysics, 1987, 52(9): 1211-1228. doi: 10.1190/1.1442384
[9] Song Z M, Williamson P R, Pratt R G. Frequency-domain Acoustic-wave modeling and inversion of crosshole data; Part II, Inversion method, Synthetic experiments and real-data results [J]. Geophysics, 1995, 60(3): 796-809. doi: 10.1190/1.1443818
[10] Ravaut C, Operto S, Improta L, et al. Multiscale imaging of complex structures from multifold wide-aperture seismic data by frequency-domain full-waveform tomography: application to a thrust belt [J]. Geophysical Journal International, 2004, 159(3): 1032-1056. doi: 10.1111/j.1365-246X.2004.02442.x
[11] Smithyman B, Pratt R G, Hayles J, et al. Detecting near-surface objects with seismic waveform tomography [J]. Geophysics, 2009, 74(6): WCC119-WCC127. doi: 10.1190/1.3223313
[12] Sirgue L, Barkved O I, Dellinger J, et al. Thematic Set: Full waveform inversion: the next leap forward in imaging at Valhall [J]. First Break, 2010, 28(4): 65-70.
[13] Prieux V, Brossier R, Kommendal J R, et al. Application of 2D acoustic frequency-domain full-waveform inversion to OBC wide-aperture data from the Valhall field[C]//The 2010 SEG Annual Meeting. Denver, Colorado: Society of Exploration Geophysicists, 2010: 920-924.
[14] Ratcliffe A, Win C, Vinje V, et al. Full waveform inversion: a North Sea OBC case study[C]//Proceedings of the 81st Annual International Meeting. Society of Exploration Geophysicists, 2011: 2384-2388.
[15] Takougang E M T, Calvert A J. Application of waveform tomography to marine seismic reflection data from the Queen Charlotte Basin of western Canada [J]. Geophysics, 2011, 76(2): B55-B70. doi: 10.1190/1.3553478
[16] 韩淼. 深水区地震全波形反演策略与应用[D]. 吉林大学博士学位论文, 2014.
HAN Miao. Method and application of full waveform inversion for abyssal seismic data[D]. Doctor Dissertation of Jilin University, 2014.
[17] Plessix R É, Baeten G, De Maag J W, et al. Full waveform inversion and distance separated simultaneous sweeping: a study with a land seismic data set [J]. Geophysical Prospecting, 2012, 60(4): 733-747. doi: 10.1111/j.1365-2478.2011.01036.x
[18] 杨勤勇, 胡光辉, 王立歆. 全波形反演研究现状及发展趋势[J]. 石油物探, 2014, 53(1):77-83 doi: 10.3969/j.issn.1000-1441.2014.01.011
YANG Qinyong, HU Guanghui, WANG Lixin. Research status and development trend of full waveform inversion [J]. Geophysical Prospecting for Petroleum, 2014, 53(1): 77-83. doi: 10.3969/j.issn.1000-1441.2014.01.011
[19] 任浩然, 王华忠, 黄光辉. 地震波反演成像方法的理论分析与对比[J]. 岩性油气藏, 2012, 24(5):12-17 doi: 10.3969/j.issn.1673-8926.2012.05.002
REN Haoran, WANG Huazhong, HUANG Guanghui. Theoretical analysis and comparison of seismic wave inversion and imaging methods [J]. Lithologic Reservoirs, 2012, 24(5): 12-17. doi: 10.3969/j.issn.1673-8926.2012.05.002
[20] 宋海斌, OSAMU M, SHIN’ICHI M. 天然气水合物似海底反射层的全波形反演[J]. 地球物理学报, 2003, 46(1):42-46 doi: 10.3321/j.issn:0001-5733.2003.01.007
SONG Haibin, OSAMU M, SHIN’ICHI M. Full waveform inversion of gas hydrate-related bottom simulating reflectors [J]. Chinese Journal of Geophysics, 2003, 46(1): 42-46. doi: 10.3321/j.issn:0001-5733.2003.01.007
[21] 霍元媛, 张明. 基于遗传算法的天然气水合物似海底反射层速度结构全波形反演[J]. 石油地球物理勘探, 2010, 45(1):55-59
HUO Yuanyuan, ZHANG Ming. The genetic algorithm based velocity structure waveform inversion for gas hydrate bottom simulating Reflection (BSR) [J]. Oil Geophysical Prospecting, 2010, 45(1): 55-59.
[22] Singh S C, Minshull T A, Spence G D. Velocity structure of a gas hydrate reflector [J]. Science, 1993, 260(5105): 204-207. doi: 10.1126/science.260.5105.204
[23] Yuan T, Spence G D, Hyndman R D, et al. Seismic velocity studies of a gas hydrate bottom-simulating reflector on the northern Cascadia continental margin: amplitude modeling and full waveform inversion [J]. Journal of Geophysical Research:Solid Earth, 1999, 104(B1): 1179-1191. doi: 10.1029/1998JB900020
[24] Minshull T A, Singh S C, Westbrook G K. Seismic velocity structure at a gas hydrate reflector, offshore western Colombia, from full waveform inversion [J]. Journal of Geophysical Research:Solid Earth, 1994, 99(B3): 4715-4734. doi: 10.1029/93JB03282
[25] Pecher I A, Minshull T A, Singh S C, et al. Velocity structure of a bottom simulating reflector offshore Peru: Results from full waveform inversion [J]. Earth and Planetary Science Letters, 1996, 139(3-4): 459-469. doi: 10.1016/0012-821X(95)00242-5
[26] Sain K, Minshull T A, Singh S C, et al. Evidence for a thick free gas layer beneath the bottom simulating reflector in the Makran accretionary prism [J]. Marine Geology, 2000, 164(1-2): 3-12. doi: 10.1016/S0025-3227(99)00122-X
[27] Westbrook G K, Chand S, Rossi G, et al. Estimation of gas hydrate concentration from multi-component seismic data at sites on the continental margins of NW Svalbard and the Storegga region of Norway [J]. Marine and Petroleum Geology, 2008, 25(8): 744-758. doi: 10.1016/j.marpetgeo.2008.02.003
[28] Jaiswal P, Dewangan P, Ramprasad T, et al. Seismic characterization of hydrates in faulted, fine-grained sediments of Krishna-Godavari Basin: Full waveform inversion [J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B10): B10305.
[29] 唐勇, 方银霞, 高金耀, 等. 冲绳海槽天然气水合物稳定带特征及资源量评价[J]. 海洋地质与第四纪地质, 2005, 25(4):80-84
TANG Yong, FANG Yinxia, GAO Jinyao, et al. Characteristics of gas hydrate stability zone and evaluation of resources in Okinawa trough [J]. Marine Geology & Quaternary Geology, 2005, 25(4): 80-84.
[30] 徐宁, 吴时国, 王秀娟, 等. 东海冲绳海槽陆坡天然气水合物的地震学研究[J]. 地球物理学进展, 2006, 21(2):564-571 doi: 10.3969/j.issn.1004-2903.2006.02.036
XU Ning, WU Shiguo, WANG Xiujuan, et al. Seismic study of the Gas hydrate in the continental slope of the Okinawa trough, east China sea [J]. Progress in Geophysics, 2006, 21(2): 564-571. doi: 10.3969/j.issn.1004-2903.2006.02.036
[31] Sun Y B, Wu S G, Dong D D, et al. Gas hydrates associated with gas chimneys in fine-grained sediments of the northern South China Sea [J]. Marine Geology, 2012, 311-314: 32-40. doi: 10.1016/j.margeo.2012.04.003
[32] Wang J L. Study on geophysical characterization of concentrated gas hydrate reservoirs[D]. Doctor Dissertation of University of Chinese Academy of Science, 2015.
[33] 刘斌, 张衡. 海底水合物OBS数据全波形反演数值例子[J]. 地球物理学进展, 2018, 33(1):379-384 doi: 10.6038/pg2018AA0580
LIU Bin, ZHANG Heng. Full waveform inversion of OBS data from ocean gas hydrate: synthetic example [J]. Progress in Geophysics, 2018, 33(1): 379-384. doi: 10.6038/pg2018AA0580
[34] 章婷. 复杂介质地震波波场正演模拟方法研究[D]. 电子科技大学, 2014.
ZHANG Ting. Research on forward simulation methods of seismic wave fields in complex mediums[D]. Master Dissertation of University of Electronic Science and Technology of China, 2014.
[35] Kennett B L N. Theoretical reflection seismograms for elastic media [J]. Geophysical Prospecting, 1979, 27(2): 301-321. doi: 10.1111/j.1365-2478.1979.tb00972.x
[36] Kennett B L N. Seismic waves in a stratified half space-II. Theoretical seismograms [J]. Geophysical Journal International, 1980, 61(1): 1-10. doi: 10.1111/j.1365-246X.1980.tb04299.x
[37] Singh S C, Royle G, Sears T, et al. Elastic (Visco) Full Waveform Inversion of multi-component marine seismic data in the time domain: A tribute to Albert Tarantola[C]//72nd EAGE Conference & Exhibition Incorporating SPE EUROPEC 2010: Barcelona: SPE, 2010.
[38] Marfurt K J. Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations [J]. Geophysics, 1984, 49(5): 533-549. doi: 10.1190/1.1441689
[39] 何彦锋, 孙伟家, 符力耘. 复杂介质地震波传播模拟中边界元法与有限差分法的比较研究[J]. 地球物理学进展, 2013, 28(2):664-678 doi: 10.6038/pg20130215
HE Yanfeng, SUN Weijia, FU Liyun. Comparison of boundary element method and finite-difference method for simulating seismic wave propagation in complex media [J]. Progress in Geophysics, 2013, 28(2): 664-678. doi: 10.6038/pg20130215
[40] Virieux J. SH-wave propagation in heterogeneous media: Velocity-stress finite-difference method [J]. Geophysics, 1984, 49(11): 1933-1942. doi: 10.1190/1.1441605
[41] Barnes C, Noble M. Feasibility study to quantify gas hydrates Using an anisotropic full waveform inversion in the time domain[C]//2007 SEG Annual Meeting. San Antonio, Texas: SEG, 2007: 1825-1829.
[42] Pratt R U, Bauer K, Weber M. Crosshole waveform tomography velocity and attenuation images of arctic gas hydrates[C]//73th Annual Meeting. Dallas, Texas: Society of Exploration Geophysicists, 2003: 2255-2258.
[43] Operto S, Virieux J, Amestoy P, et al. 3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: a feasibility study [J]. Geophysics, 2007, 72(5): SM195-SM211. doi: 10.1190/1.2759835
[44] Brossier R, Operto S, Virieux J. Two-dimensional seismic imaging of the Valhall model from synthetic OBC data by frequency domain elastic full-waveform inversion[C]//2009 SEG Annual Meeting. Houston, Texas: SEG, 2009, 28: 2293-2297.
[45] Etienne V, Chaljub E, Virieux J, et al. An hp-adaptive discontinuous Galerkin finite-element method for 3-D elastic wave modelling [J]. Geophysical Journal International, 2010, 183(2): 941-962. doi: 10.1111/j.1365-246X.2010.04764.x
[46] 张伟, 彭真明, 章婷. 全波形反演中的GPU/CPU协同计算[C]//中国地球物理2013: 第十八专题论文集. 昆明: 中国地球物理学会, 2013: 350.
ZHANG Wei, PENG Zhenming, ZHANG Ting. GPU/CPU collaborative computing in full waveform inversion[C]//The 29th Annual Academic Conference of the Chinese Geophysical Society. Kunming: China Geophysical Society, 2013: 350.
[47] Kim Y, Shin C, Calandra H. 3D Hybrid Waveform Inversion with GPU devices[C]//2012 SEG Annual Meeting. Las Vegas, Nevada: Society of Exploration Geophysicists, 2012.
[48] Guasch L. 3D elastic full-waveform inversion[D]. Doctor Dissertation of Imperial College London, 2012.
[49] 何兵红, 吴国忱. 时间域全波形反演方法研究[C]//中国地球物理学会第二十八届年会论文集. 北京: 中国地球物理学会, 2012: 558.
HE Binghong, WU Guochen. Study of full waveform inversion in time domain[C]//The 28th Annual Academic Conference of the Chinese Geophysical Society. Beijing: China Geophysical Society, 2012: 558.
[50] Crutchley G J, Gorman A R, Pecher I A, et al. Geological controls on focused fluid flow through the gas hydrate stability zone on the southern Hikurangi Margin of New Zealand, evidenced from multi-channel seismic data [J]. Marine and Petroleum Geology, 2011, 28(10): 1915-1931. doi: 10.1016/j.marpetgeo.2010.12.005
[51] Xia G Y, Sen M K, Stoffa P L. 1-D elastic waveform inversion: A divide-and-conquer approach [J]. Geophysics, 1998, 63(5): 1670-1684. doi: 10.1190/1.1444463
[52] Lee K H, Kim H J. Source-independent full-waveform Inversion of seismic data [J]. Geophysics, 2003, 68(6): 2010-2015. doi: 10.1190/1.1635054
[53] Zhou B, Greenhalgh S A. Crosshole seismic inversion with Normalized full-waveform amplitude data [J]. Geophysics, 2003, 68(4): 1320-1330. doi: 10.1190/1.1598125
[54] Choi Y, Alkhalifah T. Source-independent time-domain Waveform inversion using convolved wavefields: Application to The encoded multisource waveform inversion [J]. Geophysics, 2011, 76(5): R125-R134. doi: 10.1190/geo2010-0210.1
[55] Choi Y, Shin C, Min D J, et al. Efficient calculation of the Steepest descent direction for source-independent seismic Waveform inversion: An amplitude approach [J]. Journal of Computational Physics, 2005, 288(2): 455-468.
[56] Cheong S, Pyun S, Shin C. Two efficient steepest-descent Algorithms for source signature-free waveform inversion [J]. The Journal of Seismic Exploration, 2006, 14(4): 335-348.
[57] Xu K, Greenhalgh S A, Wang M Y. Comparison of source-independent methods of elastic waveform inversion [J]. Geophysics, 2006, 71(6): R91-R100. doi: 10.1190/1.2356256
[58] Tran K T, McVay M. Site characterization using Gauss-Newton inversion of 2-D full seismic waveform in the time domain [J]. Soil Dynamics and Earthquake Engineering, 2012, 43: 16-24. doi: 10.1016/j.soildyn.2012.07.004
[59] 敖瑞德, 董良国, 迟本鑫. 不依赖子波、基于包络的FWI初始模型建立方法研究[J]. 地球物理学报, 2015, 58(6):1998-2010 doi: 10.6038/cjg20150615
AO Ruide, DONG Liangguo, CHI Benxin. Source-independent envelope-based FWI to build an initial model [J]. Chinese Journal of Geophysics, 2015, 58(6): 1998-2010. doi: 10.6038/cjg20150615
[60] 秦宁, 王延光, 杨晓东, 等. 时域全波形反演影响因素分析及井数据约束探索[J]. 地球物理学进展, 2015, 30(1):210-216 doi: 10.6038/pg20150132
QIN Ning, WANG Yanguang, YANG Xiaodong, et al. Analysis of influencing factors and exploration of well constrained for full waveform inversion in time domain [J]. Progress in Geophysics, 2015, 30(1): 210-216. doi: 10.6038/pg20150132
[61] Virieux J, Operto S. An overview of Full-waveform Inversion in exploration geophysics [J]. Geophysics, 2009, 74(6): WCC1-WCC26. doi: 10.1190/1.3238367
[62] Shah N, Warner M, Nangoo T, et al. Quality assured full-waveform inversion: Ensuring starting model adequacy[C]//2012 SEG Annual Meeting. Las Vegas, Nevada: SEG, 2012.
[63] Brenders A J, Pratt R G. Full waveform tomography for lithospheric imaging: Results from a blind test in a realistic crustal model [J]. Geophysical Journal International, 2006, 168(1): 133-151.
[64] Prieux V, Operto S, Brossier R, et al. Application of acoustic full waveform inversion to the synthetic Valhall velocity model[C]//2009 SEG Annual Meeting. Houston, Texas: SEG, 2009: 2268-2272.
[65] Billette F, Lambaré G. Velocity macro-model estimation from seismic reflection data by stereotomography [J]. Geophysical Journal International, 1998, 135(2): 671-690. doi: 10.1046/j.1365-246X.1998.00632.x
[66] Billette F, Le Bégat S, Podvin P, et al. Practical aspects and applications of 2D stereotomography [J]. Geophysics, 2003, 68(3): 1008-1021. doi: 10.1190/1.1581072
[67] 李振伟, 杨锴, 倪瑶, 等. 基于立体层析反演的偏移速度建模应用研究[J]. 石油物探, 2014, 53(4):444-452 doi: 10.3969/j.issn.1000-1441.2014.04.010
LI Zhenwei, YANG Kai, NI Yao, et al. Migration velocity analysis with stereo-tomography inversion [J]. Geophysical Prospecting for Petroleum, 2014, 53(4): 444-452. doi: 10.3969/j.issn.1000-1441.2014.04.010
[68] 倪瑶, 杨锴, 陈宝书. 立体层析反演方法理论分析与应用测试[J]. 石油物探, 2013, 52(2):121-130 doi: 10.3969/j.issn.1000-1441.2013.02.002
NI Yao, YANG Kai, CHEN Baoshu. Stereotomography inversion method: theory and application testing [J]. Geophysical Prospecting for Petroleum, 2013, 52(2): 121-130. doi: 10.3969/j.issn.1000-1441.2013.02.002
[69] Prieux V, Lambaré G, Operto S, et al. Building starting models for full waveform inversion from wide-aperture data by stereotomography [J]. Geophysical Prospecting, 2013, 61(S1): 109-137.
[70] 刘定进, 胡光辉, 蔡杰雄, 等. 高斯束层析与全波形反演联合速度建模[J]. 石油地球物理勘探, 2019, 54(5):1046-1056
LIU Dingjin, HU Guanghui, CAI Jixing, et al. A joint velocity model building method with Gaussian beam tomography and full waveform inversion for land seismic data [J]. Oil Geophysical Prospecting, 2019, 54(5): 1046-1056.
[71] Shin C, Min D J. Waveform inversion using a logarithmic wavefield [J]. Geophysics, 2006, 71(3): R31-R42. doi: 10.1190/1.2194523
[72] 刘张聚, 童思友, 方云峰, 等. 基于时域加权的拉普拉斯—频率域弹性波全波形反演[J]. 石油地球物理勘探, 2021, 1,56(2):302-312, 331
LIU Zhangju, TONG Siyou, FANG Yunfeng, et al. Full elastic waveform inversion in Laplace-Fourier domain based on time domain weighting [J]. Oil Geophysical Prospecting, 2021, 1,56(2): 302-312, 331.
[73] 王连坤, 方伍宝, 段心标, 等. 全波形反演初始模型建立策略研究综述[J]. 地球物理学进展, 2016, 31(4):1678-1687 doi: 10.6038/pg20160436
WANC Liankun, FANG Wubao, DUAN Xinbiao, et al. Review of full waveform inversion initial model building strategy [J]. Progress in Geophysics, 2016, 31(4): 1678-1687. doi: 10.6038/pg20160436
[74] Brossier R, Operto S, Virieux J. Which data residual norm for robust elastic frequency-domain Full Waveform Inversion? [J]. Geophysics, 2010, 75(3): R37-R46. doi: 10.1190/1.3379323
[75] Liu Y S, Ting J W, Xu T, et al. Robust time-domain full waveform inversion with normalized zero-lag cross-correlation objective function [J]. Geophysical Journal International, 2016, 209(1): 106-122.
[76] Shin C, Pyun S, Bednar J B. Comparison of waveform inversion, Part 1: Conventional wavefield vs logarithmic wavefield [J]. Geophysical Prospecting, 2007, 55(4): 449-464. doi: 10.1111/j.1365-2478.2007.00617.x
[77] Bednar J B, Shin C, Pyun S. Comparison of waveform inversion, Part 2: Phase approach [J]. Geophysical Prospecting, 2007, 55(4): 465-475. doi: 10.1111/j.1365-2478.2007.00618.x
[78] Pyun S, Shin C, Bednar J B. Comparison of waveform inversion, Part 3: Amplitude approach [J]. Geophysical Prospecting, 2007, 55(4): 477-485. doi: 10.1111/j.1365-2478.2007.00619.x
[79] 廖文, 杨艳, 张东. 基于改进目标函数的频率域全波形反演研究[J]. 科技通报, 2016, 32(4):1-5 doi: 10.3969/j.issn.1001-7119.2016.04.001
LIAO Wen, YANG Yan, ZHANG Dong. Frequency-domain Full waveform inversion algorithm based on improved objective function [J]. Bulletin of Science and Technology, 2016, 32(4): 1-5. doi: 10.3969/j.issn.1001-7119.2016.04.001
[80] 张宝金, 张光学, 耿建华, 等. 南海含天然气水合物地层速度反演方法探讨[J]. 南海海洋地质, 2008(1):78-85
ZHANG Baojin, ZHANG Guangxue, GENG Jianhua, et al. Discuss on the methods of velocity inversion of the stratum containing gas hydrates in South China Sea [J]. Geological Research of South China Sea, 2008(1): 78-85.
[81] Kormendi F, Dietrich M. Nonlinear waveform inversion of plane-wave seismograms in stratified elastic media [J]. Geophysics, 1991, 56(5): 664-674. doi: 10.1190/1.1443083
[82] 杨文采. 非线性波动方程地震反演的方法原理及问题[J]. 地球物理学进展, 1992, 7(1):9-19
YANG Wencai. Methods and problems in seismic inversion of nonlinear wave equations [J]. Progress in Geophysics, 1992, 7(1): 9-19.
[83] 孙为涛, 董渊. 波动方程反演的全局优化方法研究[J]. 地球物理学进展, 2007, 22(3): 797-803
SUN Weitao, DONG Yuan. Study on global optimization methods for wave equation inversion problems[J]. Progress in Geophysics, 22(3): 797-803.
[84] 苗永康. 基于L-BFGS算法的时间域全波形反演[J]. 石油地球物理勘探, 2015, 50(3):469-474
MIAO Yongkang. Full waveform inversion in time domain based on limited-memory BFGS algorithm [J]. Oil Geophysical Prospecting, 2015, 50(3): 469-474.
[85] 陈禹. 共轭梯度法的收敛性研究[D]. 长江大学硕士学位论文, 2011.
CHEN Yu. The convergence research on conjugate gradient method[D]. Master Dissertation of Yangtze University, 2011.
[86] HU W Y, ABUBAKAR A, HABASHY T M. Simultaneous multifrequency inversion of full-waveform seismic data [J]. Geophysics, 2009, 74(2): R1-R14. doi: 10.1190/1.3073002
[87] 刘璐, 刘洪, 张衡, 等. 基于修正拟牛顿公式的全波形反演[J]. 地球物理学报, 2013, 56(7):2447-2451 doi: 10.6038/cjg20130730
LIU Lu, LIU Hong, ZHANG Heng, et al. Full waveform inversion based on modified quasi-Newton equation [J]. Chinese Journal of Geophysics, 2013, 56(7): 2447-2451. doi: 10.6038/cjg20130730
[88] 高凤霞, 刘财, 冯晅, 等. 几种优化方法在频率域全波形反演中的应用效果及对比分析研究[J]. 地球物理学进展, 2013, 28(4):2060-2068 doi: 10.6038/pg20130450
GAO Fengxia, LIU Cai, FENG Xuan, et al. Comparisons and analyses of several optimization methods in the application of frequency-domain full waveform inversion [J]. Progress in Geophysics, 2013, 28(4): 2060-2068. doi: 10.6038/pg20130450
[89] Cary P W, Chapman C H. Automatic 1-D waveform inversion of marine seismic refraction data [J]. Geophysical Journal International, 1988, 93(3): 527-546. doi: 10.1111/j.1365-246X.1988.tb03879.x
[90] Holland J H. Adaptation in Natural and Artificial System[M]. Ann Arbor: University of Michigan Press, 1975.
[91] Mallick S. Some practical aspects of prestack waveform inversion using a genetic algorithm: An example from the east Texas Woodbine gas sand [J]. Geophysics, 1999, 64(2): 326-336. doi: 10.1190/1.1444538
[92] Mallick S, Huang X R, Lauve J, et al. Hybrid seismic inversion: A reconnaissance tool for deepwater exploration [J]. The Leading Edge, 2000, 19(11): 1230-1237. doi: 10.1190/1.1438512
[93] Ingber L. Very fast simulated re-annealing [J]. Mathematical and Computer Modelling, 1989, 12(8): 967-973. doi: 10.1016/0895-7177(89)90202-1
[94] 刘鹏程, 纪晨. 改进的模拟退火-单纯形综合反演方法[J]. 地球物理学报, 1995, 38(2):200-204
LIU Pengcheng, JI Chen. An improved simulated annealing downhill simplex hybrid global inverse algorithm [J]. Acta Geophysica Sinica, 1995, 38(2): 200-204.
[95] Fallat M R, Dosso S E. Geoacoustic inversion via local, global, and hybrid algorithms [J]. The Journal of the Acoustical Society of America, 1999, 105(6): 3219-3230. doi: 10.1121/1.424651
[96] 陈章. 叠前全波形反演方法研究[D]. 电子科技大学硕士学位论文, 2012, [CHEN Zhang. Study of Full Waveform Inversion[D]. Master Dissertation of University of Electronic Science and Technology of China, 2012. ]
[97] 董良国, 黄超, 迟本鑫, 等. 基于地震数据子集的波形反演思路、方法与应用[J]. 地球物理学报, 2015, 58(10):3735-3745 doi: 10.6038/cjg20151024
DONG Liangguo, HUANG Chao, CHI Benxin, et al. Strategy and application of waveform inversion based on seismic data subset [J]. Chinese Journal of Geophysics, 2015, 58(10): 3735-3745. doi: 10.6038/cjg20151024
[98] 王毓玮, 董良国, 黄超, 等. 弹性波全波形反演目标函数性态与反演策略[J]. 石油物探, 2016, 55(1):123-132,141 doi: 10.3969/j.issn.1000-1441.2016.01.016
WANG Yuwei, DONG Liangguo, HUANG Chao, et al. Objective function behavior and inversion strategy in elastic full-waveform inversion [J]. Geophysical Prospecting for Petroleum, 2016, 55(1): 123-132,141. doi: 10.3969/j.issn.1000-1441.2016.01.016
[99] 崔栋, 张研, 胡英, 等. 近地表速度建模方法综述[J]. 地球物理学进展, 2014, 29(6):2635-2641 doi: 10.6038/pg20140625
CUI Dong, ZHANG Yan, HU Ying, et al. The review of near surface velocity modeling [J]. Progress in Geophysics, 2014, 29(6): 2635-2641. doi: 10.6038/pg20140625
[100] 卞爱飞, 於文辉, 周华伟. 频率域全波形反演方法研究进展[J]. 地球物理学进展, 2010, 25(3):982-993 doi: 10.3969/j.issn.1004-2903.2010.03.037
BIAN Aifei, YU Wenhui, HOU Huawei. Progress in the frequency-domain full waveform inversion method [J]. Progress in Geophysics, 2010, 25(3): 982-993. doi: 10.3969/j.issn.1004-2903.2010.03.037
[101] 杨午阳, 王西文, 雍学善, 等. 地震全波形反演方法研究综述[J]. 地球物理学进展, 2013, 28(2):766-776 doi: 10.6038/pg20130225
YANG Wuyang, WANG Xiwen, YONG Xueshan, et al. The review of seismic Full waveform inversion method [J]. Progress in Geophysics, 2013, 28(2): 766-776. doi: 10.6038/pg20130225
[102] Guasch L, Warner M R, Ravaut C. Adaptive waveform inversion: Practice [J]. Geophysics, 2019, 84(3): R447-R466. doi: 10.1190/geo2018-0377.1
[103] Chen G X, Wu R S, Chen S C. Reflection multi-scale envelope inversion [J]. Geophysical Prospecting, 2018, 66(7): 1258-1271. doi: 10.1111/1365-2478.12624
[104] Chen G X, Chen S C, Yang W C. Reflection waveform inversion based on full-band seismic data reconstruction for salt structure inversion [J]. Geophysical Journal International, 2020, 220(1): 235-247. doi: 10.1093/gji/ggz442
[105] Hu Y, Wu R S, Han L G, et al. Joint Multiscale direct envelope inversion of phase and amplitude in the time –frequency domain [J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 7(7): 5108-5120.
[106] Wang G C, Alkhalifah T, Wang S X. Enhancing low-wavenumber information in reflection waveform inversion by the energy norm born scattering [J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19: 8000205.
[107] 胡勇, 黄兴国, 陈玉婷, 等. 基于反射地震数据的时频域包络反演[J]. 地球物理学进展, 2021, 36(5):1988-1994 doi: 10.6038/pg2021FF0195
HU Yong, HUANG Xingguo, CHEN Yuting, et al. Reflection seismic data based envelope inversion in the time-frequency domain [J]. Progress in Geophysics, 2021, 36(5): 1988-1994. doi: 10.6038/pg2021FF0195
[108] Ratcliffe A, Jupp R, Wombell R, et al. Full-waveform inversion of variable-depth streamer data: An application to shallow channel modeling in the North Sea [J]. The Leading Edge, 2013, 32(9): 1110-1115. doi: 10.1190/tle32091110.1
-