宽拖多源双传感器拖缆多方位采集与成像技术研究进展

张栋, 孙治雷, 张喜林, 吴能友, 骆迪, 耿威, 徐翠玲, 曹红. 宽拖多源双传感器拖缆多方位采集与成像技术研究进展[J]. 海洋地质与第四纪地质, 2022, 42(4): 194-206. doi: 10.16562/j.cnki.0256-1492.2021110801
引用本文: 张栋, 孙治雷, 张喜林, 吴能友, 骆迪, 耿威, 徐翠玲, 曹红. 宽拖多源双传感器拖缆多方位采集与成像技术研究进展[J]. 海洋地质与第四纪地质, 2022, 42(4): 194-206. doi: 10.16562/j.cnki.0256-1492.2021110801
ZHANG Dong, SUN Zhilei, ZHANG Xilin, WU Nengyou, LUO Di, GENG Wei, XU Cuiling, CAO Hong. Research progress of multi-azimuth acquisition and imaging technology of wide-tow multi-sources dual-sensor streamer[J]. Marine Geology & Quaternary Geology, 2022, 42(4): 194-206. doi: 10.16562/j.cnki.0256-1492.2021110801
Citation: ZHANG Dong, SUN Zhilei, ZHANG Xilin, WU Nengyou, LUO Di, GENG Wei, XU Cuiling, CAO Hong. Research progress of multi-azimuth acquisition and imaging technology of wide-tow multi-sources dual-sensor streamer[J]. Marine Geology & Quaternary Geology, 2022, 42(4): 194-206. doi: 10.16562/j.cnki.0256-1492.2021110801

宽拖多源双传感器拖缆多方位采集与成像技术研究进展

  • 基金项目: 国家基金重大研究计划重点项目“冲绳海槽海底冷泉-热液系统相互作用及资源效应”(91858208);国家自然科学基金项目“海洋‘甲烷拦截带’对冷泉流体的消耗研究:来自南海东沙海域的观测与模拟”(42176057);中国地质调查局海洋地质调查二级项目(DD20221707)
详细信息
    作者简介: 张栋(1991—),男,博士,主要从事海洋天然气水合物地球物理调查研究,E-mail:zhangdong_mail@163.com
    通讯作者: 孙治雷(1975—),男,博士,研究员,主要从事深海矿产资源探测与极端环境成岩、成矿研究,E-mail:zhileisun@yeah.net
  • 中图分类号: P714

Research progress of multi-azimuth acquisition and imaging technology of wide-tow multi-sources dual-sensor streamer

More Information
  • 宽拖多源双传感器拖缆多方位采集与成像技术已成功引入商业地震勘探项目,提高了近海底地层和深部地震图像的分辨率。本文详细阐述了这项新型采集和成像技术,总结了其在北海、马来西亚近海以及巴伦支海等海域识别近海底地层和深层目标地质体的应用效果。在采集方面,该方案创新地将双传感器拖缆、宽拖多源、不同长度拖缆排列与新型多方位采集相结合;在成像方面,全波场成像方案则融合了反射层析成像、全波形反演以及分离波场成像等算法。其优势主要包括:① 能够明显减弱粗糙海面反射的影响,拓宽地震频带;② 提高信噪比、空间采样密度、采集效率以及速度模型精度;③ 实现了近偏移距均匀覆盖和经济高效的多方位照明,可对近海底地层以及深部地质目标进行高分辨率成像,尤其适合浅海环境条件,为不同深度地质体的成像提供了一种经济高效的解决方案。

  • 加载中
  • 图 1  震源拖曳与拖缆排列[1]

    Figure 1. 

    图 2  CMP覆盖范围[1]

    Figure 2. 

    图 3  宽拖源方案的CMP互补覆盖[1]

    Figure 3. 

    图 4  压力波场示意图[33]

    Figure 4. 

    图 5  16×56.25 m密集拖缆排列[29]

    Figure 5. 

    图 6  GeoStreamer X多方位采集方案[14]

    Figure 6. 

    图 7  全波形反演速度更新和深度偏移叠加剖面叠合[29]

    Figure 7. 

    图 8  注砂岩处的长偏移折射的9 Hz全波形反演灵敏度核[14]

    Figure 8. 

    图 9  速度与地震剖面叠合[44]

    Figure 9. 

    图 10  全波形反演速度模型[29]

    Figure 10. 

    图 11  双传感器记录波场示意图[16]

    Figure 11. 

    图 12  马来西亚浅海联络测线地震剖面[46]

    Figure 12. 

    图 13  全波场成像流程[21]

    Figure 13. 

    图 14  采集方案[5]

    Figure 14. 

    图 15  巴伦支海域应用[14]

    Figure 15. 

    图 16  单方位与多方位采集方案成像对比[14]

    Figure 16. 

    表 1  2019—2020年实施的6个宽拖多源项目详细信息[27]

    Table 1.  Overview of the six wide-tow multi-source projects acquired in 2019 and 2020 [27]

    序号年份国家拖缆
    数量
    拖缆间
    距/m
    震源
    数量
    横向面元
    大小/m
    标准震源
    间距/m
    宽拖震源
    间距/m
    震源扩展
    宽度/m
    12019澳大利亚1275.00218.75037.5112.50112.5
    22019挪威1284.38314.06328.13112.50225.0
    32020挪威1493.75315.62531.25125.00250.0
    42020英国1293.75315.62531.2562.50125.0
    52020挪威1656.2539.37518.7593.75187.5
    62020挪威1656.2555.62518.7578.75315.0
    下载: 导出CSV
  • [1]

    Widmaier M, O’Dowd D, Roalkvam C. Redefining marine towed-streamer acquisition [J]. First Break, 2019, 37(11): 57-62. doi: 10.3997/1365-2397.2019035

    [2]

    Widmaier M, Oukili J, Roalkvam C, et al. Maximizing quality and efficiency of multisensor streamer seismic with an ultra-wide penta-source configuration[C]//SEG/AAPG/SEPM First International Meeting for Applied Geoscience & Energy. Denver, Colorado, USA: Society of Exploration Geophysicists, 2021: 61-65.

    [3]

    Widmaier M, O’Dowd D. Strategies for high-resolution towed-streamer acquisition and imaging of shallow targets[C]//2017 SEG International Exposition and Annual Meeting. Houston, Texas: Society of Exploration Geophysicists, 2017: 186-190.

    [4]

    张旭东, 文鹏飞, 徐云霞, 等. 双源单缆方式采集的天然气水合物三维地震数据采集脚印分析与压制处理[J]. 海洋地质前沿, 2015, 31(9):55-61

    ZHANG Xudong, WEN Pengfei, XU Yunxia, et al. Footprint analysis and suppress processing of dual-source and single cable 3D seismic data for gas hydrate [J]. Marine Geology Frontiers, 2015, 31(9): 55-61.

    [5]

    Widmaier M, O'Dowd D. Addressing imaging challenges in the Viking Graben with multi-azimuth acquisition, longer offsets, and wide-tow sources[C]//SEG International Exposition and Annual Meeting. Virtual: Society of Exploration Geophysicists, 2020: 21-25.

    [6]

    赵思为, 周超. 浅海地区工程地震勘探多次波消除方法应用[J]. 工程地球物理学报, 2019, 16(5):635-641 doi: 10.3969/j.issn.1672-7940.2019.05.013

    ZHAO Siwei, ZHOU Chao. Application of multi-wave elimination methods of engineering seismic exploration to shallow sea [J]. Chinese Journal of Engineering Geophysics, 2019, 16(5): 635-641. doi: 10.3969/j.issn.1672-7940.2019.05.013

    [7]

    Barnes S R, Hegge R F, Schumacher H, et al. Improved shallow water demultiple with 3D multi-model subtraction[C]//2015 SEG Annual Meeting. New Orleans, Louisiana: Society of Exploration Geophysicists, 2015: 4460-4464.

    [8]

    Lu S P, Whitmore N, Valenciano A, et al. A practical crosstalk attenuation method for separated wavefield imaging[C]//2016 SEG International Exposition and Annual Meeting. Dallas, Texas: Society of Exploration Geophysicists, 2016: 4235-4239.

    [9]

    Wang P, Jin H Z, Yang M, et al. A model-based water-layer demultiple algorithm [J]. First Break, 2014, 32(3): 63-68.

    [10]

    Osnes B, Day A, Widmaier M, et al. First 3-D dual-sensor streamer acquisition in the North Sea - an example from the Luno field[C]//72nd EAGE Conference and Exhibition Incorporating SPE EUROPEC 2010. Geneva: European Association of Geoscientists & Engineers, 2010.

    [11]

    Reiser C, Mueller E, Multi-azimuth multisensor quantitative interpretation: a South Viking graben case study, Norway[J]. First Break, 2021, 39(9): 79-84.

    [12]

    Beaumont S, Söllner W. Multi-azimuth prestack time migration for general anisotropic, weakly heterogeneous media-field data examples[C]//75th EAGE Conference & Exhibition Incorporating SPE EUROPEC 2013. London, UK: European Association of Geoscientists & Engineers, 2013.

    [13]

    Widmaier M T. Mitigating uncertainties in towed streamer acquisition and imaging by survey planning[C]//77th EAGE Conference and Exhibition-Workshops. Madrid, Spain: European Association of Geoscientists & Engineers, 2015: 1-5.

    [14]

    Oukili J, Limonta L, Bubner M, et al. Revealing new opportunities with a cost-effective towed-streamer MAZ solution in the South Viking Graben, Norway [J]. First Break, 2020, 38(11): 95-101. doi: 10.3997/1365-2397.fb2020085

    [15]

    Lu S P, Whitmore D N, Valenciano A A, et al. Separated-wavefield imaging using primary and multiple energy [J]. The Leading Edge, 2015, 34(7): 770-778. doi: 10.1190/tle34070770.1

    [16]

    Feuilleaubois L O, Charoing V, Maioli A, et al. Utilizing a novel quantitative interpretation workflow to derisk shallow hydrocarbon prospects-a Barents Sea case study [J]. First Break, 2017, 35(3): 85-92.

    [17]

    Rønholt G, Lie J E, Korsmo Ø, et al. Broadband velocity model building and imaging using reflections, refractions and multiples from dual-sensor streamer data[C]//14th International Congress of the Brazilian Geophysical Society & Expogef. Rio de Janeiro, Brazil: Society of Exploration Geophysicists, 2015: 1-5.

    [18]

    O'Dowd D, Widmaier M, Roalkvam C, et al. Redefining high resolution multi-azimuth towed streamer acquisition on the Norwegian continental shelf[C]//EAGE 2020 Annual Conference & Exhibition. Amsterdam, Netherlands: European Association of Geoscientists & Engineers, 2020.

    [19]

    Long A S, Lu S, Whitmore D, et al. Mitigation of the 3D cross-line acquisition footprint using separated wavefield imaging of dual-sensor streamer seismic[C]//75th EAGE Conference & Exhibition incorporating SPE EUROPEC 2013. London, UK: European Association of Geoscientists & Engineers, 2013.

    [20]

    Rongfu S, Hua C, Yun W, et al. Improved interpretability via dual-sensor towed streamer 3D seismic-a case study from East China Sea[C]//76th EAGE Conference and Exhibition 2014. Amsterdam, Netherlands: European Association of Geoscientists & Engineers, 2014: 1-4.

    [21]

    Ciotoli M, Beaumont S, Oukili J, et al. Dual-sensor data and enhanced depth imaging sheds new light onto the mature Viking Graben area [J]. First Break, 2016, 34(9): 73-79.

    [22]

    Baardman R, Van Borselen R. Separating sources in marine simultaneous shooting acquisition - Method & applications[C]//2012 SEG Annual Meeting. Las Vegas, Nevada: Society of Exploration Geophysicists, 2012: 1-5.

    [23]

    Beitz M, Strand C, Baardman R H. Constraint of dithering of source actuations: US, 20180052248[P]. 2018-02-22.

    [24]

    Langhammer J, Bennion P. Triple-source simultaneous shooting (TS3), a future for higher density seismic?[C]//77th EAGE Conference and Exhibition 2015. Madrid, Spain: European Association of Geoscientists & Engineers, 2015: 1-5.

    [25]

    Duan L, Bekara M, Baardman R H, et al. A practical method for multi-source deblending using spatio-temporal compressive sensing[C]//79th EAGE Conference and Exhibition 2017. Paris, France: European Association of Geoscientists & Engineers, 2017.

    [26]

    Hager E, Fontana P. Penta source: high-resolution marine seismic from shallow to deep water[C]//79th EAGE Conference and Exhibition 2017. Paris, France: European Association of Geoscientists & Engineers, 2017: 1-5.

    [27]

    Widmaier M, Tønnessen R, Oukili J, et al. Recent advances with wide-tow multi-sources in marine seismic streamer acquisition and imaging [J]. First Break, 2020, 38(12): 75-79. doi: 10.3997/1365-2397.fb2020093

    [28]

    Korsmo Ø, Marinets S, Naumann S, et al. Full waveform inversion and ambiguities related to strong anisotropy in exploration areas–case study Barents Sea[C]//78th EAGE Conference and Exhibition 2016. Vienna, Austria: European Association of Geoscientists & Engineers, 2016: 1-5.

    [29]

    Naumann S, Widmaier M, Rønholt G. Novel variable streamer length acquisition tailored to full waveform inversion and high resolution imaging[C]//81st EAGE Conference and Exhibition 2019. London, UK: European Association of Geoscientists & Engineers, 2019: 1-5.

    [30]

    Long A. Source and streamer towing strategies for improved efficiency, spatial sampling and near offset coverage [J]. First Break, 2017, 35(11): 71-74.

    [31]

    Carlson D H, Long A, Söllner W, et al. Increased resolution and penetration from a towed dual-sensor streamer [J]. First Break, 2007, 25(12): 71-77.

    [32]

    Widmaier M, Fromyr E, Dirks V. Dual-sensor towed streamer: from concept to fleet-wide technology platform [J]. First Break, 2015, 33(11): 83-89.

    [33]

    Long A. A bigger picture view of separated wavefields and marine broadband seismic [J]. First Break, 2017, 35(6): 81-86.

    [34]

    Tenghamn R, Vaage S, Borresen C. A dual-sensor, towed marine streamer; Its viable implementation and initial results[C]//2007 SEG Annual Meeting. San Antonio, Texas: Society of Exploration Geophysicists, 2007: 989-993.

    [35]

    Caprioli P, Özdemir A K, Van Manen D J, et al. Combination of multi-component streamer pressure and vertical particle velocity: theory and application to data[C]//2012 SEG Annual Meeting. Las Vegas, Nevada: Society of Exploration Geophysicists, 2012.

    [36]

    Tenghamn R, Dhelie P E. GeoStreamer-increasing the signal-to-noise ratio using a dual-sensor towed streamer [J]. First Break, 2009, 27(1305): 45-51.

    [37]

    Ten Kroode F, Bergler S, Corsten C, et al. Broadband seismic data-The importance of low frequencies [J]. Geophysics, 2013, 78(2): WA3-WA14. doi: 10.1190/geo2012-0294.1

    [38]

    Long A, An overview of seismic azimuth for towed streamers[J]. The Leading Edge, 2010, 29(5): 512-523.

    [39]

    Keggin J, Benson M, Rietveld W. Multi-azimuth 3D provides robust improvements in Nile Delta seismic imaging [J]. First Break, 2007, 25(3): 47-54.

    [40]

    Marten R, Rietveld W, Benson M, et al. Utilizing multi-azimuth streamer data for reservoir characterization and uncertainty analysis in the Nile delta[C]//70th EAGE Conference and Exhibition incorporating SPE EUROPEC 2008. Rome, Italy: European Association of Geoscientists & Engineers, 2008.

    [41]

    Cavalin D, Ismail N, Paten T, et al. Broadband seismic and FWI to resolve an incised shallow carbonate platform: Indonesia[C]//SEG International Exposition and Annual Meeting. San Antonio, Texas, USA: Society of Exploration Geophysicists, 2019.

    [42]

    Barkved O, Heavey P, Kommedal J H, et al. Business Impact of Full Waveform Inversion at Valhall[C]//2010 SEG Annual Meeting. Denver, Colorado: Society of Exploration Geophysicists, 2010: 925-929.

    [43]

    Zou Z, Ramos-Martínez J, Kelly S, et al. Refraction full-waveform inversion in a shallow water environment[C]//76th EAGE Conference and Exhibition 2014. Amsterdam, Netherlands: European Association of Geoscientists & Engineers, 2014.

    [44]

    Rønholt G, Korsmo Ø, Brown S, et al. High-fidelity complete wavefield velocity model building and imaging in shallow water environments-A North Sea case study [J]. First Break, 2014, 32(6): 127-131.

    [45]

    Whitmore N D, Valenciano A A, Sollner W, et al. Imaging of primaries and multiples using a dual-sensor towed streamer[C]//2010 SEG Annual Meeting. Denver, Colorado: Society of Exploration Geophysicists, 2010: 3187-3192.

    [46]

    Lu S, Whitmore D, Valenciano A, et al. Enhanced subsurface illumination from separated wavefield imaging [J]. First Break, 2014, 32(11): 87-92.

  • 加载中

(16)

(1)

计量
  • 文章访问数:  918
  • PDF下载数:  25
  • 施引文献:  0
出版历程
收稿日期:  2021-11-08
修回日期:  2022-03-20
录用日期:  2022-03-20
刊出日期:  2022-08-28

目录