两种重矿物分析方法在青藏高原东南缘伊洛瓦底江沉积物物源分析中的应用

胡云, 何梦颖, 许欢, TinAung Myint, 张毕辉, 边紫旋, 郑洪波. 两种重矿物分析方法在青藏高原东南缘伊洛瓦底江沉积物物源分析中的应用[J]. 海洋地质与第四纪地质, 2022, 42(4): 181-193. doi: 10.16562/j.cnki.0256-1492.2021112901
引用本文: 胡云, 何梦颖, 许欢, TinAung Myint, 张毕辉, 边紫旋, 郑洪波. 两种重矿物分析方法在青藏高原东南缘伊洛瓦底江沉积物物源分析中的应用[J]. 海洋地质与第四纪地质, 2022, 42(4): 181-193. doi: 10.16562/j.cnki.0256-1492.2021112901
HU Yun, HE Mengying, XU Huan, Tin Aung Myint, ZHANG Bihui, BIAN Zixuan, ZHENG Hongbo. Application of two heavy mineral analysis methods in the provenance study of Irrawaddy River sediments on the southeastern margin of Tibetan Plateau[J]. Marine Geology & Quaternary Geology, 2022, 42(4): 181-193. doi: 10.16562/j.cnki.0256-1492.2021112901
Citation: HU Yun, HE Mengying, XU Huan, Tin Aung Myint, ZHANG Bihui, BIAN Zixuan, ZHENG Hongbo. Application of two heavy mineral analysis methods in the provenance study of Irrawaddy River sediments on the southeastern margin of Tibetan Plateau[J]. Marine Geology & Quaternary Geology, 2022, 42(4): 181-193. doi: 10.16562/j.cnki.0256-1492.2021112901

两种重矿物分析方法在青藏高原东南缘伊洛瓦底江沉积物物源分析中的应用

  • 基金项目: 中国科学院战略性先导科技专项(B类)子课题 “‘干极’演变的沉积记录及地层年代学”(XDB26020301);第二次青藏高原综合科学考察研究 “碰撞以来古地理格局与构造地貌过程”(2019QZKK0704)
详细信息
    作者简介: 胡云(1997—),女,硕士研究生,从事沉积物物源分析研究,E-mail:yunhu970503@163.com
    通讯作者: 何梦颖(1985—),女,博士,副教授,主要从事地表过程与全球变化研究,E-mail:conniehe@njnu.edu.cn
  • 中图分类号: P575.2

Application of two heavy mineral analysis methods in the provenance study of Irrawaddy River sediments on the southeastern margin of Tibetan Plateau

More Information
  • 伊洛瓦底江是亚洲大型河流之一,其沉积物记录了青藏高原周缘造山带的剥蚀风化信息,对该流域沉积物的溯源研究是探究高原隆升对水系演化影响的重要课题。沉积物的重矿物种类与源岩联系紧密,是物源分析的重要手段之一。重矿物鉴定分析手段层出不穷,但不同鉴定手段之间缺乏对比分析。采用自动矿物分析系统TIMA与光学显微镜鉴定(optical microscope, OM)两种方法对伊洛瓦底江沉积物重矿物进行了鉴定分析,结果表明:伊洛瓦底江上游主要重矿物是角闪石-石榴子石-赤/磁铁矿、钛铁矿;伊洛瓦底江下游主要重矿物是赤/磁铁矿、钛铁矿-石榴子石-黝帘石-角闪石;支流钦敦江主要重矿物组合是黝帘石-角闪石-石榴子石。两种方法的结果都指示了伊洛瓦底江沉积物主要来自上游流经的缅甸北部构造单元的变质岩以及中/基性岩,太公-密支那带对伊洛瓦底江沉积物贡献量最大,钦敦江流域对伊洛瓦底江下游沉积物贡献量有限。但是两种方法对重矿物种类以及单个重矿物含量鉴定结果有着明显差异:TIMA方法的鉴定种类更加丰富,且其分析结果与伊洛瓦底江流域地质岩性分布的耦合程度更高,但TIMA无法区分化学性质相同的矿物;OM法对光学性质相近的矿物鉴定结果不准确。因此建议对重矿物分类程度或精确性要求更高的研究使用TIMA进行精确分析,同时辅助OM法区分化学性质相同的矿物。

  • 加载中
  • 图 1  伊洛瓦底江流域地形以及主要构造单元分布图

    Figure 1. 

    图 2  TIMA自动扫描获得的伊洛瓦底江沉积物重矿物图像

    Figure 2. 

    图 3  伊洛瓦底江沉积物重矿物组合特征

    Figure 3. 

    图 4  伊洛瓦底江沉积物重矿物特征指数柱状图

    Figure 4. 

    图 5  伊洛瓦底江沉积物主要重矿物含量变化折线图

    Figure 5. 

    表 1  伊洛瓦底江沉积物样品信息

    Table 1.  Sample information of Irrawaddy sediments

    样品号纬度(N)经度(E)样品量/g重矿物/mg重矿物占比/%
    Irr123°51'25.03''96°13'49.00''900218142.42
    Irr222°26'42.23''96°1'00.23''1350586944.35
    Irr320°08'59.83''94°53'32.46''500117472.35
    Chin122°11'43.27''95°04'27.83''110050880.46
    下载: 导出CSV

    表 2  TIMA及OM法测得的伊洛瓦底江沉积物重矿物含量

    Table 2.  Heavy mineral content of Irrawaddy River sediments by TIMA and OM methods

    %  
    矿物名称
    Irr1

    Irr2

    Chin1

    Irr3
    TIMAOMTIMAOMTIMAOMTIMAOM
    角闪石/35.75/44.35/14.60/10.68
    普通角闪石21.45/16.23/6.68/6.03/
    韭闪石2.55/1.75/1.51/1.09/
    阳起石9.88/5.70/5.32/2.04/
    赤铁矿/1.54/5.20/0.81/0.82
    磁铁矿/5.98/9.19/1.70/8.94
    赤/磁铁矿9.48/23.36/4.79/28.74/
    钛铁矿9.4910.7512.8811.883.381.6211.8340.90
    铬铁矿0.420.611.844.340.87
    石榴子石/11.52/7.42/8.11/17.53
    钙铝榴石13.42/10.23/23.89/10.59/
    铁铝榴石3.60/4.06/3.77/6.11/
    钙铁榴石0.40/0.19/0.90/0.67/
    锰铝榴石0.12/0.21/0.29/0.45/
    镁铝榴石0.24/0.19/0.15/0.11/
    黝帘石6.6924.744.3815.649.0245.603.4112.96
    褐帘石1.13/1.66/1.47/1.70/
    锆石0.031.730.250.250.010.431.731.84
    金红石0.980.411.490.292.920.273.091.46
    锐钛矿//0.02/0.02/0.57
    白钛石///0.01/0.22
    榍石0.960.461.471.421.480.641.131.81
    绿泥石6.68/8.34/6.33/7.8/
    橄榄石2.26/1.07/4.31/1.04/
    磷灰石0.080.040.160.030.090.070.06
    十字石0.170.151.740.050.960.05
    电气石0.390.140.220.070.881.060.290.05
    蓝晶石0.030.050.050.061.480.970.500.19
    独居石0.020.070.220.040.010.00
    尖晶石0.040.83*0.25
    辉石////
    白云母0.59/0.28/0.50/0.14/
    黑云母0.33/0.10/0.03/0.02/
    钡锰闪叶石//0.08//
    刚玉//0.07//
    方铁锰矿//0.04//
    重晶石///0.05/
    霓石/0.03///
    其他8.626.814.683.3216.2224.095.811.04
      注:“—”表示矿物含量小于0.01%;“/”表示未发现该矿物;“△”代表0~500粒;“*”代表500~700粒;OM指光学显微镜法。
    下载: 导出CSV

    表 3  TIMA与OM法鉴定的伊洛瓦底江沉积物重矿物统一分类

    Table 3.  Unified classification of heavy mineral identification of Irrawaddy River sediments by TIMA and OM methods

    %  
    矿物种类
    Irr1

    Irr2

    Chin1

    Irr3
    TIMAOMTIMAOMTIMAOMTIMAOM
    稳定
    重矿物
    赤/磁铁矿9.487.5223.3614.394.792.5128.749.76
    钛铁矿9.4910.7512.8811.883.381.6211.8340.90
    铬铁矿0.420.611.844.340.87
    石榴子石17.7811.5214.877.4228.988.1117.9417.53
    锆石0.031.730.250.250.010.431.731.84
    TiO20.980.411.490.312.920.303.092.25
    十字石0.170.151.740.050.960.05
    电气石0.390.140.220.070.881.060.290.05
    榍石0.960.461.471.421.480.641.131.81
    蓝晶石0.030.050.050.061.480.970.500.19
    独居石0.020.070.220.040.010.00
    尖晶石0.040.83*0.25
    不稳定
    重矿物
    角闪石33.8835.7523.6844.3513.5114.609.1610.68
    黝帘石6.6924.744.3815.649.0245.603.4112.96
    褐帘石1.13/1.66/1.47/1.70/
    绿泥石6.68/8.34/6.33/7.8/
    橄榄石2.26/1.07/4.31/1.04/
    磷灰石0.080.040.160.030.090.070.06
      注:“—”表示矿物含量小于0.01%;“/”表示未发现该矿物;“△”代表0~500粒;“*”代表500~700粒;OM指光学显微镜法。
    下载: 导出CSV
  • [1]

    Clark M K, Schoenbohm L M, Royden L H, et al. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns [J]. Tectonics, 2004, 23(1): TC1006.

    [2]

    Brookfield M E. The evolution of the great river systems of southern Asia during the Cenozoic India-Asia collision: rivers draining southwards [J]. Geomorphology, 1998, 22(3-4): 285-312. doi: 10.1016/S0169-555X(97)00082-2

    [3]

    郑洪波, 王平, 何梦颖, 等. 长江东流水系建立的时限及其构造地貌意义[J]. 第四纪研究, 2013, 33(4):621-630 doi: 10.3969/j.issn.1001-7410.2013.04.01

    ZHENG Hongbo, WANG Ping, HE Mengying, et al. Timing of the establishment of the east-flowing Yangtze River and tectonic-geomorphic implications [J]. Quaternary Sciences, 2013, 33(4): 621-630. doi: 10.3969/j.issn.1001-7410.2013.04.01

    [4]

    Robinson R A J, Bird M I, Oo N W, et al. The irrawaddy river sediment flux to the Indian ocean: the original nineteenth‐century data revisited [J]. The Journal of Geology, 2007, 115(6): 629-640. doi: 10.1086/521607

    [5]

    Robinson R A J, Brezina C A, Parrish R R, et al. Large rivers and orogens: The evolution of the Yarlung Tsangpo-Irrawaddy system and the eastern Himalayan syntaxis [J]. Gondwana Research, 2014, 26(1): 112-121. doi: 10.1016/j.gr.2013.07.002

    [6]

    Liang Y H, Chung S L, Liu D Y, et al. Detrital zircon evidence from Burma for reorganization of the eastern Himalayan river system [J]. American Journal of Science, 2008, 308(4): 618-638. doi: 10.2475/04.2008.08

    [7]

    Licht A, Reisberg L, France-Lanord C, et al. Cenozoic evolution of the central Myanmar drainage system: insights from sediment provenance in the Minbu Sub-Basin [J]. Basin Research, 2016, 28(2): 237-251. doi: 10.1111/bre.12108

    [8]

    Zhang P, Najman Y, Mei L F, et al. Palaeodrainage evolution of the large rivers of East Asia, and Himalayan-Tibet tectonics [J]. Earth-Science Reviews, 2019, 192: 601-630. doi: 10.1016/j.earscirev.2019.02.003

    [9]

    Licht A, France-Lanord C, Reisberg L, et al. A palaeo Tibet-Myanmar connection? Reconstructing the Late Eocene drainage system of central Myanmar using a multi-proxy approach [J]. Journal of the Geological Society, 2013, 170(6): 929-939. doi: 10.1144/jgs2012-126

    [10]

    Licht A, Dupont-Nivet G, Win Z, et al. Paleogene evolution of the Burmese forearc basin and implications for the history of India-Asia convergence [J]. GSA Bulletin, 2019, 131(5-6): 730-748. doi: 10.1130/B35002.1

    [11]

    Van Hoang L, Wu F Y, Clift P D, et al. Evaluating the evolution of the Red River system based on in situ U-Pb dating and Hf isotope analysis of zircons [J]. Geochemistry, Geophysics, Geosystems, 2009, 10(11): Q11008.

    [12]

    Garzanti E, Wang J G, Vezzoli G, et al. Tracing provenance and sediment fluxes in the Irrawaddy River basin (Myanmar) [J]. Chemical Geology, 2016, 440: 73-90. doi: 10.1016/j.chemgeo.2016.06.010

    [13]

    杨仁超, 李进步, 樊爱萍, 等. 陆源沉积岩物源分析研究进展与发展趋势[J]. 沉积学报, 2013, 31(1):99-107

    YANG Renchao, LI Jinbu, FAN Aiping, et al. Research progress and development tendency of provenance analysis on terrigenous sedimentary rocks [J]. Acta Sedimentologica Sinica, 2013, 31(1): 99-107.

    [14]

    Pettijohn F J, Potter P E, Siever R. Sand and Sandstone[M]. New York: Springer, 1972.

    [15]

    Mange M A, Maurer H F W. Heavy Minerals in Colour[M]. London: Chapman and Hall, 1992.

    [16]

    Morton A C, Hallsworth C R. Processes controlling the composition of heavy mineral assemblages in sandstones [J]. Sedimentary Geology, 1999, 124(1-4): 3-29. doi: 10.1016/S0037-0738(98)00118-3

    [17]

    Morton A C, Hallsworth C. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones [J]. Sedimentary Geology, 1994, 90(3-4): 241-256. doi: 10.1016/0037-0738(94)90041-8

    [18]

    Zuffa G G, Serra F. Chapter 9 effects of hydrothermal fluids on the heavy mineral assemblage of a late pleistocene succession deposited in an oceanic ridge valley (Escanaba trough, Juan De Fuca Plate) [J]. Developments in Sedimentology, 2007, 58: 263-276.

    [19]

    Sylvester P. Quantitative Mineralogy and Microanalysis of Sediments and Sedimentary Rocks[M]. St. John’s NL: Mineralogical Association of Canada, 2012: 25-26.

    [20]

    任迎新, 朱宝华. 重砂矿物分选及鉴定[M]. 武汉: 中国地质大学出版社, 1987.

    ZHU Yingxin, ZHU Baohua. Heavy Placer Mineral Separation and Identification[M]. Wuhan: China University of Geosciences, 1987.

    [21]

    Sylvester P J. Use of the Mineral Liberation Analyzer (MLA) for Mineralogical Studies of Sediments and Sedimentary Rocks[M]. St. John’s NL: Mineralogical Association of Canada, 2012: 1-16.

    [22]

    Hrstka T, Gottlieb P, Skála R, et al. Automated mineralogy and petrology - applications of TESCAN Integrated Mineral Analyzer (TIMA) [J]. Journal of Geosciences, 2018, 63(1): 47-63.

    [23]

    陈倩, 宋文磊, 杨金昆, 等. 矿物自动定量分析系统的基本原理及其在岩矿研究中的应用: 以捷克泰思肯公司TIMA为例[J]. 矿床地质, 2021, 40(2):345-368

    CHEN Qian, SONG Wenlei, YANG Jinkun, et al. Principle of automated mineral quantitative analysis system and its application in petrology and mineralogy: An example from TESCAN TIMA [J]. Mineral Deposits, 2021, 40(2): 345-368.

    [24]

    Dunkl I, Von Eynatten H, Andò S, et al. Comparability of heavy mineral data – The first interlaboratory round robin test [J]. Earth-Science Reviews, 2020, 211: 103210. doi: 10.1016/j.earscirev.2020.103210

    [25]

    崔颖颖, 周亚利, 陈国祥, 等. 毛乌素沙地样品扫描电镜的矿物定量分析[J]. 干旱区地理, 2020, 43(6):1505-1513

    CUI Yingying, ZHOU Yali, CHEN Guoxiang, et al. Mineral quantitative analysis of Mu Us Sandy Land with QEMSCAN [J]. Arid Land Geography, 2020, 43(6): 1505-1513.

    [26]

    刘冬英, 陈玺, 黄燕, 等. 缅甸伊洛瓦底江流域水文资料初步复核评价[J]. 人民长江, 2018, 49(22):112-117

    LIU Dongying, CHEN Xi, HUANG Yan, et al. Preliminary recheck and evaluation of hydrological data in Irrawaddy River Basin, Myanmar [J]. Yangtze River, 2018, 49(22): 112-117.

    [27]

    Furuichi T, Win Z, Wasson R J. Discharge and suspended sediment transport in the Ayeyarwady River, Myanmar: centennial and decadal changes [J]. Hydrological Processes, 2010, 23(11): 1631-1641.

    [28]

    Mitchell A H G, Htay M T, Htun K M, et al. Rock relationships in the Mogok metamorphic belt, Tatkon to Mandalay, central Myanmar [J]. Journal of Asian Earth Sciences, 2007, 29(5-6): 891-910. doi: 10.1016/j.jseaes.2006.05.009

    [29]

    刘锋, 赵越, 宋立才, 等. 伊洛瓦底江上游水系形成时代研究: 以滇西龙川江为例[J]. 中国地质, 2015, 42(1):199-206 doi: 10.3969/j.issn.1000-3657.2015.01.016

    LIU Feng, ZHAO Yue, SONG Licai, et al. Time of the upper Irrawaddy streams: A case study of the Longchuan River, western Yunnan [J]. Geology in China, 2015, 42(1): 199-206. doi: 10.3969/j.issn.1000-3657.2015.01.016

    [30]

    Chapman H, Bickle M, Thaw S H, et al. Chemical fluxes from time series sampling of the Irrawaddy and Salween Rivers, Myanmar [J]. Chemical Geology, 2015, 401: 15-27. doi: 10.1016/j.chemgeo.2015.02.012

    [31]

    Zin W W, Nestmann F, Ihringer J. Flood forecasting using FGM model in Chindwin river basin [J]. Malaysian Journal of Civil Engineering, 2009, 21(2): 135-151.

    [32]

    UNDGSE. Mineral exploration in selected areas, Burma[R]. New York: United Nations, 1979: 86.

    [33]

    UNDGSE. Geological mapping and geochemical exploration in Mansi-Manhton, Indaw-Tigyaing, Kyindwe-Longyi, Patchaung-Yane and Yezin areas, Burma[R]. New York: United Nations, 1979: 13.

    [34]

    Searle M P, Noble S R, Cottle J M, et al. Tectonic evolution of the Mogok metamorphic belt, Burma (Myanmar) constrained by U-Th-Pb dating of metamorphic and magmatic rocks [J]. Tectonics, 2007, 26(3): TC3014.

    [35]

    Bender F. Geology of Burma[M]. Berlin: Gebrüder Borntraeger, 1983.

    [36]

    Mitchell A H G. Cretaceous-Cenozoic tectonic events in the western Myanmar(Burma)-Assam region [J]. Journal of the Geological Society, 1993, 150(6): 1089-1102. doi: 10.1144/gsjgs.150.6.1089

    [37]

    Thein M L. The lower paleozoic stratigraphy of western part of the Southern Shan State, Burma [J]. Bulletin of the Geological Society of Malaysia, 1973, 6: 143-163. doi: 10.7186/bgsm06197310

    [38]

    Mitchell A, Chung S L, Oo T, et al. Zircon U–Pb ages in Myanmar: Magmatic–metamorphic events and the closure of a neo-Tethys ocean? [J]. Journal of Asian Earth Sciences, 2012, 56: 1-23. doi: 10.1016/j.jseaes.2012.04.019

    [39]

    Brunnschweiler R O. On the geology of the Indoburman ranges [J]. Journal of the Geological Society of Australia, 1966, 13(1): 137-194. doi: 10.1080/00167616608728608

    [40]

    Acharyya S K, Ray K K, Sengupta S. Tectonics of the ophiolite belt from Naga Hills and Andaman Islands, India [J]. Proceedings of the Indian Academy of Sciences - Earth and Planetary Sciences, 1990, 99(2): 187.

    [41]

    Acharyya S K. Indo-Burma Range: a belt of accreted microcontinents, ophiolites and Mesozoic–Paleogene flyschoid sediments [J]. International Journal of Earth Sciences, 2015, 104(5): 1235-1251. doi: 10.1007/s00531-015-1154-6

    [42]

    和钟铧, 刘招君, 郭巍. 柴达木盆地北缘大煤沟剖面重矿物分析及其地质意义[J]. 世界地质, 2001, 20(3):279-284,312 doi: 10.3969/j.issn.1004-5589.2001.03.012

    HE Zhonghua, LIU Zhaojun, GUO Wei. The heavy mineral analysis and its geological significance of Dameigou section in northern Caidam Basin [J]. World Geology, 2001, 20(3): 279-284,312. doi: 10.3969/j.issn.1004-5589.2001.03.012

    [43]

    Mitchell A. Mogok metamorphic belt[M]//Mitchell A. Geological Belts, Plate Boundaries, and Mineral Deposits in Myanmar. Barcelona: Elsevier, 2018: 201-251.

    [44]

    Mitchell A. Kumon range[M]//Mitchell A. Geological Belts, Plate Boundaries, and Mineral Deposits in Myanmar. Barcelona: Elsevier, 2018: 461-465.

    [45]

    Enami M, Ko Z W, Win A, et al. Eclogite from the Kumon range, Myanmar: Petrology and tectonic implications [J]. Gondwana Research, 2012, 21(2-3): 548-558. doi: 10.1016/j.gr.2011.07.018

    [46]

    Mitchell A. Popa-loimye magmatic arc[M]//Mitchell A. Geological Belts, Plate Boundaries, and Mineral Deposits in Myanmar. Barcelona: Elsevier, 2018: 277-323.

    [47]

    吴良士. 缅甸区域成矿地质特征及其矿产资源(一)[J]. 矿床地质, 2011, 30(1):176 doi: 10.3969/j.issn.0258-7106.2011.01.016

    WU Liangshi. Regional metallogenic geological characteristics and mineral resources in Myanmar [J]. Mineral Deposits, 2011, 30(1): 176. doi: 10.3969/j.issn.0258-7106.2011.01.016

    [48]

    Amidon W H, Burbank D W, Gehrels G E. Construction of detrital mineral populations: insights from mixing of U-Pb zircon ages in Himalayan rivers [J]. Basin Research, 2005, 17(4): 463-485. doi: 10.1111/j.1365-2117.2005.00279.x

    [49]

    Xu C, Kynický J, Tao R B, et al. Recovery of an oxidized majorite inclusion from Earth's deep asthenosphere [J]. Science Advances, 2017, 3(4): e1601589. doi: 10.1126/sciadv.1601589

    [50]

    李胜荣, 许虹, 申俊峰, 等. 结晶学与矿物学[M]. 北京: 地质出版社, 2008.

    LI Shengrong, XU Hong, SHEN Junfeng, et al. Crystallography and Mineralogy[M]. Beijing: Geological Publishing House, 2008.

    [51]

    Morton A C. Influences of provenance and diagenesis on detrital garnet suites in the Paleocene Forties sandstone, central North Sea [J]. Journal of Sedimentary Research, 1987, 57(6): 1027-1032.

  • 加载中

(5)

(3)

计量
  • 文章访问数:  1857
  • PDF下载数:  38
  • 施引文献:  0
出版历程
收稿日期:  2021-11-29
修回日期:  2022-02-26
录用日期:  2022-02-26
刊出日期:  2022-08-28

目录