-
摘要:
涠洲岛位于热带北缘,对珊瑚生长而言其纬度相对偏高,冬季低温是制约其珊瑚生长和珊瑚礁发育的关键因素。重建涠洲岛珊瑚礁发育的过程,对于了解珊瑚对过去气候的响应以及预测珊瑚礁的发育趋势等具有重要科学意义。以涠洲岛珊瑚礁钻孔(GS-3)为材料,利用高精度铀系测年技术测定珊瑚年龄,建立涠洲岛珊瑚礁发育的年代框架;通过粒度、生物组分、矿物成分分析揭示了其物质组成。结果显示,GS-3岩芯5.57 m处的珊瑚铀系年代为3737±17 aBP(相对于公元1950年),基于此年代计算的珊瑚礁平均发育速率为1.49 m/ka。在3737~2476、2288~1191以及325 aBP以来涠洲岛珊瑚礁快速发育,其发育速率分别为2.21、1.13及1.85 m/ka;在2476~2288、1191~325 aBP珊瑚礁缓慢发育,发育速率分别为0.64、0.48 m/ka。沉积物的生物组分主要为珊瑚、珊瑚藻和软体动物;矿物成分主要为文石和石英。基于珊瑚礁发育速率与气候背景的关系对比,得出涠洲岛珊瑚礁快速发育阶段与全新世大暖期后期、罗马暖期以及现代暖期大致对应;缓慢发育阶段与降温期、黑暗时代冷期后期、中世纪气候异常期、小冰期前期大致对应。总体来看,相对高纬度的涠洲岛珊瑚礁的发育快慢受气候冷暖所调控,暖期的气候有利于珊瑚生长和珊瑚礁发育,冷期珊瑚礁发育慢。
Abstract:The Weizhou Island, located in the northern border of the tropics, is relatively too high in latitude to coral growth. Low temperature in winter time is the key factor which limits the coral growth and reef development. Reconstructing the development of coral reefs on the Weizhou Island is of great scientific significance for understanding the response of corals to past climate and predicting the development trend of coral reefs in the future. This study is devoted to the drilling cores extracted from the Well GS-3 on the Weizhou Island. The cores were dated with high-precision uranium series dating, upon which the chronological framework of the coral reefs is established. Particle size, biological composition and mineral composition are analyzed for revealing the composition of the coral deposits. The age of the coral reefs at 5.57 m in depth of the core GS-3 is dated 3737 ± 17 aBP. The average vertical accretion rate of the coral reefs is 1.49 m/ ka calculated based on this age. The growth of coral reefs on the Weizhou Island were accelerated during the periods of 3737~2476 aBP, 2288~1191 aBP and 325 years ago to present with vertical accretion rates of 2.21 m/ka, 1.13 m/ka and 1.85 m/ka respectively, and decelerated during the periods of 2476~2288 aBP and 1191~325 aBP and the correspondent vertical accretion rates were 0.64 m/ ka and 0.48 m/ka respectively. The biological components of sediments are mainly composed of corals, coralline algae and mollusks, while the mineral compositions dominated by aragonite and quartz. The correlation between coral reef vertical accretion rate and its climate background suggests that the rapid development stage of coral reefs on the Weizhou Island could roughly correlated to the Late Megathermal Period, Roman Warm Period and Current Warm Period, and the slowing down stages of development of reefs roughly corresponded to the cold periods, namely the Late Dark Ages Cold Period, the Medieval Climate Anomaly and the early Little Ice Age. In general, the development of coral reefs on the Weizhou Island at relatively high latitudes is depending on climate changes. The warm periods are conducive to coral growth and otherwise, coral reefs growth would slow down as cold periods came.
-
Key words:
- coral reef /
- U-Th age /
- accretion rate /
- late Holocene /
- Weizhou Island
-
图 1 研究区域位置图[16]
Figure 1.
表 1 涠洲岛GS-3井珊瑚样品U-Th测年结果统计表
Table 1. U-Th dating results of coral samples from Well GS-3, Weizhou Island
样品
编号深度/m U/10−6 232Th/10-9 (230Th/232Th) (230Th/238U) (234U/238U) 230Th年龄/a δ234U
(初始值T)未校正 校正 日历年
/aBPGS3-1 0.34 3.3380±0.0036 5.125±0.008 1.71±0.02 0.00086±0.00001 1.1466±0.0014 82±1 42±20 −27±20 146.6±14 GS3-2 0.99 2.7900±0.0034 7.336±0.014 5.60±0.06 0.00485±0.00005 1.1481±0.0015 462±5 394±34 325±34 148.4±15 GS3-3 1.41 3.0110±0.0027 3.599±0.006 34.26±0.21 0.01350±0.00008 1.1466±0.0016 1291±8 1260±17 1191±17 147.1±16 GS3-4 2.66 3.3952±0.0039 2.487±0.005 102.32±0.44 0.02471±0.00010 1.1456±0.0015 2376±10 2357±14 2288±14 146.6±15 GS3-5 2.78 3.0751±0.0033 0.913±0.001 270.6±1.00 0.02649±0.00010 1.1445±0.0018 2553±10 2545±11 2476±11 145.5±18 GS3-6 5.57 2.8853±0.0029 2.413±0.003 143.15±0.43 0.03945±0.00011 1.1430±0.0018 3828±13 3806±17 3737±17 144.6±18 注:括号中的比率是依据Cheng等[37]公布的衰变常数以原子比计算的活度比;所有数值均已根据实验室空白样进行了校正;所有U-Th 数据误差为2s;未校正的 230Th年龄(a)使用Isoplot 3.75程序计算;δ234U =[(234U/238U)−1]×1000。BP表示距1950AD。 表 2 涠洲岛GS-3井珊瑚礁沉积物组成
Table 2. Composition of coral reef sediments in Well GS-3 of Weizhou Island
分层 深度
/m岩心描述 粒度 生物组分 矿物成分 发育
类型1 0~1 主要为2~5 cm的枝状珊瑚(70%)、块状珊瑚(25%)的枝、砾,以及少量砂质组分(5%),偶见螺类、贝壳类的碎片。多数珊瑚碎屑的表面疏松多孔且有绿色藻类附着,其孔洞内存在大量现代双壳类、蠕虫等侵蚀生物 平均粒径为砾(>−1Φ),
分选差鹿角珊瑚属、蜂巢珊瑚属以及滨珊瑚属的珊瑚枝、砾为主,偶见软体动物 文石 原生珊瑚 2 1~2.4 块状珊瑚砾(70%)和砂质组分(30%) 平均粒径为中砂(1.29Φ),
分选较差,偏态呈近对称,峰态宽平54.79%珊瑚,25.01%软体动物,17.72%珊瑚藻,2.33%其他(蠕虫为主),零星有孔虫、仙掌藻 75.9%文石,12.31%方解石,11.79%石英 原生珊瑚、陆源输入 3 2.4~3.8 2~5 cm的大型块状珊瑚(90%)和砂质组分(10%) 平均粒径为粗砂(0.99Φ),
分选较差,偏态呈正偏分布,峰态很宽平51.89%珊瑚,25.12%珊瑚藻,16.27%软体动物,零星有孔虫、仙掌藻 77.52%文石,12.73%方解石,9.75%石英 原生珊瑚、陆源输入 4 3.8~6.8 枝状珊瑚(60%)和砂质组分(40%) 平均粒径为中砂(1.18Φ),
分选较差,偏态为正偏,峰态宽平61.61%珊瑚,24.76%软体动物,珊瑚藻(6.77%~21.76%)含量变化较大 66.98%文石,24.68%石英,8.33%方解石 原生珊瑚、陆源输入 5 6.8~7.6 块状珊瑚(40%)和砂质组分(60%),其间夹少量贝壳碎屑 中砂(1.11Φ),分选较差,偏态呈正偏,峰态
很宽平52.60%珊瑚,33.38%软体动物,13.33%珊瑚藻,零星有孔虫、仙掌藻 61.58%石英,32.73%文石,5.69%方解石 陆源输入、原生珊瑚 6 7.6~8.2 黄绿色火山碎屑泥 粉砂,分选好 细小有孔虫、贝类 石英,火山碎屑等复杂成分 陆源输入 -
[1] Bruno J F, Selig E R. Regional Decline of Coral Cover in the Indo-Pacific: Timing, Extent, and Subregional Comparisons [J]. PLoS One, 2007, 2(8): e711. doi: 10.1371/journal.pone.0000711
[2] Gardner T A, Cote I M, Gill J A, et al. Long-term region-wide declines in Caribbean corals [J]. Science, 2003, 301(5635): 958-960. doi: 10.1126/science.1086050
[3] Bellwood D R, Hughes T P, Folke C, et al. Confronting the coral reef crisis [J]. Nature, 2004, 429(6994): 827-833. doi: 10.1038/nature02691
[4] Hoegh-Guldberg O, Mumby P J, Hooten A J, et al. Coral reefs under rapid climate change and ocean acidification [J]. Science, 2007, 318(5857): 1737-1742. doi: 10.1126/science.1152509
[5] Hughes T P, Graham N A J, Jackson J B C, et al. Rising to the challenge of sustaining coral reef resilience [J]. Trends in Ecology & Evolution, 2010, 25(11): 633-642.
[6] Pandolfi J M, Connolly S R, Marshall D J, et al. Projecting Coral Reef Futures Under Global Warming and Ocean Acidification [J]. Science, 2011, 333(6041): 418-422. doi: 10.1126/science.1204794
[7] Beger M, Sommer B, Harrison P L, et al. Conserving potential coral reef refuges at high latitudes [J]. Diversity and Distributions, 2014, 20(3): 245-257. doi: 10.1111/ddi.12140
[8] Yamano H, Sugihara K, Nomura K. Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures [J]. Geophysical Research Letters, 2011, 38(4): L04601.
[9] Booth D J, Figueira W F, Gregson M A, et al. Occurrence of tropical fishes in temperate southeastern Australia: Role of the East Australian Current [J]. Estuarine, Coastal and Shelf Science, 2007, 72(1-2): 102-114. doi: 10.1016/j.ecss.2006.10.003
[10] Baird A H, Sommer B, Madin J S. Pole-ward range expansion of Acropora spp. along the east coast of Australia [J]. Coral Reefs, 2012, 31(4): 1063-1063. doi: 10.1007/s00338-012-0928-6
[11] Precht W F, Aronson R B. Climate Flickers and Range Shifts of Reef Corals [J]. Frontiers in Ecology and the Environment, 2004, 2(6): 307-314. doi: 10.1890/1540-9295(2004)002[0307:CFARSO]2.0.CO;2
[12] Serrano E, Coma R, Ribes M. A phase shift from macroalgal to coral dominance in the Mediterranean [J]. Coral Reefs, 2012, 31(4): 1199-1199. doi: 10.1007/s00338-012-0939-3
[13] Serrano E, Coma R, Ribes M, et al. Rapid Northward Spread of a Zooxanthellate Coral Enhanced by Artificial Structures and Sea Warming in the Western Mediterranean [J]. PLoS One, 2013, 8(1): e52739. doi: 10.1371/journal.pone.0052739
[14] Qin Z J, Yu K F, Wang Y H, et al. Spatial and Intergeneric Variation in Physiological Indicators of Corals in the South China Sea: Insights Into Their Current State and Their Adaptability to Environmental Stress [J]. Journal of Geophysical Research:Oceans, 2019, 124(5): 3317-3332. doi: 10.1029/2018JC014648
[15] Qin Z J, Yu K F, Liang Y T, et al. Latitudinal variation in reef coral tissue thickness in the South China Sea: Potential linkage with coral tolerance to environmental stress [J]. Science of the Total Environment, 2020, 711: 134610. doi: 10.1016/j.scitotenv.2019.134610
[16] Yu W J, Wang W H, Yu K F, et al. Rapid decline of a relatively high latitude coral assemblage at Weizhou Island, northern South China Sea [J]. Biodiversity and Conservation, 2019, 28(14): 3925-3949. doi: 10.1007/s10531-019-01858-w
[17] Clark T R, Chen X F, Leonard N D, et al. Episodic coral growth in China's subtropical coral communities linked to broad-scale climatic change [J]. Geology, 2019, 47(1): 79-82. doi: 10.1130/G45278.1
[18] Yan S, Zhao J X, Lau A Y A, et al. Episodic Reef Growth in the Northern South China Sea linked to Warm Climate During the Past 7, 000 Years: Potential for Future Coral Refugia [J]. Journal of Geophysical Research:Biogeosciences, 2019, 124(4): 1032-1043. doi: 10.1029/2018JG004939
[19] 余克服, 蒋明星, 程志强, 等. 涠洲岛42年来海面温度变化及其对珊瑚礁的影响[J]. 应用生态学报, 2004, 15(3):506-510 doi: 10.3321/j.issn:1001-9332.2004.03.030
YU Kefu, JIANG Mingxing, CHENG Zhiqiang, et al. Latest forty two years’ sea surface temperature change of Weizhou Island and its influence on coral reef ecosystem [J]. Chinese Journal of Applied Ecology, 2004, 15(3): 506-510. doi: 10.3321/j.issn:1001-9332.2004.03.030
[20] 梁文, 黎广钊. 涠洲岛珊瑚礁分布特征与环境保护的初步研究[J]. 环境科学研究, 2002, 15(6):5-7,16 doi: 10.3321/j.issn:1001-6929.2002.06.002
LIANG Wen, LI Guangzhao. Preliminary study on characteristics of coral reef distribution and environmental protection in Weizhou Island [J]. Research of Environmental Sciences, 2002, 15(6): 5-7,16. doi: 10.3321/j.issn:1001-6929.2002.06.002
[21] 周雄, 李鸣, 郑兆勇, 等. 近50年涠洲岛5次珊瑚冷白化的海洋站SST指标变化趋势分析[J]. 热带地理, 2010, 30(6):582-586 doi: 10.3969/j.issn.1001-5221.2010.06.002
ZHOU Xiong, LI Ming, ZHENG Zhaoyong, et al. An analysis on the trend of sea surface temperature indices for coral cold bleaching in Weizhou Island ocean observation station during 1960-2009 [J]. Tropical Geography, 2010, 30(6): 582-586. doi: 10.3969/j.issn.1001-5221.2010.06.002
[22] 刘敬合, 黎广钊, 农华琼. 涠洲岛地貌与第四纪地质特征[J]. 广西科学院学报, 1991, 7(1):27-36
LIU Jinghe, LI Guangzhao, NONG Huaqiong. Features of geomorphy and quaternary geology of the Weizhou Island [J]. Journal of the Guangxi Academy of Sciences, 1991, 7(1): 27-36.
[23] 叶维强, 黎广钊, 庞衍军, 等. 北部湾涠洲岛珊瑚礁海岸及第四纪沉积特征[J]. 海洋科学, 1988, 12(6):13-17
YE Weiqiang, LI Guangzhao, PANG Yanjun, et al. Characteristics of the coastal reef and quaternary sediment from the Weizhou Island, Beibu Gulf [J]. Marine Sciences, 1988, 12(6): 13-17.
[24] 黎广钊, 梁文, 农华琼, 等. 涠洲岛珊瑚礁生态环境条件初步研究[J]. 广西科学, 2004, 11(4):379-384 doi: 10.3969/j.issn.1005-9164.2004.04.027
LI Guangzhao, LIANG Wen, NONG Huaqiong, et al. Preliminary study on conditions of coral reef ecological environment along the coast of Weizhou Island [J]. Guangxi Sciences, 2004, 11(4): 379-384. doi: 10.3969/j.issn.1005-9164.2004.04.027
[25] 邱绍芳. 涠洲岛附近海域水质和底质环境的分析与评价[J]. 广西科学院学报, 1999, 15(4):170-173
QIU Shaofang. Analysis and evaluation of substrate environment and water quality of the sea area around Weizhou Island [J]. Journal of Guangxi Academy of Sciences, 1999, 15(4): 170-173.
[26] 韦蔓新, 赖廷和, 何本茂. 涠洲岛水域生物理化环境特征及其相互关系[J]. 海洋科学, 2003, 27(2):67-71 doi: 10.3969/j.issn.1000-3096.2003.02.020
WEI Manxin, LAI Tinghe, HE Benmao. The biological and physical and chemical characteristics of environment and their matual relationships in the waters of Weizhou Island [J]. Marine Sciences, 2003, 27(2): 67-71. doi: 10.3969/j.issn.1000-3096.2003.02.020
[27] Chen T R, Li S, Yu K F, et al. Increasing temperature anomalies reduce coral growth in the Weizhou Island, northern South China Sea [J]. Estuarine, Coastal and Shelf Science, 2013, 130: 121-126. doi: 10.1016/j.ecss.2013.05.009
[28] 黄晖, 马斌儒, 练健生, 等. 广西涠洲岛海域珊瑚礁现状及其保护策略研究[J]. 热带地理, 2009, 29(4):307-312,318 doi: 10.3969/j.issn.1001-5221.2009.04.001
HUANG Hui, MA Binru, LIAN Jiansheng, et al. Status and conservation strategies of the coral reef in Weizhou Island, Guangxi [J]. Tropical Geography, 2009, 29(4): 307-312,318. doi: 10.3969/j.issn.1001-5221.2009.04.001
[29] 王文欢, 余克服, 王英辉. 北部湾涠洲岛珊瑚礁的研究历史、现状与特色[J]. 热带地理, 2016, 36(1):72-79
WANG Wenhuan, YU Kefu, WANG Yinghui. A Review on the research of coral reefs in the Weizhou Island, Beibu Gulf [J]. Tropical Geography, 2016, 36(1): 72-79.
[30] Yu K F, Zhao J X, Wang P X, et al. High-precision TIMS U-series and AMS 14C dating of a coral reef lagoon sediment core from southern South China Sea [J]. Quaternary Science Reviews, 2006, 25(17-18): 2420-2430. doi: 10.1016/j.quascirev.2006.01.027
[31] Clark T R, Roff G, Zhao J X, et al. Testing the precision and accuracy of the U-Th chronometer for dating coral mortality events in the last 100 years [J]. Quaternary Geochronology, 2014, 23: 35-45. doi: 10.1016/j.quageo.2014.05.002
[32] McManus J F, Anderson R F, Broecker W S, et al. Radiometrically determined sedimentary fluxes in the sub-polarNorth Atlantic during the last 140, 000 years [J]. Earth and Planetary Science Letters, 1998, 155(1-2): 29-43. doi: 10.1016/S0012-821X(97)00201-X
[33] Chen T R, Roff G, Feng Y X, et al. Tropical Sand Cays as Natural Paleocyclone Archives [J]. Geophysical Research Letters, 2019, 46(16): 9796-9803. doi: 10.1029/2019GL084274
[34] Toth L T, Aronson R B, Vollmer S V, et al. ENSO drove 2500-year collapse of eastern Pacific coral reefs [J]. Science, 2012, 337(6090): 81-84.
[35] 曲高生. 西沙群岛琛航岛碳酸盐沉积物X射线定量分析方法研究[J]. 矿物学报, 1990, 10(4):360-369 doi: 10.3321/j.issn:1000-4734.1990.04.010
QU Gaosheng. Quantitative X-ray diffraction analysis of carbonate sediments from Chenhang Island, Xisha Island, China: a methodological study [J]. Acta Mineralogica Sinica, 1990, 10(4): 360-369. doi: 10.3321/j.issn:1000-4734.1990.04.010
[36] Shen C C, Li K S, Sieh K, et al. Variation of initial 230Th/ 232Th and limits of high precision U–Th dating of shallow-water corals [J]. Geochimica et Cosmochimica Acta, 2008, 72(17): 4201-4223.
[37] Cheng H, Edwards R L, Hoff J, et al. The half-lives of uranium-234 and thorium-230 [J]. Chemical Geology, 2000, 169(1-2): 17-33. doi: 10.1016/S0009-2541(99)00157-6
[38] 樊祺诚, 孙谦, 隋建立, 等. 北部湾涠洲岛及斜阳岛火山岩微量元素和同位素地球化学及其构造意义[J]. 岩石学报, 2008, 24(6):1323-1332
FAN Qicheng, SUN Qian, SUI Jianli, et al. Trace-element and isotopic geochemistry of volcanic rocks and it’s techtonic implications in Weizhou Island and Xieyang Island, Northern Bay [J]. Acta Petrologica Sinica, 2008, 24(6): 1323-1332.
[39] 王国忠, 全松青, 吕炳全. 南海涠洲岛区现代沉积环境和沉积作用演化[J]. 海洋地质与第四纪地质, 1991, 11(1):69-82
WANG Guozhong, QUAN Songqing, LV Bingquan. Evolution of modern sedimentary environments and sedimentations in the Weizhou Island area, south China sea [J]. Marine Geology & Quaternary Geology, 1991, 11(1): 69-82.
[40] 余克服, 钟晋梁, 赵建新, 等. 雷州半岛珊瑚礁生物地貌带与全新世多期相对高海平面[J]. 海洋地质与第四纪地质, 2002, 22(2):27-33
YU Kefu, ZHONG Jinliang, ZHAO Jianxin, et al. Biological-geomorphological zones in a coral reef area at southwest Leizhou Peninsula unveil multiple sea level high-stands in the Holocene [J]. Marine Geology & Quaternary Geology, 2002, 22(2): 27-33.
[41] 施雅风, 孔昭宸, 王苏民, 等. 中国全新世大暖期的气候波动与重要事件[J]. 中国科学 (B辑), 1994, 37(3):353-365
SHI Yafeng, KONG Zhaochen, WANG Sumin, et al. The climate fluctuation and important events of Holocene Megathermal in China [J]. Science in China. Series B, Chemistry, Life Science & Earth Sciences, 1994, 37(3): 353-365.
[42] Lam H H. Climate: present, past and future[M]. London: Methuen, 1977.
[43] 黄博津, 余克服, 陈特固. 过去2000年的特征气候时段及其影响因素[J]. 海洋地质与第四纪地质, 2013, 33(1):97-108
HUANG Bojin, YU Kefu, CHEN Tegu. Recent progress on specific climatic stages and driving forces over last 2000 years [J]. Marine Geology & Quaternary Geology, 2013, 33(1): 97-108.
[44] Mann M E, Zhang Z H, Rutherford S, et al. Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly [J]. Science, 2009, 326(5957): 1256-1260.
[45] 黎广钊, 梁文, 廖思明, 等. 广西沿海全新世以来气候变化[J]. 海洋地质与第四纪地质, 1996, 16(3):49-60
LI Guangzhao, LIANG Wen, LIAO Siming, et al. Climatic changes since Holocene along Guangxi coast [J]. Marine Geology & Quaternary Geology, 1996, 16(3): 49-60.
[46] 李平日, 方国祥, 黄光庆. 珠江三角洲全新世环境演变[J]. 第四纪研究, 1991, 11(2):130-139 doi: 10.3321/j.issn:1001-7410.1991.02.005
LI Pingri, FANG Guoxiang, HUANG Guangqing. Holocene environmental changes in Zhujiang delta [J]. Quaternary Sciences, 1991, 11(2): 130-139. doi: 10.3321/j.issn:1001-7410.1991.02.005
[47] Conroy J L, Overpeck J T, Cole J E, et al. Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record [J]. Quaternary Science Reviews, 2008, 27(11-12): 1166-1180. doi: 10.1016/j.quascirev.2008.02.015
[48] Yu K F, Zhao J X, Wei G J, et al. Mid-late Holocene monsoon climate retrieved from seasonal Sr/Ca and δ18O records of Porites lutea corals at Leizhou Peninsula, northern coast of South China Sea [J]. Global and Planetary Change, 2005, 47(2-4): 301-316. doi: 10.1016/j.gloplacha.2004.10.018
[49] Wei G J, Yu K F, Zhao J X. Sea surface temperature variations recorded on coralline Sr/Ca ratios during Mid-Late Holocene in Leizhou Peninsula [J]. Chinese Science Bulletin, 2004, 49(17): 1876-1881.
[50] 张婷, 胡敏航, 张文静, 等. 涠洲岛珊瑚礁近千年的发育过程及其对气候变化的响应[J]. 热带海洋学报, 2020, 39(4):70-79
ZHANG Ting, HU Minhang, ZHANG Wenjing, et al. Coral reef growth of Weizhou Island and its response to climate change in the past millennium [J]. Journal of Tropical Oceanography, 2020, 39(4): 70-79.
[51] Davies P J, Montaggioni L. Reef growth and sea-level change: the environmental signature[C]//Proceedings of the Fifth International Coral Reef Symposium. Tahiti: Martin, 1985: 477-515.
[52] Sarg J F. Carbonate Sequence Stratigraphy[M]//Wilgus C K, Hastings B S, Kendall C G S C, et al. SEPM Special Publication: Sea-Level Changes-An Integrated Approach. Society of Economic Paleontologists and Mineralogists, 1988: 155-181.
[53] Vecsei A. A new estimate of global reefal carbonate production including the fore-reefs [J]. Global and Planetary Change, 2004, 43(1-2): 1-18. doi: 10.1016/j.gloplacha.2003.12.002
[54] Hongo C, Kayanne H. Holocene coral reef development under windward and leeward locations at Ishigaki Island, Ryukyu Islands, Japan [J]. Sedimentary Geology, 2009, 214(1-4): 62-73. doi: 10.1016/j.sedgeo.2008.01.011
[55] Hamanaka N, Kan H, Yokoyama Y, et al. Disturbances with hiatuses in high-latitude coral reef growth during the Holocene: Correlation with millennial-scale global climate change [J]. Global and Planetary Change, 2012, 80-81: 21-35. doi: 10.1016/j.gloplacha.2011.10.004
[56] 余克服, 陈特固. 南海北部晚全新世高海平面及其波动的海滩沉积证据[J]. 地学前缘, 2009, 16(6):138-145 doi: 10.3321/j.issn:1005-2321.2009.06.015
YU Kefu, CHEN Tegu. Beach sediments from northern South China Sea suggest high and oscillating sea level during the lat Holocene [J]. Earth Science Frontiers, 2009, 16(6): 138-145. doi: 10.3321/j.issn:1005-2321.2009.06.015
[57] 余克服. 南海珊瑚礁及其对全新世环境变化的记录与响应[J]. 中国科学:地球科学, 2012, 55(8):1217-1229 doi: 10.1007/s11430-012-4449-5
YU Kefu. Coral reefs in the South China Sea: Their response to and records on past environmental changes [J]. Science China Earth Science, 2012, 55(8): 1217-1229. doi: 10.1007/s11430-012-4449-5
[58] Hoegh-Guldberg O, Fine M, Skirving W, et al. Coral bleaching following wintry weather [J]. Limnology and Oceanography, 2005, 50(1): 265-271. doi: 10.4319/lo.2005.50.1.0265
[59] Yu K F, Zhao J X, Liu T S, et al. High-frequency winter cooling and reef coral mortality during the Holocene climatic optimum [J]. Earth and Planetary Science Letters, 2004, 224(1-2): 143-155. doi: 10.1016/j.jpgl.2004.04.036
[60] Moy C M, Seltzer G O, Rodbell DT, et al. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch [J]. Nature, 2002, 420(6912): 162-165. doi: 10.1038/nature01194