In situ geochemical analysis of Mg/Ca ratios of planktonic foraminifera shells in the northeastern continental slope of the South China Sea
-
摘要:
有孔虫碳酸钙质壳体是海洋沉积物中普遍存在的环境记录载体之一,原位微区分析技术的发展为更进一步详细、直观地了解有孔虫壳体内微量元素的分布和变化提供了新方法,并带动了应用有孔虫壳体微区的元素含量和比值作为工具进行古环境反演相关研究的快速发展。利用电子探针 (EPMA)、激光剥蚀电感耦合等离子体质谱 (LA-ICP-MS) 并结合扫描电镜,对南海东北部陆坡区表层沉积物中的Globigerinoides ruber、Neogloboquadrina dutertrei、Pulleniatina obliquiloculata和Globorotalia inflata 4种浮游有孔虫壳体的Mg/Ca进行了原位地球化学分析。电子探针面扫描结果显示,G.ruber具有多条高Mg条带,这些周期性的条带变化可能与共生藻类有关;而N.dutertrei、P.obliquiloculata和G.inflata外部具有较厚的低Mg方解石壳。同时,LA-ICP-MS测试结果也显示出N.dutertrei、P.obliquiloculata和G.inflata的壳体中存在明显的低Mg/Ca层,而G.ruber中可见多组Mg/Ca比的高低变化,这与电子探针面扫描的结果一致。有孔虫自身的生物矿化过程会影响壳体中Mg/Ca比的分布,而污染相的存在会导致Mg/Ca测试结果的偏高。因此,认为有孔虫壳体Mg/Ca比的较大变化不仅受到周围海水温度的影响,而且还与共生藻等因素有关。此外,利用LA-ICP-MS测试可获得较为可靠的Mg/Ca比,避免了常规复杂的前处理过程,可以为今后高效、快速、高空间分辨率、低样品量的测试提供技术依据。
-
关键词:
- 激光剥蚀电感耦合等离子质谱分析 /
- 电子探针 /
- Mg/Ca比 /
- 温度
Abstract:Planktonic foraminifera is one of the important materials that can provide the information of the physico-chemical environments. The development of in-situ microscopic analysis technology provides a new opportunity to carry out the detailed and intuitive understanding of the distribution and variation of trace elements in biological shells. At the same time, it also promotes the rapid development of paleoenvironmental inversion related research by using the element contents and ratios of the foraminifera shells microregion. In this paper, we used electron microprobe analysis (EPMA), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and scanning electron microscopy (SEM) to conduct in-situ geochemical analysis of Mg/Ca in the four planktonic foraminifera shells of Globigerinoides ruber, Neogloboquadrina dutertrei, Pulleniatina obliquiloculata and Globorotalia inflata in the surface sediments of the northeastern slope of the South China Sea. The results of electron microprobe mapping showed that G.ruber had periodic bands with high Mg contents, which might be associated with symbionts. However, N.dutertrei, P.obliquiloculata and G.inflata had thicker calcite crusts with low Mg contents. The results of LA-ICP-MS also showed that there were obvious low Mg/Ca calcite crusts with of N.dutertrei, P.obliquiloculata and G.inflata, while multiple sets of Mg/Ca ratios can be seen in the shells of G. ruber, which were consistent with the results of electron microprobe mapping. The distribution of Mg/Ca ratios in shells were affected by the biomineralization process of foraminifera, and the presence of contaminants also led to higher Mg/Ca ratios. Therefore, we conclude that the large variations of Mg/Ca ratios in foraminifera shells are not only affected by the surrounding seawater temperature, but also constrained by other factors. In addition, we found that reliable Mg/Ca ratios can be obtained by the LA-ICP-MS test. The application of this method can avoid the complex pretreatment process, and provide a technical basis for efficient, fast, high spatial resolution and low sample volume testing in the future.
-
Key words:
- LA-ICP-MS /
- electron microprobe analysis /
- Mg/Ca ratios /
- temperature
-
图 7 利用GR已个体f2-a位置的Mg/Ca比值恢复的温度(Mg/Ca=0.38 exp 0.09[SST−0.61h−1.6])[40]
Figure 7.
表 1 DZ5重力柱状样品19 cm处的AMS14C测年数据和校正年龄
Table 1. AMS14C dating data and corrected age of the gravity core sample of DZ5 at 19 cm
深度/cm 测试材料 AMS14C年龄/aBP 日历年龄/cal.aBP 2σ范围/cal.aBP 19 G.ruber 3345±35 1162 950~1383 表 2 各属种不同腔室的Mn/Ca、Al/Ca平均值
Table 2. Average Mn/Ca and Al/Ca values in different chambers of each species
个体 腔室 Mn/Ca/
(mmol·mol−1)Al/Ca/
(mmol·mol−1)个体 腔室 Mn/Ca/
(mmol·mol−1)Al/Ca/
(mmol·mol−1)GR未1 F 0.17 1.62 ND未 F 0.26 3.29 − F1 0.24 3.25 − F1 0.13 2.19 − F2 0.40 7.50 − F2 0.08 1.11 平均值 − 0.27 4.12 − F3 0.08 1.73 GR未2 F 0.11 1.04 − F4 0.11 4.17 − F1 0.14 1.99 平均值 − 0.13 2.50 − F2 0.16 2.07 ND已 F 0.10 0.35 平均值 − 0.14 1.70 − F1 0.06 0.06 GR已 F 0.11 0.09 − F2 0.05 0.06 − F1 0.09 0.07 − F3 0.06 0.06 − F2 0.12 0.12 − F4 0.08 0.26 平均值 − 0.11 0.09 平均值 − 0.07 0.15 PO未 F 0.17 0.27 GI未 F 0.08 2.52 − F1 0.22 0.36 − F1 0.13 0.58 − F2 0.16 0.10 − F2 0.06 0.23 − F3 0.13 0.21 − F3 0.08 0.52 平均值 − 0.17 0.23 平均值 − 0.09 0.96 PO已 F 0.16 0.04 GI已 F 0.21 0.14 − F1 0.11 0.05 − F1 0.11 0.05 − F2 0.10 0.04 − F2 0.11 0.08 − F3 0.09 0.20 平均值 − 0.14 0.09 平均值 − 0.12 0.08 -
[1] Sen Gupta B K. Modern Foraminifera[M]. Dordrecht: Springer, 2003: 239-281.
[2] Oba T, Irino T. Sea level at the last glacial maximum, constrained by oxygen isotopic curves of planktonic foraminifera in the Japan Sea [J]. Journal of Quaternary Science, 2012, 27(9): 941-947. doi: 10.1002/jqs.2585
[3] Wang P X, Li Q Y, Tian J, et al. Monsoon influence on planktic δ18O records from the South China Sea [J]. Quaternary Science Reviews, 2016, 142: 26-39. doi: 10.1016/j.quascirev.2016.04.009
[4] 董军社, 陈平富, 万晓樵. 南海北部陆架晚第三纪δ13C记录与古生产力: 以珠江口盆地BY7-1-1和PY33-1-1井为例[J]. 海洋地质与第四纪地质, 1997, 17(1):40-44
DONG Junshe, CHEN Pingfu, WAN Xiaoqiao. Neogene carbon isotope records from the northern south china sea and their bearing on paleoproductivity [J]. Marine Geology & Quaternary Geology, 1997, 17(1): 40-44.
[5] Thunell R, Tappa E, Pride C, et al. Sea-surface temperature anomalies associated with the 1997-1998 El Niño recorded in the oxygen isotope composition of planktonic foraminifera [J]. Geology, 1999, 27(9): 843-846. doi: 10.1130/0091-7613(1999)027<0843:SSTAAW>2.3.CO;2
[6] Kısakürek B, Eisenhauer A, Böhm F, et al. Controls on shell Mg/Ca and Sr/Ca in cultured planktonic foraminiferan, Globigerinoides ruber (white) [J]. Earth and Planetary Science Letters, 2008, 273(3-4): 260-269. doi: 10.1016/j.jpgl.2008.06.026
[7] Barker S, Cacho I, Benway H, et al. Planktonic foraminiferal Mg/Ca as a proxy for past oceanic temperatures: a methodological overview and data compilation for the Last Glacial Maximum [J]. Quaternary Science Reviews, 2005, 24(7-9): 821-834. doi: 10.1016/j.quascirev.2004.07.016
[8] Koho K A, de Nooijer L J, Fontanier C, et al. Benthic foraminiferal Mn/Ca ratios reflect microhabitat preferences [J]. Biogeosciences, 2017, 14(12): 3067-3082. doi: 10.5194/bg-14-3067-2017
[9] Yu J M, Foster G L, Elderfield H, et al. An evaluation of benthic foraminiferal B/Ca and δ11B for deep ocean carbonate ion and pH reconstructions [J]. Earth and Planetary Science Letters, 2010, 293(1-2): 114-120. doi: 10.1016/j.jpgl.2010.02.029
[10] Markulin K, Peharda M, Mertz-Kraus R, et al. Trace and minor element records in aragonitic bivalve shells as environmental proxies [J]. Chemical Geology, 2019, 507: 120-133. doi: 10.1016/j.chemgeo.2019.01.008
[11] 窦硕增, 横内一樹, 于鑫, 等. 基于EPMA的耳石Sr: Ca比分析及其在鱼类生活履历反演中的应用实例研究[J]. 海洋与湖沼, 2011, 42(4):512-520 doi: 10.11693/hyhz201104008008
DOU Shuozeng, YOKOUCHI K, YU Xin, et al. Reconstructing migratory history of fish using otolith strontium: calciums ratios by EPMA: a case study [J]. Oceanologia et Limnologia Sinica, 2011, 42(4): 512-520. doi: 10.11693/hyhz201104008008
[12] Caragnano A, Basso D, Jacob D E, et al. The coralline red alga Lithophyllum kotschyanum f. affine as proxy of climate variability in the Yemen coast, Gulf of Aden (NW Indian Ocean) [J]. Geochimica et Cosmochimica Acta, 2014, 124: 1-17. doi: 10.1016/j.gca.2013.09.021
[13] Sliwinski J T, Stoll H M. Combined fluorescence imaging and LA-ICP-MS trace element mapping of stalagmites: Microfabric identification and interpretation [J]. Chemical Geology, 2021, 581: 120397. doi: 10.1016/j.chemgeo.2021.120397
[14] Barker S, Greaves M, Elderfield H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry [J]. Geochemistry, Geophysics, Geosystems, 2003, 4(9): 8407.
[15] 黄超. ICP-OES测定浮游有孔虫的Mg/Ca比值及其在SST分析中的应用[D]. 中国科学院研究生院硕士学位论文, 2008
HUANG Chao. Measurement of Mg/Ca ratios in planktonic foraminifera on ICP-OES and application of Mg/Ca ratios in sea surface temperature[D]. Master Dissertation of University of Chinese Academy of Sciences, 2008.
[16] Lea D W, Mashiotta T A, Spero H J. Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing [J]. Geochimica et Cosmochimica Acta, 1999, 63(16): 2369-2379. doi: 10.1016/S0016-7037(99)00197-0
[17] Nürnberg D, Bijma J, Hemleben C. Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures [J]. Geochimica et Cosmochimica Acta, 1996, 60(5): 803-814. doi: 10.1016/0016-7037(95)00446-7
[18] Eggins S, Sadekov A, Dedeckker P. Modulation and daily banding of Mg/Ca in tests by symbiont photosynthesis and respiration: a complication for seawater thermometry? [J]. Earth and Planetary Science Letters, 2004, 225(3-4): 411-419. doi: 10.1016/j.jpgl.2004.06.019
[19] Sadekov A Y, Eggins S M, De Deckker P. Characterization of Mg/Ca distributions in planktonic foraminifera species by electron microprobe mapping [J]. Geochemistry, Geophysics, Geosystems, 2005, 6(12): Q12P06.
[20] Kunioka D, Shirai K, Takahata N, et al. Microdistribution of Mg/Ca, Sr/Ca, and Ba/Ca ratios in Pulleniatina obliquiloculata test by using a NanoSIMS: Implication for the vital effect mechanism [J]. Geochemistry, Geophysics, Geosystems, 2006, 7(12): Q12P20.
[21] Fehrenbacher J S, Martin P A. Exploring the dissolution effect on the intrashell Mg/Ca variability of the planktic foraminifer Globigerinoides ruber [J]. Paleoceanography, 2014, 29(9): 854-868. doi: 10.1002/2013PA002571
[22] Sadekov A Y, Eggins S M, Klinkhammer G P, et al. Effects of seafloor and laboratory dissolution on the Mg/Ca composition of Globigerinoides sacculifer and Orbulina universa tests-A laser ablation ICPMS microanalysis perspective [J]. Earth and Planetary Science Letters, 2010, 292(3-4): 312-324. doi: 10.1016/j.jpgl.2010.01.039
[23] Mekik F, François R. Tracing deep-sea calcite dissolution: Agreement between the Globorotalia menardii fragmentation index and elemental ratios (Mg/Ca and Mg/Sr) in planktonic foraminifers [J]. Paleoceanography, 2006, 21(4): PA4219.
[24] Bolton A, Marr J P. Trace element variability in crust-bearing and non crust-bearing Neogloboquadrina incompta, P–D intergrade and Globoconella inflata from the Southwest Pacific Ocean: Potential paleoceanographic implications [J]. Marine Micropaleontology, 2013, 100: 21-33. doi: 10.1016/j.marmicro.2013.03.008
[25] Kozdon R, Ushikubo T, Kita N T, et al. Intratest oxygen isotope variability in the planktonic foraminifer N. pachyderma: Real vs. apparent vital effects by ion microprobe [J]. Chemical Geology, 2009, 258(3-4): 327-337. doi: 10.1016/j.chemgeo.2008.10.032
[26] Groeneveld J, Chiessi C M. Mg/Ca of Globorotalia inflata as a recorder of permanent thermocline temperatures in the South Atlantic [J]. Paleoceanography, 2011, 26(2): PA2203.
[27] 潘梦迪, 邬黛黛, 吴能友, 等. 南海北部神狐海域晚末次冰期以来有孔虫特征及其对古海洋环境的指示[J]. 海洋地质与第四纪地质, 2017, 37(2):127-138
PAN Mengdi, WU Daidai, WU Nengyou, et al. Characteristics of foraminiferal assemblages since Last Glacial from Shenhu area of Northern South China Sea and implications for paleoceanographic environmental changes [J]. Marine Geology & Quaternary Geology, 2017, 37(2): 127-138.
[28] 葛倩, 孟宪伟, 初凤友, 等. 南海北部ZHS-176孔古海洋学记录: 氧同位素和有机碳[J]. 海洋地质与第四纪地质, 2012, 32(5):73-80
GE Qian, MENG Xianwei, CHU Fengyou, et al. Paleoceanographic records of core ZHS-176 from the Northern South China Sea: oxygen isotope and organic carbon [J]. Marine Geology & Quaternary Geology, 2012, 32(5): 73-80.
[29] 陈唯, 赵彦彦, 李三忠, 等. 南海北部陆坡神狐海域SH-CL38站位的粒度特征及沉积记录[J]. 海洋地质与第四纪地质, 2021, 41(5):90-100
CHEN Wei, ZHAO Yanyan, LI Sanzhong, et al. Sediment grain size characteristics of the Core SH-CL38 in the Shenhu area on the northern continental slope of the South China Sea [J]. Marine Geology & Quaternary Geology, 2021, 41(5): 90-100.
[30] Bolton A, Baker J A, Dunbar G B, et al. Environmental versus biological controls on Mg/Ca variability in Globigerinoides ruber (white) from core top and plankton tow samples in the southwest Pacific Ocean [J]. Paleoceanography, 2011, 26(2): PA2219.
[31] Pena L D, Cacho I, Calvo E, et al. Characterization of contaminant phases in foraminifera carbonates by electron microprobe mapping [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(7): Q07012.
[32] 李建如. 有孔虫壳体的Mg/Ca比值在古环境研究中的应用[J]. 地球科学进展, 2005, 20(8):815-822 doi: 10.3321/j.issn:1001-8166.2005.08.001
LI Jianru. The application of foraminiferal shell Mg/Ca ratio in paleo-environmental studies [J]. Advances in Earth Science, 2005, 20(8): 815-822. doi: 10.3321/j.issn:1001-8166.2005.08.001
[33] Hastings D W, Russell A D, Emerson S R. Foraminiferal magnesium in Globeriginoides sacculifer as a paleotemperature proxy [J]. Paleoceanography, 1998, 13(2): 161-169. doi: 10.1029/97PA03147
[34] Brown S J, Elderfield H. Variations in Mg/Ca and Sr/Ca ratios of planktonic foraminifera caused by postdepositional dissolution: Evidence of shallow Mg-dependent dissolution [J]. Paleoceanography, 1996, 11(5): 543-551. doi: 10.1029/96PA01491
[35] Lohmann G P. A model for variation in the chemistry of planktonic foraminifera due to secondary calcification and selective dissolution [J]. Paleoceanography, 1995, 10(3): 445-457. doi: 10.1029/95PA00059
[36] Dekens P S, Lea D W, Pak D K, et al. Core top calibration of Mg/Ca in tropical foraminifera: Refining paleotemperature estimation [J]. Geochemistry, Geophysics, Geosystems, 2002, 3(4): 1-29.
[37] 陈木宏, 陈绍谋. 南海碳酸盐溶解与深海沉积物类型[J]. 热带海洋, 1989, 8(3):20-26
CHEN Muhong, CHEN Shaomou. On carbonate dissolution and the distribution model of deep sea sediment types in south China sea [J]. Tropic Oceanology, 1989, 8(3): 20-26.
[38] 汪品先. 西太平洋边缘海的冰期碳酸盐旋回[J]. 海洋地质与第四纪地质, 1998, 18(1):1-11
WANG Pinxian. Glacial carbonate cycles in Western Pacific marginal seas [J]. Marine Geology & Quaternary Geology, 1998, 18(1): 1-11.
[39] 张江勇, 周洋, 陈芳, 等. 南海北部表层沉积物碳酸钙含量及主要钙质微体化石丰度分布[J]. 第四纪研究, 2015, 35(6):1366-1382 doi: 10.11928/j.issn.1001-7410.2015.06.06
ZHANG Jiangyong, ZHOU Yang, CHEN Fang, et al. Distribution of carbonate contents and the abundances of major carbonate components in surface sediment from the Northern South China Sea [J]. Quaternary Sciences, 2015, 35(6): 1366-1382. doi: 10.11928/j.issn.1001-7410.2015.06.06
[40] Williams M, Haywood A M, Vautravers M, et al. Relative effect of taphonomy on calcification temperature estimates from fossil planktonic foraminifera [J]. Geobios, 2007, 40(6): 861-874. doi: 10.1016/j.geobios.2007.02.007
[41] Hecht A D, Eslinger E V, Garmon L B. Experimental studies on the dissolution of planktonic foraminifera[M]//Sliter W V, Bé A W H, Berger W H. Dissolution of Deep-Sea Carbonates. Washington, D. C. : Cushman Special Publications, 1975, 13: 56-69.
[42] Tachikawa K, Sépulcre S, Toyofuku T, et al. Assessing influence of diagenetic carbonate dissolution on planktonic foraminiferal Mg/Ca in the southeastern Arabian Sea over the past 450 ka: Comparison between Globigerinoides ruber and Globigerinoides sacculifer [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4): Q04037.
[43] Rosenthal Y, Perron-Cashman S, Lear C H, et al. Interlaboratory comparison study of Mg/Ca and Sr/Ca measurements in planktonic foraminifera for paleoceanographic research [J]. Geochemistry, Geophysics, Geosystems, 2004, 5(4): Q04D09.
[44] 张鹏, Zuraida R, 袁洪林, 等. 印尼海区浮游有孔虫壳体Mg/Ca值的LA-ICP-MS原位微区分析[J]. 地球科学进展, 2016, 31(5):494-502 doi: 10.11867/j.issn.1001-8166.2016.05.0494.
ZHANG Peng, Zuraida R, YUAN Honglin, et al. In-situ microanalysis of Mg /Ca ratio in planktonic foraminiferal shells from the Indonesian Seas [J]. Advances in Earth Science, 2016, 31(5): 494-502. doi: 10.11867/j.issn.1001-8166.2016.05.0494.
[45] Eggins S, De Deckker P, Marshall J. Mg/Ca variation in planktonic foraminifera tests: implications for reconstructing palaeo-seawater temperature and habitat migration [J]. Earth and Planetary Science Letters, 2003, 212(3-4): 291-306. doi: 10.1016/S0012-821X(03)00283-8
[46] Hathorne E C, James R H, Lampitt R S. Environmental versus biomineralization controls on the intratest variation in the trace element composition of the planktonic foraminifera G. inflata and G. scitula [J]. Paleoceanography, 2009, 24(4): PA4204.
[47] Steinhardt J. Reconciling single chamber Mg/Ca with whole test δ18O in surface to deep dwelling planktonic foraminifera from the Mozambique Channel [J]. Biogeosciences Discussions, 2014, 11(12): 17255-17298.
[48] Bijma J, Hemleben C. Population dynamics of the planktic foraminifer Globigerinoides sacculifer (Brady) from the central Red Sea [J]. Deep Sea Research Part I:Oceanographic Research Papers, 1994, 41(3): 485-510. doi: 10.1016/0967-0637(94)90092-2
[49] Hemleben C, Bijma J. Foraminiferal Population Dynamics And Stable Carbon Isotopes [M]//Zahn R, Kaminski M, Labeyrie L, et al. Carbon Cycling in the Glacial Ocean: Constraints on the Ocean's Role in Global Change. Berlin: Springer, 1994, 17: 145-166.
[50] Pracht H, Metcalfe B, Peeters F J C. Oxygen isotope composition of the final chamber of planktic foraminifera provides evidence of vertical migration and depth-integrated growth [J]. Biogeosciences, 2019, 16(2): 643-661. doi: 10.5194/bg-16-643-2019
[51] Haarmann T, Hathorne E C, Mohtadi M, et al. Mg/Ca ratios of single planktonic foraminifer shells and the potential to reconstruct the thermal seasonality of the water column [J]. Paleoceanography, 2011, 26(3): PA3218.
[52] 罗琼一, 金海燕, 翦知湣, 等. 南海现代浮游有孔虫的垂直分布及其古海洋学意义[J]. 第四纪研究, 2015, 35(6):1342-1353 doi: 10.11928/j.issn.1001-7410.2015.06.04
LUO Qiongyi, JIN Haiyan, JIAN Zhimin, et al. Vertical distribution of living planktonic foraminifera in the northern south China sea and its paleoceanographic implications [J]. Quaternary Sciences, 2015, 35(6): 1342-1353. doi: 10.11928/j.issn.1001-7410.2015.06.04
[53] Huang K F, You C F, Lin H L, et al. In situ calibration of Mg/Ca ratio in planktonic foraminiferal shell using time series sediment trap: A case study of intense dissolution artifact in the South China Sea [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4): Q04016.
[54] Bijma J, Erez J, Hemleben C. Lunar and semi-lunar reproductive cycles in some spinose planktonic foraminifers [J]. Journal of Foraminiferal Research, 1990, 20(2): 117-127. doi: 10.2113/gsjfr.20.2.117
[55] Rink S, Kühl M, Bijma J, et al. Microsensor studies of photosynthesis and respiration in the symbiotic foraminifer Orbulina universa [J]. Marine Biology, 1998, 131(4): 583-595. doi: 10.1007/s002270050350
[56] Köhler-Rink S, Kühl M. The chemical microenvironment of the symbiotic planktonic foraminifer Orbulina universa [J]. Marine Biology Research, 2005, 1(1): 68-78. doi: 10.1080/17451000510019015
[57] Sadekov A, Eggins S M, De Deckker P, et al. Surface and subsurface seawater temperature reconstruction using Mg/Ca microanalysis of planktonic foraminifera Globigerinoides ruber, Globigerinoides sacculifer, and Pulleniatina obliquiloculata [J]. Paleoceanography, 2009, 24(3): PA3201.
[58] Russell A D, Hönisch B, Spero H J, et al. Effects of seawater carbonate ion concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminifera [J]. Geochimica et Cosmochimica Acta, 2004, 68(21): 4347-4361. doi: 10.1016/j.gca.2004.03.013
[59] Raja R, Saraswati P K, Rogers K, et al. Magnesium and strontium compositions of recent symbiont-bearing benthic foraminifera [J]. Marine Micropaleontology, 2005, 58(1): 31-44. doi: 10.1016/j.marmicro.2005.08.001
[60] Rathmann S, Hess S, Kuhnert H, et al. Mg/Ca ratios of the benthic foraminifera Oridorsalis umbonatus obtained by laser ablation from core top sediments: Relationship to bottom water temperature [J]. Geochemistry, Geophysics, Geosystems, 2004, 5(12): Q12013.
[61] Gastrich M D. Ultrastructure of a new intracellular symbiotic alga found within planktonic foraminifera [J]. Journal of Phycology, 2007, 23(4): 623-632. doi: 10.1111/j.1529-8817.1987.tb04215.x
[62] Fehrenbacher J, Martin P. Mg/Ca variability of the planktonic foraminifera G. ruber s. s. and N. dutertrei from shallow and deep cores determined by electron microprobe image mapping [J]. IOP Conference Series:Earth and Environmental Science, 2010, 9(1): 012018.
[63] Sadekov A, Eggins S M, De Deckker P, et al. Uncertainties in seawater thermometry deriving from intratest and intertest Mg/Ca variability in Globigerinoides ruber [J]. Paleoceanography, 2008, 23(1): PA1215.
[64] Fehrenbacher J S, Russell A D, Davis C V, et al. Link between light-triggered Mg-banding and chamber formation in the planktic foraminifera Neogloboquadrina dutertrei [J]. Nature Communications, 2017, 8: 15441. doi: 10.1038/ncomms15441
[65] Hamilton C P, Spero H J, Bijma J, et al. Geochemical investigation of gametogenic calcite addition in the planktonic foraminifera Orbulina universa [J]. Marine Micropaleontology, 2008, 68(3-4): 256-267. doi: 10.1016/j.marmicro.2008.04.003
[66] Steinhardt J, De Nooijer L L J, Brummer G J, et al. Profiling planktonic foraminiferal crust formation [J]. Geochemistry, Geophysics, Geosystems, 2015, 16(7): 2409-2430. doi: 10.1002/2015GC005752
[67] Van Raden U J, Groeneveld J, Raitzsch M, et al. Mg/Ca in the planktonic foraminifera Globorotalia inflata and Globigerinoides bulloides from Western Mediterranean plankton tow and core top samples [J]. Marine Micropaleontology, 2011, 78(3-4): 101-112. doi: 10.1016/j.marmicro.2010.11.002
[68] Jonkers L, De Nooijer L J, Reichart G J, et al. Encrustation and trace element composition of Neogloboquadrina dutertrei assessed from single chamber analyses-implications for paleotemperature estimates [J]. Biogeosciences, 2012, 9(11): 4851-4860. doi: 10.5194/bg-9-4851-2012
[69] Caron D A, Roger Anderson O, Lindsey J L, et al. Effects of gametogenesis on test structure and dissolution of some spinose planktonic foraminifera and implications for test preservation [J]. Marine Micropaleontology, 1990, 16(1-2): 93-116. doi: 10.1016/0377-8398(90)90031-G
[70] Dissard D, Nehrke G, Reichart G J, et al. The impact of salinity on the Mg/Ca and Sr/Ca ratio in the benthic foraminifera Ammonia tepida: Results from culture experiments [J]. Geochimica et Cosmochimica Acta, 2010, 74(3): 928-940. doi: 10.1016/j.gca.2009.10.040
[71] Williams R J P. Some fundamental features of biomineralization [J]. Geological Society, London, Special Publications, 2008, 303(1): 33-44. doi: 10.1144/SP303.3
[72] 陈龙, 黄明立, 史宇坤. 底栖有孔虫壳体微量元素地球化学指标及其“生命效应”[J]. 微体古生物学报, 2019, 36(2):103-114
CHEN Long, HUANG Mingli, SHI Yukun. Geochemical trace element proxies of benthic foraminiferal shells and their vital effects [J]. Acta Micropalaeontologica Sinica, 2019, 36(2): 103-114.
[73] Anand P, Elderfield H. Variability of Mg/Ca and Sr/Ca between and within the planktonic foraminifers Globigerina bulloides and Globorotalia truncatulinoides [J]. Geochemistry, Geophysics, Geosystems, 2005, 6(11): Q11D15.
[74] Nehrke G, Keul N, Langer G, et al. A new model for biomineralization and trace-element signatures of Foraminifera tests [J]. Biogeosciences, 2013, 10(10): 6759-6767. doi: 10.5194/bg-10-6759-2013
[75] Bentov S, Erez J. Impact of biomineralization processes on the Mg content of foraminiferal shells: A biological perspective [J]. Geochemistry, Geophysics, Geosystems, 2006, 7(1): Q01P08.
[76] Erez J. The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies [J]. Reviews in Mineralogy and Geochemistry, 2003, 54(1): 115-149. doi: 10.2113/0540115
[77] Wit J C, Reichart G J, Jung S J A, et al. Approaches to unravel seasonality in sea surface temperatures using paired single-specimen foraminiferal δ18O and Mg/Ca analyses [J]. Paleoceanography, 2010, 25(4): PA4220.
[78] Schmitt A, Elliot M, Thirumalai K, et al. Single foraminifera Mg/Ca analyses of past glacial-interglacial temperatures derived from G. ruber sensu stricto and sensu lato morphotypes [J]. Chemical Geology, 2019, 511: 510-520. doi: 10.1016/j.chemgeo.2018.11.007
[79] Steinke S, Chiu H Y, Yu P S, et al. Mg/Ca ratios of two Globigerinoides ruber(white) morphotypes: Implications for reconstructing past tropical/subtropical surface water conditions [J]. Geochemistry, Geophysics, Geosystems, 2005, 6(11): Q11005.
[80] Dueñas-Bohórquez A, da Rocha R E, Kuroyanagi A, et al. Interindividual variability and ontogenetic effects on Mg and Sr incorporation in the planktonic foraminifer Globigerinoides sacculifer [J]. Geochimica et Cosmochimica Acta, 2011, 75(2): 520-532. doi: 10.1016/j.gca.2010.10.006
[81] Elderfield H, Vautravers M, Cooper M. The relationship between shell size and Mg/Ca, Sr/Ca, δ18O, and δ13C of species of planktonic foraminifera [J]. Geochemistry, Geophysics, Geosystems, 2002, 3(8): 1-13.
[82] Friedrich O, Schiebel R, Wilson P A, et al. Influence of test size, water depth, and ecology on Mg/Ca, Sr/Ca, δ18O and δ13C in nine modern species of planktic foraminifers [J]. Earth and Planetary Science Letters, 2012, 319-320: 133-145. doi: 10.1016/j.jpgl.2011.12.002
[83] Ni Y Y, Foster G L, Bailey T, et al. A core top assessment of proxies for the ocean carbonate system in surface-dwelling foraminifers [J]. Paleoceanography, 2007, 22(3): PA3212.
[84] Spero H J, Lerche I, Williams D F. Opening the carbon isotope "vital effect" black box, 2, Quantitative model for interpreting foraminiferal carbon isotope data [J]. Paleoceanography, 1991, 6(6): 639-655. doi: 10.1029/91PA02022
[85] Vetter L, Spero H J, Russell A D, et al. LA-ICP-MS depth profiling perspective on cleaning protocols for elemental analyses in planktic foraminifers [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(8): 2916-2931. doi: 10.1002/ggge.20163
[86] Pena L D, Calvo E, Cacho I, et al. Identification and removal of Mn-Mg-rich contaminant phases on foraminiferal tests: Implications for Mg/Ca past temperature reconstructions [J]. Geochemistry, Geophysics, Geosystems, 2005, 6(9): Q09P02.
[87] Guo X Y, Xu B C, Burnett W C, et al. A potential proxy for seasonal hypoxia: LA-ICP-MS Mn/Ca ratios in benthic foraminifera from the Yangtze River Estuary [J]. Geochimica et Cosmochimica Acta, 2019, 245: 290-303. doi: 10.1016/j.gca.2018.11.007
[88] Marr J P, Baker J A, Carter L, et al. Ecological and temperature controls on Mg/Ca ratios of Globigerina bulloides from the southwest Pacific Ocean [J]. Paleoceanography, 2011, 26(2): PA2209.
[89] Hathorne E C, Alard O, James R H, et al. Determination of intratest variability of trace elements in foraminifera by laser ablation inductively coupled plasma-mass spectrometry [J]. Geochemistry, Geophysics, Geosystems, 2003, 4(12): 8408.