卡洛琳地幔柱活动减弱过程中岩浆成因和源区组成演化

赵晗, 张国良, 张吉, 王帅. 卡洛琳地幔柱活动减弱过程中岩浆成因和源区组成演化[J]. 海洋地质与第四纪地质, 2022, 42(4): 122-134. doi: 10.16562/j.cnki.0256-1492.2022012202
引用本文: 赵晗, 张国良, 张吉, 王帅. 卡洛琳地幔柱活动减弱过程中岩浆成因和源区组成演化[J]. 海洋地质与第四纪地质, 2022, 42(4): 122-134. doi: 10.16562/j.cnki.0256-1492.2022012202
ZHAO Han, ZHANG Guoliang, ZHANG Ji, WANG Shuai. Magma genesis and evolution of source composition during the weakening of Caroline mantle plume activity[J]. Marine Geology & Quaternary Geology, 2022, 42(4): 122-134. doi: 10.16562/j.cnki.0256-1492.2022012202
Citation: ZHAO Han, ZHANG Guoliang, ZHANG Ji, WANG Shuai. Magma genesis and evolution of source composition during the weakening of Caroline mantle plume activity[J]. Marine Geology & Quaternary Geology, 2022, 42(4): 122-134. doi: 10.16562/j.cnki.0256-1492.2022012202

卡洛琳地幔柱活动减弱过程中岩浆成因和源区组成演化

  • 基金项目: 国家自然科学基金项目“深部碳循环对典型大洋海山链碱性玄武岩的成因制约”(41876040),“西太平洋板块俯冲体系岩浆过程中深部碳循环研究”(91858206)
详细信息
    作者简介: 赵晗(1997—),男,硕士研究生,海洋地质专业,主要从事大洋岩石学和地球化学研究,E-mail:zhaohan@qdio.ac.cn
    通讯作者: 张国良(1981—),男,研究员,主要从事大洋岩石学和地幔地球化学研究,E-mail:zhangguoliang@qdio.ac.cn
  • 中图分类号: P736.14

Magma genesis and evolution of source composition during the weakening of Caroline mantle plume activity

More Information
  • 地幔柱活动不同阶段具有不同的岩浆作用产物,由楚克(14.8~4.3 Ma)、波纳佩(8.7~<1 Ma)、科斯雷(2~1 Ma)等洋岛构成的卡洛琳海山链是地幔柱活动不同阶段的典型例子,研究该海山链中不同洋岛地球化学特征的差异有助于加深对地幔柱晚期活动规律的认识。本研究对获取的楚克、科斯雷样品进行全岩主量、微量元素及矿物电子探针分析,并与波纳佩岛进行对比。科斯雷和楚克由霞石岩和碱性玄武岩组成,在微量元素配分模式上体现出典型碱性洋岛玄武岩的特征。这些样品的橄榄石斑晶具有与辉石岩源区夏威夷OIB橄榄石类似的高Ni、低Ca-Mn的特征,反映其地幔源区可能存在辉石岩。科斯雷霞石岩橄榄石斑晶内存在含碳酸盐的熔体包裹体,反映CO2在地幔熔融和岩浆成因过程中起到了重要作用。从楚克、波纳佩到科斯雷,La/Sm比值逐渐增大,地幔熔融程度逐渐降低。Nb/Nb*随着La/Sm、Sm/Yb升高和SiO2降低有逐渐降低的趋势,与地幔熔融程度降低过程中CO2作用的增强有关。研究认为,楚克、波纳佩、科斯雷等洋岛火山岩的地球化学变化由卡洛琳地幔柱热点活动逐渐减弱导致,随着地幔柱活动性减弱,CO2在火山岩成因上起到越来越明显的作用。

  • 加载中
  • 图 1  卡洛琳群岛分布图(a)与科斯雷岛采样位置(b)

    Figure 1. 

    图 2  卡洛琳群岛火山岩TAS分类图

    Figure 2. 

    图 3  楚克、科斯雷火山岩原始地幔标准化微量元素配分模式图

    Figure 3. 

    图 4  科斯雷霞石岩、碱性玄武岩矿物组合(a,b)和霞石岩橄榄石内部包裹体的背散射电子图像(c,d)及该含碳酸盐矿物相熔体包裹体成分面扫图(e)

    Figure 4. 

    图 5  橄榄石Fo值与Ni、Mn、Ca、Fe/Mn的关系

    Figure 5. 

    图 6  楚克、科斯雷、波纳佩火山岩MgO与 SiO2、CaO、Al2O3、TiO2、CaO/Al2O3相关图

    Figure 6. 

    图 7  楚克、波纳佩、科斯雷火山岩 (La/Sm)N (a)、 (Sm/Yb)N (b)平均值,La-(La/Sm)N (c)、(Sm/Yb)N-Al2O3 (d)关系图解

    Figure 7. 

    图 8  卡洛琳群岛火山岩SiO2与CaO/Al2O3 (a)、Nb/Nb* (b),Nb/Nb*与(La/Sm)N (c)、(Sm/Yb)N (d)相关图

    Figure 8. 

    表 1  楚克、科斯雷样品主量元素测定结果

    Table 1.  Whole-rock major element compositions of Chuuk and Kosrae samples

    样品号Na2OMgOAl2O3SiO2P2O5K2OCaOTiO2MnOFe2O3TLOI总计
    CHK-12.1611.3012.4045.100.310.5710.202.790.1614.5099.49
    CHK-42.449.0413.9045.000.360.7610.303.280.1714.900.38100.52
    CHK-52.2011.6012.5044.700.310.5910.102.960.1615.000.49100.61
    CHK-62.248.9014.0044.500.360.6810.403.220.1614.201.36100.01
    CHK-72.478.5314.1045.300.380.6710.203.240.1614.101.38100.52
    CHK-82.359.0713.7044.500.370.7410.303.190.1714.600.8499.82
    KSR2-22.3712.8010.0041.200.670.7012.603.430.1913.601.4499.00
    KSR4-14.0013.609.7939.201.200.9712.803.250.2113.800.2499.06
    KSR4-23.6813.909.6938.801.170.9113.003.280.2014.000.5099.14
    KSR4-44.0613.209.9839.301.210.9312.803.260.2113.800.3799.12
    KSR5-23.9113.309.7338.801.301.2813.003.330.2114.100.2299.17
    KSR6-10.7115.408.9739.801.040.1013.303.090.1913.602.9399.13
    KSR6-21.1315.408.9340.100.980.2513.303.100.1913.602.0098.98
    KSR6-30.9115.908.8640.200.990.1713.203.080.1913.702.3499.54
    KSR7-11.3314.6010.5041.700.600.5711.603.250.2013.501.6099.45
    KSR7-21.7413.4011.2042.000.660.7511.503.360.1713.501.5299.81
    KSR8-22.3011.5011.5043.300.631.1011.803.370.1813.200.8899.76
      注:元素含量单位:%; CHK、KSR分别表示样品来自楚克、科斯雷;CHK-1因样品量太少而未做烧失量分析。
    下载: 导出CSV

    表 2  楚克、科斯雷样品微量元素测定结果

    Table 2.  Trace element compositions of Chuuk and Kosrae samples

    10−6  
    样品号LiBeScVCrCoNiCuZnGaRbSrYZrNbCdCsBaLaCePrNdSmEuGdTbDyHoErTmYbLuHfTaWPbThU
    CHK-14.020.8927.532753770.038913010520.111.238321.713919.90.2360.14516313.530.44.0718.54.981.685.130.814.450.831.990.2611.480.2113.591.280.1651.021.290.338
    CHK-44.721.0325.837428663.224798.511520.515.957223.316124.00.2420.09120416.035.64.7221.25.541.885.660.884.810.882.130.2761.560.2184.011.520.0971.131.490.416
    CHK-54.330.8626.534540169.636312411619.111.149021.214220.60.2330.09717013.632.34.0718.54.951.685.110.814.360.811.960.2581.460.2073.691.340.1501.031.320.361
    CHK-64.521.0326.736730858.922610411521.114.659522.815722.80.2460.25319215.735.54.6520.95.531.875.640.874.700.872.090.2721.540.2153.961.470.0721.111.480.408
    CHK-752.00.9725.936525868.026510712321.58.4558424.216423.80.2880.06920816.337.34.8421.85.751.955.890.914.920.912.210.2861.650.2294.121.520.0661.431.550.442
    CHK-84.640.9124.133027355.822690.510518.516.648322.514721.50.2300.12518415.333.44.5120.35.301.815.470.854.590.862.060.2641.520.2103.681.330.0561.081.430.377
    KSR2-25.671.8034.837471968.336585.111920.927.272628.729661.90.4870.94653249.110012.952.710.93.1810.21.326.311.102.590.3231.810.2517.123.680.6613.624.931.25
    KSR4-112.22.9229.940468679.844595.415528.431.2161747.240498.00.5860.82783411322426.910420.05.8118.92.3110.51.763.970.4772.580.3548.755.112.336.6312.42.91
    KSR4-210.32.2825.834860369.639278.513423.921.5128638.933775.70.4800.55664790.718222.185.716.54.7815.51.898.721.473.290.3922.130.2927.434.012.016.129.572.33
    KSR4-410.92.4924.734756667.137271.313424.130.3141040.634385.20.4780.77774398.919523.389.117.24.9616.11.979.011.513.440.4132.210.3057.354.452.046.7810.82.50
    KSR5-210.62.5825.635557368.435874.114324.530.7134940.436288.90.5700.43472594.719123.189.717.45.0516.32.009.101.513.380.3992.160.2927.744.681.726.5910.41.66
    KSR6-110.31.8428.826591870.845582.911120.556.2114432.130171.80.4074.2359165.413316.666.513.33.9012.31.557.181.222.760.3321.830.2586.894.190.7080.816.321.69
    KSR6-26.941.8229.431093371.245779.111120.466.9100631.429670.50.4382.9655564.313116.566.313.23.8612.11.527.051.202.730.3291.800.2516.774.150.9341.326.271.70
    KSR6-37.741.8728.927694971.746377.711320.353.2108431.529770.60.3851.7854464.413216.566.413.33.8912.21.537.151.212.770.3351.830.2566.894.190.9190.486.391.76
    KSR7-15.561.6431.034879171.043885.311020.214.843229.126053.40.3560.31154040.382.210.644.19.642.898.961.226.071.082.540.3201.780.2486.303.190.6352.434.161.05
    KSR7-27.281.7730.236374966.941092.612221.617.850430.427859.30.3610.46641844.089.511.547.410.23.079.591.296.461.152.700.3411.900.2666.643.480.7322.934.631.17
    KSR8-25.741.8330.733251158.128584.010920.630.668431.229662.60.4490.69951348.598.112.449.710.23.019.641.316.551.192.880.3712.130.3046.973.740.6783.225.281.36
    下载: 导出CSV
  • [1]

    Ruttor S, Nebel O, Nebel-Yacobsen Y, et al. Alkalinity of ocean island lavas decoupled from enriched source components: a case study from the EM1-PREMA Tasmantid mantle plume [J]. Geochimica et Cosmochimica Acta, 2021, 314: 140-158. doi: 10.1016/j.gca.2021.09.023

    [2]

    Garcia M O, Jorgenson B A, Mahoney J J, et al. An evaluation of temporal geochemical evolution of Loihi Summit Lavas: results from Alvin submersible dives [J]. Journal of Geophysical Research:Solid Earth, 1993, 98(B1): 537-550. doi: 10.1029/92JB01707

    [3]

    Garcia M O, Foss D J P, West H B, et al. Geochemical and isotopic evolution of Loihi Volcano, Hawaii [J]. Journal of Petrology, 1995, 36(6): 1647-1674.

    [4]

    Naumann T R, Geist D J. Generation of alkalic basalt by crystal fractionation of tholeiitic magma [J]. Geology, 1999, 27(5): 423-426. doi: 10.1130/0091-7613(1999)027<0423:GOABBC>2.3.CO;2

    [5]

    Hirose K. Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali-basalt magma generation [J]. Geophysical Research Letters, 1997, 24(22): 2837-2840. doi: 10.1029/97GL02956

    [6]

    Dasgupta R, Hirschmann M M, Smith N D. Partial Melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island basalts [J]. Journal of Petrology, 2007, 48(11): 2093-2124. doi: 10.1093/petrology/egm053

    [7]

    Gerbode C, Dasgupta R. Carbonate-fluxed melting of MORB-like pyroxenite at 2·9 GPa and genesis of HIMU ocean island basalts [J]. Journal of Petrology, 2010, 51(10): 2067-2088. doi: 10.1093/petrology/egq049

    [8]

    Kiseeva E S, Yaxley G M, Hermann J, et al. An experimental study of carbonated eclogite at 3·5–5·5 GPa—implications for silicate and carbonate metasomatism in the cratonic mantle [J]. Journal of Petrology, 2012, 53(4): 727-759. doi: 10.1093/petrology/egr078

    [9]

    Kiseeva E S, Litasov K D, Yaxley G M, et al. Melting and phase relations of carbonated eclogite at 9–21 GPa and the petrogenesis of alkali-rich melts in the deep mantle [J]. Journal of Petrology, 2013, 54(8): 1555-1583. doi: 10.1093/petrology/egt023

    [10]

    Mallik A, Dasgupta R. Reactive infiltration of MORB-eclogite-derived carbonated silicate melt into fertile peridotite at 3 GPa and genesis of alkalic magmas [J]. Journal of Petrology, 2013, 54(11): 2267-2300. doi: 10.1093/petrology/egt047

    [11]

    Mallik A, Dasgupta R. Effect of variable CO2 on eclogite-derived andesite and lherzolite reaction at 3 GPa-Implications for mantle source characteristics of alkalic ocean island basalts [J]. Geochemistry, Geophysics, Geosystems, 2014, 15(4): 1533-1557. doi: 10.1002/2014GC005251

    [12]

    Zhang G L, Chen L H, Jackson M G, et al. Evolution of carbonated melt to alkali basalt in the South China Sea [J]. Nature Geoscience, 2017, 10(3): 229-235. doi: 10.1038/ngeo2877

    [13]

    Yao J H, Zhang G L, Wang S, et al. Recycling of carbon from the stagnant paleo-Pacific slab beneath Eastern China revealed by olivine geochemistry [J]. Lithos, 2021, 398-399: 106249. doi: 10.1016/j.lithos.2021.106249

    [14]

    Jackson M G, Dasgupta R. Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts [J]. Earth and Planetary Science Letters, 2008, 276(1-2): 175-186. doi: 10.1016/j.jpgl.2008.09.023

    [15]

    Jackson M G, Weis D, Huang S C. Major element variations in Hawaiian shield lavas: source features and perspectives from global ocean island basalt (OIB) systematics [J]. Geochemistry, Geophysics, Geosystems, 2012, 13(9): Q09009.

    [16]

    Dasgupta R, Jackson M G, Lee C Y A. Major element chemistry of ocean island basalts — Conditions of mantle melting and heterogeneity of mantle source [J]. Earth and Planetary Science Letters, 2010, 289(3-4): 377-392. doi: 10.1016/j.jpgl.2009.11.027

    [17]

    Mattey D P. The minor and trace element geochemistry of volcanic rocks from Truk, Ponape and Kusaie, Eastern Caroline Islands; the evolution of a young hot spot trace across old Pacific Ocean Crust [J]. Contributions to Mineralogy and Petrology, 1982, 80(1): 1-13. doi: 10.1007/BF00376730

    [18]

    Keating B H, Mattey D P, Naughton J, et al. Age and origin of Truk Atoll, eastern Caroline Islands: geochemical, radiometric-age, and paleomagnetic evidence [J]. GSA Bulletin, 1984, 95(3): 350-356. doi: 10.1130/0016-7606(1984)95<350:AAOOTA>2.0.CO;2

    [19]

    Keating B H, Mattey D P, Helsley C E, et al. Evidence for a hot spot origin of the Caroline Islands [J]. Journal of Geophysical Research:Solid Earth, 1984, 89(B12): 9937-9948. doi: 10.1029/JB089iB12p09937

    [20]

    Jackson M G, Price A A, Blichert-Toft J, et al. Geochemistry of lavas from the Caroline hotspot, Micronesia: evidence for primitive and recycled components in the mantle sources of lavas with moderately elevated 3He/4He [J]. Chemical Geology, 2017, 455: 385-400. doi: 10.1016/j.chemgeo.2016.10.038

    [21]

    Zhang G L, Zhang J, Wang S, et al. Geochemical and chronological constraints on the mantle plume origin of the Caroline Plateau [J]. Chemical Geology, 2020, 540: 119566. doi: 10.1016/j.chemgeo.2020.119566

    [22]

    Zhang G L, Wang S, Zhang J, et al. Evidence for the essential role of CO2 in the volcanism of the waning Caroline mantle plume [J]. Geochimica et Cosmochimica Acta, 2020, 290: 391-407. doi: 10.1016/j.gca.2020.09.018

    [23]

    Batanova V G, Thompson J M, Danyushevsky L V, et al. New olivine reference material for in situ microanalysis [J]. Geostandards and Geoanalytical Research, 2019, 43(3): 453-473. doi: 10.1111/ggr.12266

    [24]

    Dixon T H, Batiza R, Futa K, et al. Petrochemistry, age and isotopic composition of alkali basalts from Ponape Island, Western Pacific [J]. Chemical Geology, 1984, 43(1-2): 1-28. doi: 10.1016/0009-2541(84)90138-4

    [25]

    McDonough W F, Sun S S. The composition of the Earth [J]. Chemical Geology, 1995, 120(3-4): 223-253. doi: 10.1016/0009-2541(94)00140-4

    [26]

    Hoernle K, Tilton G, Bas M J L, et al. Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate [J]. Contributions to Mineralogy and Petrology, 2002, 142(5): 520-542. doi: 10.1007/s004100100308

    [27]

    Sobolev A V, Hofmann A W, Sobolev S V, et al. An olivine-free mantle source of Hawaiian shield basalts [J]. Nature, 2005, 434(7033): 590-597. doi: 10.1038/nature03411

    [28]

    Sobolev A V, Hofmann A W, Kuzmin D V, et al. The amount of recycled crust in sources of mantle-derived melts [J]. Science, 2007, 316(5823): 412-417. doi: 10.1126/science.1138113

    [29]

    Herzberg C. Identification of source lithology in the Hawaiian and Canary Islands: implications for origins [J]. Journal of Petrology, 2011, 52(1): 113-146. doi: 10.1093/petrology/egq075

    [30]

    Prytulak J, Elliott T. TiO2 enrichment in ocean island basalts [J]. Earth and Planetary Science Letters, 2007, 263(3-4): 388-403. doi: 10.1016/j.jpgl.2007.09.015

    [31]

    Garapić G, Mallik A, Dasgupta R, et al. Oceanic lavas sampling the high-3He/4He mantle reservoir: primitive, depleted, or re-enriched? [J]. American Mineralogist, 2015, 100(10): 2066-2081. doi: 10.2138/am-2015-5154

    [32]

    Dasgupta R, Hirschmann M M, Stalker K. Immiscible Transition from carbonate-rich to silicate-rich melts in the 3 GPa melting interval of eclogite + CO2 and genesis of silica-undersaturated ocean island lavas [J]. Journal of Petrology, 2006, 47(4): 647-671. doi: 10.1093/petrology/egi088

    [33]

    Spandler C, Yaxley G, Green D H, et al. Phase relations and melting of anhydrous K-bearing eclogite from 1200 to 1600°C and 3 to 5 GPa [J]. Journal of Petrology, 2008, 49(4): 771-795.

    [34]

    Herzberg C. Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano [J]. Nature, 2006, 444(7119): 605-609. doi: 10.1038/nature05254

    [35]

    Kogiso T, Hirschmann M M, Frost D J. High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts [J]. Earth and Planetary Science Letters, 2003, 216(4): 603-617. doi: 10.1016/S0012-821X(03)00538-7

    [36]

    Kogiso T, Hirschmann M M. Partial melting experiments of bimineralic eclogite and the role of recycled mafic oceanic crust in the genesis of ocean island basalts [J]. Earth and Planetary Science Letters, 2006, 249(3-4): 188-199. doi: 10.1016/j.jpgl.2006.07.016

    [37]

    Andersen T, Neumann E R. Fluid inclusions in mantle xenoliths [J]. Lithos, 2001, 55(1-4): 301-320. doi: 10.1016/S0024-4937(00)00049-9

    [38]

    Golovin A V, Sharygin V V, Pokhilenko N P. Melt inclusions in olivine phenocrysts in unaltered kimberlites from the Udachnaya-East pipe, Yakutia: some aspects of kimberlite magma evolution during late crystallization stages [J]. Petrology, 2007, 15(2): 168-183. doi: 10.1134/S086959110702004X

    [39]

    Frezzotti M L, Touret J L R. CO2, carbonate-rich melts, and brines in the mantle [J]. Geoscience Frontiers, 2014, 5(5): 697-710. doi: 10.1016/j.gsf.2014.03.014

    [40]

    Hudgins T R, Mukasa S B, Simon A C, et al. Melt inclusion evidence for CO2-rich melts beneath the western branch of the East African Rift: implications for long-term storage of volatiles in the deep lithospheric mantle [J]. Contributions to Mineralogy and Petrology, 2015, 169(5): 46. doi: 10.1007/s00410-015-1140-9

  • 加载中

(8)

(2)

计量
  • 文章访问数:  1709
  • PDF下载数:  41
  • 施引文献:  0
出版历程
收稿日期:  2022-01-22
修回日期:  2022-04-12
录用日期:  2022-04-12
刊出日期:  2022-08-28

目录