-
摘要:
峡湾是开阔海洋与陆地生态系统重要的连接区域,在全球气候变化的背景下,峡湾的生物地球化学过程正发生剧烈的变化。峡湾的特殊地形以及生物地球化学特性使其成为有机碳埋藏和储存的重要区域。研究表明,全球峡湾的平均有机碳累积速率高达54 gC·m−2·a−1,有机碳埋藏量为18×1012 gC·a−1,约占全球海洋有机碳埋藏量的11%,有巨大的储碳潜力。极地峡湾由于存在冰川作用,其沉积有机碳的输入、迁移转化和埋藏呈现与温带峡湾不同的特征。极地峡湾湾内以及各峡湾之间的沉积有机碳来源、组成和累积、埋藏速率均存在空间差异,湾内表现为由峡湾前端向湾口方向的梯度变化;各峡湾之间表现为有冰川的峡湾比无冰川的峡湾有更高的碳累积速率;沉积有机碳组成差异受到淡水和海水输入的影响。厘清峡湾沉积有机碳的来源对认识峡湾有机碳埋藏至关重要,通过测定总有机碳及单体化合物放射性碳同位素可实现对不同来源有机碳的定量估算。全球变暖使冰川快速消融,导致极地峡湾表现出不同的有机碳累积或埋藏特征,而在全球碳循环中,极地峡湾捕获和埋藏有机碳的能力是否能适应全球气候变化变得愈发重要。
Abstract:Fjords are an important interface between the open ocean and terrestrial ecosystems. In the context of global climate change, the biogeochemical processes in fjords are undergoing dramatic changes. The special topography and biogeochemical properties of fjord make it an important ecosystem for organic carbon (OC) burial and storage. Studies have shown that the average OC accumulation rate in the global fjords is as high as 54 gC·m−2·a−1, and the OC burial amount is 18×1012 gC·a−1, taking about 11% of the annual global marine OC burial and showing a great carbon storage potential. The input, composition, and accumulation or burial of sedimentary OC in polar fjords are different from those in temperate fjords due to glaciation. There are spatial differences in the source, composition, accumulation, and burial rate of sedimentary OC within and between polar fjords. Within a fjord, there is a gradient change from the front of the fjord to the mouth of the fjord; and between fjords, those with glaciers have higher carbon accumulation rates than those without glaciers. In addition, the composition of sedimentary OC varies due to the influence of different freshwater and seawater inputs. Clarifying the sources of fjord sediment OC is crucial to understanding fjord OC burial. Quantitative estimation of OC from different sources can be achieved by measuring total OC and radiocarbon isotopes of bulk organic matter and the technology of Compound-Specific Radiocarbon Analysis (CSRA). The accumulation or burial of OC in polar fjords shows different characteristics due to the rapid retreating of glaciers by global warming. Global warming is causing rapid glaciers to melt, causing polar fjords to exhibit different organic carbon accumulation or burial characteristics. In the global carbon cycle, it is increasingly important to study whether the ability of polar fjords to capture and bury OC can adapt to global climate change.
-
Key words:
- fjords /
- sediment /
- 14C /
- organic carbon burial /
- climate change
-
图 1 峡湾地形特征示意图[2]
Figure 1.
图 4 弗兰德峡湾和艾蒂安峡湾沉积分布示意图 [30]
Figure 4.
图 5 影响初级生产力驱动因素的空间示意图[31]
Figure 5.
图 6 水文洋流及其对海洋终端冰川和陆地终端冰川峡湾生物地球化学的影响[38]
Figure 6.
图 7 极地峡湾陆源物质运输和生物地球化学过程示意图[22]
Figure 7.
-
[1] Syvitski P M, Burrell D C, Skei J M. Fjords. Processes and Products[M]. New York: Springer, 1987: 3-377.
[2] Syvitski J P M, Shaw J. Sedimentology and geomorphology of fjords [J]. Developments in Sedimentology, 1995, 53: 113-178.
[3] Bianchi T S, Arndt S, Austin W E N, et al. Fjords as aquatic critical zones (ACZs) [J]. Earth-Science Reviews, 2020, 203: 103145. doi: 10.1016/j.earscirev.2020.103145
[4] Smith R W, Bianchi T S, Allison M, et al. High rates of organic carbon burial in fjord sediments globally [J]. Nature Geoscience, 2015, 8(6): 450-453. doi: 10.1038/ngeo2421
[5] Smeaton C, Yang H D, Austin W E N. Carbon burial in the mid-latitude fjords of Scotland [J]. Marine Geology, 2021, 441: 106618. doi: 10.1016/j.margeo.2021.106618
[6] 胡利民, 石学法, 刘焱光, 等. 白令海西部柱样沉积物中有机碳的地球化学特征与埋藏记录[J]. 海洋地质与第四纪地质, 2015, 35(3):37-47
HU Limin, SHI Xuefa, LIU Yanguang, et al. Geochemical characteristics and burial records of organic carbon in the column sediments from Western Bering sea [J]. Marine Geology & Quaternary Geology, 2015, 35(3): 37-47.
[7] Lee C. Controls on organic carbon preservation: The use of stratified water bodies to compare intrinsic rates of decomposition in oxic and anoxic systems [J]. Geochimica et Cosmochimica Acta, 1992, 56(8): 3323-3335. doi: 10.1016/0016-7037(92)90308-6
[8] Moossen H, Abell R, Quillmann U, et al. Holocene changes in marine productivity and terrestrial organic carbon inputs into an Icelandic fjord: Application of molecular and bulk organic proxies [J]. The Holocene, 2013, 23(12): 1699-1710. doi: 10.1177/0959683613505346
[9] Nuwer J M, Keil R G. Sedimentary organic matter geochemistry of Clayoquot Sound, Vancouver Island, British Columbia [J]. Limnology and Oceanography, 2005, 50(4): 1119-1128. doi: 10.4319/lo.2005.50.4.1119
[10] Gilbert R. Environmental assessment from the sedimentary record of high-latitude fiords [J]. Geomorphology, 2000, 32(3-4): 295-314. doi: 10.1016/S0169-555X(99)00101-4
[11] Howe J A, Austin W E N, Forwick M, et al. Fjord systems and archives: a review[M]//Howe J A, Austin W E N, Forwick M, et al. Fjord Systems and Archives. London: Geological Society of London, 2010, 344: 5-15.
[12] Berg S, Jivcov S, Kusch S, et al. Increased petrogenic and biospheric organic carbon burial in sub-Antarctic fjord sediments in response to recent glacier retreat [J]. Limnology and Oceanography, 2021, 66(12): 4347-4362. doi: 10.1002/lno.11965
[13] Zwerschke N, Sands C J, Roman-Gonzalez A, et al. Quantification of blue carbon pathways contributing to negative feedback on climate change following glacier retreat in West Antarctic fjords [J]. Global Change Biology, 2021, 28(1): 8-20.
[14] Faust J C, Knies J. Organic matter sources in North Atlantic fjord sediments [J]. Geochemistry, Geophysics, Geosystems, 2019, 20(6): 2872-2885. doi: 10.1029/2019GC008382
[15] Cui X Q, Bianchi T S, Jaeger J M, et al. Biospheric and petrogenic organic carbon flux along southeast Alaska [J]. Earth and Planetary Science Letters, 2016, 452: 238-246. doi: 10.1016/j.jpgl.2016.08.002
[16] Galy V, Peucker-Ehrenbrink B, Eglinton T. Global carbon export from the terrestrial biosphere controlled by erosion [J]. Nature, 2015, 521(7551): 204-207. doi: 10.1038/nature14400
[17] Kim J H, Peterse F, Willmott V, et al. Large ancient organic matter contributions to Arctic marine sediments (Svalbard) [J]. Limnology and Oceanography, 2011, 56(4): 1463-1474. doi: 10.4319/lo.2011.56.4.1463
[18] Kumar V, Tiwari M, Nagoji S, et al. Evidence of Anomalously Low δ13C of Marine Organic Matter in an Arctic Fjord [J]. Scientific Reports, 2016, 6: 36192. doi: 10.1038/srep36192
[19] Cui X Q, Bianchi T S, Savage C, et al. Organic carbon burial in fjords: Terrestrial versus marine inputs [J]. Earth and Planetary Science Letters, 2016, 451: 41-50. doi: 10.1016/j.jpgl.2016.07.003
[20] Kusch S, Rethemeyer J, Ransby D, et al. Permafrost organic carbon turnover and export into a high-Arctic fjord: a case study from Svalbard using compound-specific 14C analysis [J]. Journal of Geophysical Research:Biogeosciences, 2021, 126(3): e2020JG006008.
[21] Carr J R, Stokes C, Vieli A. Recent retreat of major outlet glaciers on Novaya Zemlya, Russian Arctic, influenced by fjord geometry and sea-ice conditions [J]. Journal of Glaciology, 2014, 60(219): 155-170. doi: 10.3189/2014JoG13J122
[22] Jørgensen B B, Laufer K, Michaud A B, et al. Biogeochemistry and microbiology of high Arctic marine sediment ecosystems-Case study of Svalbard fjords [J]. Limnology and Oceanography, 2020, 66(S1): S273-S292.
[23] Zaborska A, Włodarska-Kowalczuk M, Legeżyńska J, et al. Sedimentary organic matter sources, benthic consumption and burial in west Spitsbergen fjords-Signs of maturing of Arctic fjordic systems? [J]. Journal of Marine Systems, 2018, 180: 112-123. doi: 10.1016/j.jmarsys.2016.11.005
[24] Włodarska-Kowalczuk M, Mazurkiewicz M, Górska B, et al. Organic carbon origin, benthic faunal consumption, and burial in sediments of Northern Atlantic and arctic fjords (60-81°N) [J]. Journal of Geophysical Research:Biogeosciences, 2019, 124(12): 3737-3751. doi: 10.1029/2019JG005140
[25] Eidam E F, Nittrouer C A, Lundesgaard Ø, et al. Variability of sediment accumulation rates in an Antarctic fjord [J]. Geophysical Research Letters, 2019, 46(22): 13271-13280. doi: 10.1029/2019GL084499
[26] Koziorowska K, Kuliński K, Pempkowiak J. Sedimentary organic matter in two Spitsbergen fjords: Terrestrial and marine contributions based on carbon and nitrogen contents and stable isotopes composition [J]. Continental Shelf Research, 2016, 113: 38-46. doi: 10.1016/j.csr.2015.11.010
[27] Kim H, Kwon S Y, Lee K, et al. Input of terrestrial organic matter linked to deglaciation increased mercury transport to the Svalbard fjords [J]. Scientific Reports, 2020, 10(1). doi: 10.1038/s41598-020-60261-6
[28] Svendsen H, Beszczynska-Møller A, Hagen J O, et al. The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard [J]. Polar Research, 2002, 21(1): 133-166.
[29] Bourgeois S, Kerhervé P, Calleja M L, et al. Glacier inputs influence organic matter composition and prokaryotic distribution in a high Arctic fjord (Kongsfjorden, Svalbard) [J]. Journal of Marine Systems, 2016, 164: 112-127. doi: 10.1016/j.jmarsys.2016.08.009
[30] Munoz Y P, Wellner J S. Local controls on sediment accumulation and distribution in a fjord in the West Antarctic Peninsula: implications for palaeoenvironmental interpretations [J]. Polar Research, 2016, 35(1): 25284. doi: 10.3402/polar.v35.25284
[31] Hopwood M J, Carroll D, Dunse T, et al. Review Article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic? [J]. The Cryosphere, 2020, 14(4): 1347-1383. doi: 10.5194/tc-14-1347-2020
[32] Szeligowska M, Trudnowska E, Boehnke R, et al. The interplay between plankton and particles in the Isfjorden waters influenced by marine- and land-terminating glaciers [J]. Science of the Total Environment, 2021, 780: 146491. doi: 10.1016/j.scitotenv.2021.146491
[33] Vonnahme T R, Persson E, Dietrich U, et al. Early spring subglacial discharge plumes fuel under-ice primary production at a Svalbard tidewater glacier [J]. The Cryosphere, 2021, 15(4): 2083-2107. doi: 10.5194/tc-15-2083-2021
[34] Kumar V, Tiwari M, Rengarajan R. Warming in the Arctic captured by productivity variability at an Arctic fjord over the past two centuries [J]. PLoS One, 2018, 13(8): e0201456. doi: 10.1371/journal.pone.0201456
[35] Torsvik T, Albretsen J, Sundfjord A, et al. Impact of tidewater glacier retreat on the fjord system: modeling present and future circulation in Kongsfjorden, Svalbard [J]. Estuarine, Coastal and Shelf Science, 2019, 220: 152-165. doi: 10.1016/j.ecss.2019.02.005
[36] Carroll D, Sutherland D A, Hudson B, et al. The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords [J]. Geophysical Research Letters, 2016, 43(18): 9739-9748. doi: 10.1002/2016GL070170
[37] Kanna N, Sugiyama S, Ohashi Y, et al. Upwelling of macronutrients and dissolved inorganic carbon by a subglacial freshwater driven plume in Bowdoin fjord, northwestern Greenland [J]. Journal of Geophysical Research:Biogeosciences, 2018, 123(5): 1666-1682. doi: 10.1029/2017JG004248
[38] Meire L, Mortensen J, Meire P, et al. Marine-terminating glaciers sustain high productivity in Greenland fjords [J]. Global Change Biology, 2017, 23(12): 5344-5357. doi: 10.1111/gcb.13801
[39] Hopwood M J, Carroll D, Browning T J, et al. Non-linear response of summertime marine productivity to increased meltwater discharge around Greenland [J]. Nature Communications, 2018, 9(1): 3256. doi: 10.1038/s41467-018-05488-8
[40] Schlosser C, Schmidt K, Aquilina A, et al. Mechanisms of dissolved and labile particulate iron supply to shelf waters and phytoplankton blooms off South Georgia, Southern Ocean [J]. Biogeosciences, 2018, 15(16): 4973-4993. doi: 10.5194/bg-15-4973-2018
[41] Pabortsava K, Lampitt R S, Benson J, et al. Carbon sequestration in the deep Atlantic enhanced by Saharan dust [J]. Nature Geoscience, 2017, 10(3): 189-194. doi: 10.1038/ngeo2899
[42] Cui X Q, Bianchi T S, Savage C. Erosion of modern terrestrial organic matter as a major component of sediments in fjords [J]. Geophysical Research Letters, 2017, 44(3): 1457-1465. doi: 10.1002/2016GL072260
[43] Walinsky S E, Prahl F G, Mix A C, et al. Distribution and composition of organic matter in surface sediments of coastal Southeast Alaska [J]. Continental Shelf Research, 2009, 29(13): 1565-1579. doi: 10.1016/j.csr.2009.04.006
[44] Syvitski J P M. Glaciomarine environments in Canada: an overview [J]. Canadian Journal of Earth Sciences, 1993, 30(2): 354-371. doi: 10.1139/e93-027
[45] Boldt K V. Fjord sedimentation during the rapid retreat of tidewater glaciers: observations and modeling[D]. Doctor Dissertation of University of Washington, 2014.
[46] Berner R A. Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over Phanerozoic time [J]. Global and Planetary Change, 1989, 1(1-2): 97-122. doi: 10.1016/0921-8181(89)90018-0
[47] Salvadó J A, Tesi T, Andersson A, et al. Organic carbon remobilized from thawing permafrost is resequestered by reactive iron on the Eurasian Arctic Shelf [J]. Geophysical Research Letters, 2015, 42(19): 8122-8130. doi: 10.1002/2015GL066058
[48] Bianchi T S, Schreiner K M, Smith R W, et al. Redox effects on organic matter storage in coastal sediments during the Holocene: a biomarker/proxy perspective [J]. Annual Review of Earth and Planetary Sciences, 2016, 44(1): 295-319. doi: 10.1146/annurev-earth-060614-105417
[49] Smeaton C, Austin W E N, Davies A L, et al. Substantial stores of sedimentary carbon held in mid-latitude fjords [J]. Biogeosciences, 2016, 13(20): 5771-5787. doi: 10.5194/bg-13-5771-2016
[50] Smeaton C, Cui X Q, Bianchi T S, et al. The evolution of a coastal carbon store over the last millennium [J]. Quaternary Science Reviews, 2021, 266: 107081. doi: 10.1016/j.quascirev.2021.107081
[51] Zimov S A, Davydov S P, Zimova G M, et al. Permafrost carbon: Stock and decomposability of a globally significant carbon pool [J]. Geophysical Research Letters, 2006, 33(20): L20502. doi: 10.1029/2006GL027484
[52] Winterfeld M, Goñi M A, Just J, et al. Characterization of particulate organic matter in the Lena River delta and adjacent nearshore zone, NE Siberia-Part 2: Lignin-derived phenol compositions [J]. Biogeosciences, 2015, 12(7): 2261-2283. doi: 10.5194/bg-12-2261-2015
[53] Hage S, Galy V V, Cartigny M J B, et al. Efficient preservation of young terrestrial organic carbon in sandy turbidity-current deposits [J]. Geology, 2020, 48(9): 882-887. doi: 10.1130/G47320.1
[54] Eglinton T I, Benitez-Nelson B C, Pearson A, et al. Variability in radiocarbon ages of individual organic compounds from marine sediments [J]. Science, 1997, 277(5327): 796-799. doi: 10.1126/science.277.5327.796
[55] Yu M, Eglinton T I, Haghipour N, et al. Contrasting fates of terrestrial organic carbon pools in marginal sea sediments [J]. Geochimica et Cosmochimica Acta, 2021, 309: 16-30. doi: 10.1016/j.gca.2021.06.018
[56] Feng X J, Vonk J E, Van Dongen B E, et al. Differential mobilization of terrestrial carbon pools in Eurasian Arctic river basins [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(35): 14168-14173. doi: 10.1073/pnas.1307031110
[57] Meyer V D, Hefter J, Köhler P, et al. Permafrost-carbon mobilization in Beringia caused by deglacial meltwater runoff, sea-level rise and warming [J]. Environmental Research Letters, 2019, 14(8): 085003. doi: 10.1088/1748-9326/ab2653
[58] Holding J M, Duarte C M, Sanz-Martín M, et al. Temperature dependence of CO2-enhanced primary production in the European Arctic Ocean [J]. Nature Climate Change, 2015, 5(12): 1079-1082. doi: 10.1038/nclimate2768
[59] 陈漪馨, 刘焱光, 姚政权, 等. 末次盛冰期以来挪威海北部陆源物质输入对气候变化的响应[J]. 海洋地质与第四纪地质, 2015, 35(3):95-108
CHEN Yixin, LIU Yanguang, YAO Zhengquan, et al. Response of terrigenous input to the climatic changes of Northern Norwegian sea since the last glacial maximum [J]. Marine Geology & Quaternary Geology, 2015, 35(3): 95-108.
[60] Winkelmann D, Knies J. Recent distribution and accumulation of organic carbon on the continental margin west off Spitsbergen [J]. Geochemistry, Geophysics, Geosystems, 2005, 6(9): Q09012.
[61] Milner A M, Khamis K, Battin T J, et al. Glacier shrinkage driving global changes in downstream systems [J]. Proceedings of the National Academy of Sciences, 2017, 114(37): 9770-9778. doi: 10.1073/pnas.1619807114
[62] Normandeau A, Dietrich P, Clarke J H, et al. Retreat pattern of glaciers controls the occurrence of turbidity currents on high-latitude fjord deltas (Eastern Baffin Island) [J]. Journal of Geophysical Research: Earth Surface, 2019, 124(6): 1559-1571. doi: 10.1029/2018JF004970
[63] Zajączkowski M. Sediment supply and fluxes in glacial and outwash fjords, Kongsfjorden and Adventfjorden, Svalbard [J]. Polish Polar Research, 2008, 29(1): 59-72.
[64] Weydmann-Zwolicka A, Prątnicka P, Łącka M, et al. Zooplankton and sediment fluxes in two contrasting fjords reveal Atlantification of the Arctic [J]. Science of the Total Environment, 2021, 773: 145599. doi: 10.1016/j.scitotenv.2021.145599
[65] Zajączkowski M, Nygård H, Hegseth E N, et al. Vertical flux of particulate matter in an Arctic fjord: the case of lack of the sea-ice cover in Adventfjorden 2006-2007 [J]. Polar Biology, 2010, 33(2): 223-239. doi: 10.1007/s00300-009-0699-x