-
摘要:
深渊海沟(水深>6000 m)作为地球表层的最深处,具有特殊的地形地貌和沉积过程,被认为是沉积物最终的汇。通过对采集于马里亚纳海沟南端水深为5800~10954 m的4个站位沉积物开展沉积地球化学研究,旨在揭示不同水深沉积物组成的差异,判别沉积物的来源和沉积环境的变化。主、微量元素含量、Sr-Nd同位素和黏土矿物组成的分析结果显示,马里亚纳海沟不同水深沉积物组成差别较大,整个MBR05和MBR06岩芯8~20 cm范围均发现大量有Ethmodiscus rex (E. rex) 组成的硅藻席沉积(laminated diatom mats, LDMs)。沉积物碎屑组分基本上是陆源风尘端元和火山物质端元的混合,且含有硅藻席沉积物的陆源风尘贡献比例更大,表明大盘筛藻大型成席硅藻的勃发可能与亚洲风尘输入有关。同时,稀土配分模式和Ce异常显示硅藻席形成于次氧化沉积环境,而不含硅藻席沉积物形成于氧化的沉积环境,可能是由于末次盛冰期风尘输入增强,刺激硅藻席勃发后快速堆积至海底,导致有机质矿化增强,进而引起沉积环境的变化。本研究对于认识深渊不同水深沉积物组成的异质性及其对底栖微生物的分布、生态和活动强度的影响有指示意义。
Abstract:Hadal trenches (>6000 m) represent the deepest parts on the Earth’s surface in unique topography and sedimentary processes, and are considered the final sink of sediments. The strontium (Sr) and neodymium (Nd) isotope compositions and clay-mineral assemblages of the detrital fraction of sediments in the southern Mariana Trench, as well as the concentrations of major and trace elements of bulk sediments at water depths of 5800~10954 m were analyzed to trace the sediment provenance and distinguish the changes in the sedimentary redox conditions. The whole Core MBR05 and the interval of 8~20 cm of Core MBR06 are dominated by valve fragments of the giant diatom Ethmodiscus rex, forming laminated diatom mats (LDMs). Both Sr-Nd isotope compositions and clay-mineral assemblages of the detrital fraction reflect a two-component mixing pattern consisting of Luzon Arc volcanic clastics and Asian aeolian dusts, showing greater aeolian dust contribution on the LDMs, indicating that the bloom of E. rex may be related to Asian aeolian dust input. Meanwhile, the rare earth elements (REEs) distribution pattern and weak or absent Ce anomalies in the LDM point to suboxic conditions during the LGM formation, while the non-LDM samples exhibit vey low to zero enrichment of redox-sensitive elements and negative Ce anomalies, indicating the deposition under oxic bottom-water conditions. It is inferred that changes in sedimentary environments is associated with the enhanced mineralization of organic matter caused by the rapid deposition of E. rex giant diatom. The bloom of E. rex giant diatom may be caused by the enhanced input of wind dust during the Last Glacial Maximum. This study is of relevance for understanding the heterogeneity of sediment composition in different water depths of hadal trench and its impact on the distribution, ecology, and activity intensity of benthic microorganisms in the trench areas.
-
Key words:
- Sr-Nd isotope /
- clay minerals /
- LDM /
- sediment sources /
- sedimentary environment /
- Mariana Trench
-
表 1 沉积物柱样站位信息
Table 1. Detailed information of retrieved sediment cores
站位 纬度 经度 长度/cm 水深/m 位置 MBR02 11°19.62′N 142°11.28′E 18 10954 轴部 MBR04 10°45.66′N 142°16.44′E 24 5800 海盆 MBR05 10°56.52′N 141°46.08′E 70 7000 向海斜坡 MBR06 10°48.78′N 141°10.8′E 40 6530 向海斜坡 表 1 各站位主量元素值
Table 1. Concentrations of major elements of each site
% 样品名 Al Na Mg P K Ca Ti Mn Fe SiO2 MBR02-1 6.08 1.38 5.41 0.10 1.37 1.51 0.39 0.45 5.86 51.40 MBR02-3 5.58 1.29 5.12 0.09 1.28 1.38 0.35 0.41 5.48 53.45 MBR02-5 6.06 1.34 5.75 0.09 1.36 1.66 0.40 0.45 6.17 50.27 MBR02-7 5.54 1.28 4.96 0.08 1.24 1.40 0.33 0.39 5.34 54.62 MBR02-9 5.87 1.41 5.22 0.09 1.33 1.45 0.37 0.44 5.63 52.49 MBR02-11 6.23 1.35 5.63 0.10 1.40 1.57 0.40 0.47 6.26 49.95 MBR02-13 5.77 1.38 5.50 0.09 1.25 1.73 0.37 0.45 5.69 52.32 MBR02-15 4.91 1.36 4.37 0.08 1.17 1.24 0.30 2.24 4.76 54.74 MBR02-17 5.33 1.30 4.82 0.09 1.27 1.35 0.34 0.46 5.39 55.04 MBR02-18 5.72 1.47 5.07 0.09 1.31 1.45 0.36 0.43 5.51 52.83 MBR04-2 6.76 1.69 2.71 0.15 1.54 2.06 0.43 2.12 7.39 46.72 MBR04-4 7.34 1.64 2.90 0.16 1.67 2.10 0.46 0.89 7.03 49.04 MBR04-6 7.40 1.58 2.86 0.15 1.73 2.05 0.46 0.89 7.02 49.71 MBR04-8 7.37 1.52 2.86 0.16 1.71 2.12 0.46 0.94 7.09 49.29 MBR04-10 7.12 1.52 2.81 0.16 1.71 2.10 0.47 0.99 7.15 49.93 MBR04-12 7.69 1.54 2.82 0.15 1.70 2.09 0.48 0.94 7.05 48.95 MBR04-14 7.47 1.57 2.88 0.16 1.70 2.01 0.47 0.89 7.10 48.91 MBR04-16 7.50 1.53 2.73 0.15 1.65 2.09 0.48 0.85 7.07 49.48 MBR04-18 8.19 1.56 2.89 0.14 1.77 2.07 0.49 0.81 7.29 47.20 MBR04-20 8.07 1.48 2.85 0.14 1.79 2.03 0.49 0.76 7.25 47.99 MBR04-22 7.91 1.47 2.76 0.14 1.76 1.92 0.48 0.77 7.23 48.35 MBR04-24 7.90 1.62 2.67 0.14 1.76 1.83 0.48 0.74 7.11 48.00 MBR05-2 5.09 2.38 2.28 0.06 1.28 1.12 0.31 0.27 4.30 57.35 MBR05-6 2.31 1.59 1.14 0.03 0.62 0.53 0.14 0.50 1.95 73.31 MBR05-10 2.48 1.61 1.25 0.03 0.65 0.59 0.15 0.34 2.22 71.48 MBR05-14 5.37 2.10 2.52 0.07 1.35 1.28 0.34 0.15 4.73 57.47 MBR05-18 2.72 2.29 1.41 0.04 0.75 0.78 0.19 0.47 2.52 66.18 MBR05-22 3.61 2.33 1.98 0.06 0.99 1.12 0.26 0.28 3.64 61.65 MBR05-26 2.70 2.16 1.34 0.03 0.73 0.63 0.16 0.38 2.32 68.93 MBR05-30 4.03 1.93 1.78 0.05 1.07 0.83 0.24 0.06 3.40 64.95 MBR05-34 2.51 1.13 1.10 0.03 0.67 0.49 0.15 0.14 1.92 75.15 MBR05-38 2.88 0.92 1.26 0.04 0.74 0.61 0.17 0.08 2.48 73.75 MBR05-42 1.38 0.63 0.63 0.02 0.37 0.31 0.08 0.03 1.13 81.36 MBR05-46 3.58 1.20 1.61 0.04 0.97 0.75 0.23 0.11 3.19 69.52 MBR05-50 1.76 1.89 0.94 0.02 0.55 0.41 0.12 0.03 1.49 75.50 MBR05-54 3.36 2.10 1.50 0.04 0.98 0.73 0.22 0.07 3.05 61.49 MBR05-58 1.23 1.06 0.60 0.02 0.36 0.32 0.07 0.46 1.14 80.00 MBR05-62 1.45 0.93 0.71 0.02 0.41 0.35 0.09 0.17 1.63 79.27 MBR05-66 2.05 1.04 0.96 0.02 0.55 0.47 0.12 0.06 1.90 76.59 MBR05-70 1.25 1.05 0.64 0.02 0.36 0.31 0.08 0.09 1.05 80.60 MBR06-2 4.57 2.33 3.33 0.07 1.05 1.95 0.39 0.42 5.48 51.69 MBR06-6 4.76 2.10 3.38 0.08 1.13 1.64 0.36 0.41 5.29 56.47 MBR06-10 3.42 1.81 1.85 0.04 0.88 0.87 0.22 0.15 2.96 68.03 MBR06-14 5.39 2.09 3.14 0.08 1.37 1.48 0.38 0.17 5.42 55.11 MBR06-18 5.18 1.72 2.53 0.07 1.34 1.30 0.34 0.10 4.53 59.91 MBR06-22 5.83 2.23 2.94 0.09 1.51 1.82 0.41 0.11 6.12 47.19 MBR06-26 6.01 2.02 3.13 0.10 1.68 2.01 0.45 1.36 7.01 49.80 MBR06-30 6.02 1.70 3.06 0.11 1.70 2.04 0.48 1.19 7.66 47.70 MBR06-34 6.40 1.88 3.28 0.14 1.62 2.23 0.51 0.76 7.11 47.81 MBR06-38 6.37 1.72 2.93 0.13 1.65 2.17 0.50 0.69 7.29 48.93 MBR06-40 5.82 1.65 2.46 0.13 1.71 2.07 0.48 1.94 6.96 50.78 表 2 各站位微量元素值
Table 2. Concentrations of trace elements of each site
μg/g 样品名 Co Ni Cu Zn V U Pb Cr Ba MBR02-1 60.34 197.47 188.94 113.57 132.90 1.06 22.96 169.93 182.15 MBR02-3 52.61 181.38 178.27 106.29 131.96 1.02 21.65 154.20 175.06 MBR02-5 54.52 213.83 184.51 119.34 147.59 1.19 23.82 194.55 195.61 MBR02-7 47.42 183.44 164.05 100.43 120.33 1.04 19.59 146.43 167.79 MBR02-9 52.76 213.14 179.71 107.79 136.85 1.20 22.37 149.73 188.44 MBR02-11 56.40 206.55 196.06 115.67 144.17 1.28 24.03 171.16 198.59 MBR02-13 49.99 209.19 170.37 102.34 135.09 1.14 18.50 200.05 168.92 MBR02-15 49.45 192.52 167.88 99.37 132.69 1.12 18.61 200.46 172.02 MBR02-17 46.39 247.44 176.49 95.74 127.90 1.25 18.79 126.25 172.39 MBR02-18 45.96 167.94 162.65 100.31 124.58 1.17 20.31 135.82 177.71 MBR04-2 133.99 272.11 426.86 186.71 177.14 0.73 44.49 103.27 518.43 MBR04-4 52.42 150.42 226.42 138.05 155.57 1.37 30.39 79.22 569.12 MBR04-6 49.23 147.65 224.00 141.81 163.02 1.45 31.46 81.42 563.61 MBR04-8 53.69 150.66 230.78 139.68 165.73 1.43 32.04 77.69 553.97 MBR04-10 49.21 162.54 244.73 141.72 180.01 1.51 32.42 77.62 591.61 MBR04-12 54.55 163.23 235.26 137.41 174.88 1.50 32.59 78.34 582.07 MBR04-14 68.24 154.14 229.26 137.33 173.01 1.54 34.05 86.62 662.49 MBR04-16 47.42 152.70 242.72 134.49 171.48 1.49 32.50 76.65 569.47 MBR04-18 54.17 147.32 239.31 141.31 170.88 1.69 33.04 78.83 713.94 MBR04-20 55.89 133.61 225.54 140.04 174.89 1.64 32.67 79.89 707.11 MBR04-22 49.15 146.92 233.38 150.86 178.26 1.82 36.12 78.83 743.24 MBR04-24 55.30 135.05 220.51 143.08 176.44 1.80 35.72 73.18 760.55 MBR05-2 34.26 77.42 144.94 91.11 96.92 1.03 18.37 67.33 822.05 MBR05-6 32.52 68.48 119.10 48.86 59.74 0.48 11.44 35.99 442.73 MBR05-10 29.65 54.92 106.52 52.23 59.87 0.60 8.84 37.73 490.13 MBR05-14 26.46 67.16 132.44 98.81 99.43 1.13 15.79 75.30 823.96 MBR05-18 51.26 56.59 108.94 56.49 80.52 0.74 15.50 39.42 522.35 MBR05-22 50.15 60.14 123.98 75.10 93.08 0.16 19.19 61.15 565.68 MBR05-26 48.86 54.18 104.69 49.16 69.88 0.74 15.29 38.91 547.38 MBR05-30 16.42 46.45 105.41 72.45 77.34 0.95 11.46 54.15 641.84 MBR05-34 22.10 35.75 78.69 45.95 57.86 0.69 9.70 33.58 483.07 MBR05-38 23.23 39.84 99.75 54.54 64.42 0.76 13.77 38.86 506.45 MBR05-42 8.36 22.59 49.76 27.15 32.20 0.45 5.47 21.49 376.82 MBR05-46 33.84 53.06 121.43 66.67 75.35 0.98 21.19 51.39 488.84 MBR05-50 10.73 31.70 60.56 36.19 47.71 0.25 6.39 35.99 389.47 MBR05-54 15.54 47.52 105.82 67.71 82.29 0.91 15.56 50.18 516.73 MBR05-58 65.57 67.49 111.51 26.93 42.96 0.52 11.63 18.30 328.57 MBR05-62 36.85 34.15 93.61 40.44 39.92 0.49 16.31 20.39 315.99 MBR05-66 16.42 37.94 78.92 43.26 54.16 0.60 12.25 26.70 426.74 MBR05-70 9.95 39.72 67.95 29.48 40.60 0.39 7.10 20.90 334.82 MBR06-2 46.90 132.32 175.67 96.73 135.93 0.50 18.55 81.02 420.03 MBR06-6 48.32 122.41 181.07 98.97 121.75 0.88 15.34 57.82 502.60 MBR06-10 37.65 54.71 107.11 65.51 89.41 0.66 26.93 92.73 677.58 MBR06-14 36.51 96.91 174.51 113.07 126.97 0.25 20.99 67.05 603.16 MBR06-18 50.42 62.77 151.17 96.24 106.20 0.98 24.29 70.97 569.37 MBR06-22 35.05 73.01 161.81 117.25 135.44 1.05 25.67 82.60 486.62 MBR06-26 77.24 207.22 260.88 153.08 163.40 1.20 28.89 78.62 435.12 MBR06-30 54.02 228.85 289.79 138.13 173.10 1.12 29.17 85.36 377.45 MBR06-34 55.74 174.65 227.66 132.76 177.01 1.28 30.11 77.76 387.46 MBR06-38 57.67 171.86 224.86 139.13 171.07 0.32 33.50 84.75 486.05 MBR06-40 57.06 297.23 436.16 156.10 179.55 1.38 24.46 80.22 477.80 表 3 各站位稀土元素值
Table 3. Concentrations of REEs of each site
μg/g 样品名 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu MBR02-1 22.98 42.39 5.29 22.76 5.15 1.31 5.94 0.86 5.27 1.09 3.11 0.46 3.01 0.44 MBR02-3 22.30 39.43 5.25 21.10 4.86 1.21 5.39 0.78 5.11 1.05 2.91 0.45 2.83 0.43 MBR02-5 23.93 44.28 5.60 22.96 5.22 1.38 5.93 0.88 5.62 1.16 3.20 0.48 3.12 0.47 MBR02-7 20.94 37.53 4.78 21.45 4.69 1.27 5.19 0.82 4.92 1.03 2.69 0.41 2.66 0.39 MBR02-9 23.11 42.12 5.28 22.90 4.95 1.29 5.61 0.84 5.23 1.08 2.96 0.44 2.89 0.43 MBR02-11 23.93 44.29 5.60 24.41 5.11 1.35 5.83 0.89 5.54 1.15 3.05 0.47 3.03 0.45 MBR02-13 22.61 37.93 4.98 23.48 4.88 1.28 5.47 0.87 5.47 1.11 2.91 0.45 2.85 0.43 MBR02-15 21.34 36.72 5.02 22.83 4.81 1.26 5.45 0.87 5.23 1.08 2.93 0.44 2.81 0.43 MBR02-17 19.57 36.89 4.52 20.56 4.25 1.11 4.66 0.75 4.48 0.93 2.51 0.39 2.47 0.37 MBR02-18 20.82 38.46 4.75 22.00 4.45 1.14 5.10 0.78 4.76 0.97 2.65 0.40 2.66 0.40 MBR04-2 35.48 64.65 9.90 44.28 10.09 2.57 10.94 1.78 10.27 2.12 5.80 0.90 5.71 0.83 MBR04-4 35.57 57.18 9.77 43.84 10.06 2.63 10.88 1.76 10.57 2.18 6.02 0.94 5.86 0.85 MBR04-6 33.64 58.55 9.57 42.73 10.02 2.62 11.05 1.71 10.67 2.19 6.00 0.91 5.78 0.85 MBR04-8 35.06 54.35 10.29 44.41 10.41 2.71 10.93 1.76 11.10 2.27 6.15 0.94 6.21 0.90 MBR04-10 36.23 56.16 10.64 45.31 10.91 2.72 11.64 1.78 11.14 2.29 6.25 0.96 6.15 0.94 MBR04-12 36.07 58.51 10.07 44.93 10.67 2.69 11.57 1.79 11.05 2.28 6.15 0.95 6.03 0.90 MBR04-14 34.02 57.74 10.22 44.55 10.36 2.60 11.43 1.79 10.91 2.27 6.10 0.93 6.11 0.92 MBR04-16 35.69 51.51 10.11 45.14 10.70 2.78 11.74 1.83 11.16 2.31 6.13 0.95 6.28 0.92 MBR04-18 39.28 61.77 10.98 48.02 10.87 2.86 11.72 1.84 11.38 2.37 6.33 0.98 6.18 0.92 MBR04-20 37.48 61.96 10.60 44.96 10.50 2.71 11.32 1.80 10.87 2.26 6.20 0.94 6.02 0.90 MBR04-22 38.71 64.55 11.04 50.74 11.27 2.85 11.89 1.91 12.34 2.40 6.75 1.02 6.39 0.96 MBR04-24 37.00 62.63 10.41 47.74 10.29 2.77 11.53 1.82 11.31 2.32 6.23 0.96 6.21 0.91 MBR05-2 20.15 44.04 4.89 20.80 4.40 1.32 4.88 0.78 4.54 0.95 2.57 0.40 2.48 0.37 MBR05-6 9.95 26.57 2.34 10.38 2.06 0.58 2.28 0.35 2.11 0.49 1.20 0.18 1.17 0.17 MBR05-10 11.02 25.19 2.58 11.75 2.38 0.68 2.78 0.41 2.51 0.53 1.38 0.22 1.39 0.20 MBR05-14 19.51 45.10 4.89 21.12 4.49 1.31 5.16 0.81 4.84 1.01 2.77 0.43 2.80 0.40 MBR05-18 11.44 32.99 2.74 11.80 2.59 0.75 2.84 0.43 2.69 0.53 1.48 0.23 1.46 0.22 MBR05-22 18.47 37.59 4.36 19.56 4.16 1.19 4.83 0.74 4.44 0.94 2.54 0.38 2.37 0.33 MBR05-26 11.90 34.65 2.73 12.50 2.55 0.73 2.83 0.42 2.57 0.51 1.42 0.21 1.37 0.20 MBR05-30 16.47 43.02 3.83 17.87 3.67 1.02 4.12 0.62 3.81 0.78 2.12 0.32 2.13 0.32 MBR05-34 8.72 24.02 1.92 8.02 1.80 0.53 2.08 0.33 1.99 0.41 1.14 0.18 1.14 0.17 MBR05-38 10.56 28.33 2.42 10.52 2.24 0.65 2.61 0.41 2.55 0.52 1.44 0.23 1.47 0.21 MBR05-42 5.46 15.10 1.31 5.53 1.16 0.32 1.29 0.20 1.19 0.24 0.65 0.10 0.66 0.10 MBR05-46 11.35 35.98 2.83 12.04 2.66 0.79 2.84 0.47 2.97 0.60 1.69 0.27 1.73 0.26 MBR05-50 6.10 20.88 1.52 6.50 1.50 0.37 1.72 0.26 1.60 0.32 0.89 0.14 0.88 0.13 MBR05-54 11.00 32.81 3.04 13.26 2.94 0.84 3.29 0.53 3.32 0.65 1.85 0.28 1.81 0.27 MBR05-58 6.56 25.78 1.49 6.66 1.36 0.34 1.47 0.22 1.28 0.25 0.69 0.10 0.64 0.10 MBR05-62 7.37 24.10 1.71 7.28 1.52 0.38 1.61 0.25 1.48 0.29 0.81 0.12 0.78 0.11 MBR05-66 7.40 22.85 1.93 8.41 1.84 0.49 1.96 0.31 1.81 0.36 1.00 0.15 0.99 0.14 MBR05-70 4.70 14.89 1.18 4.98 1.13 0.26 1.21 0.18 1.09 0.21 0.59 0.09 0.57 0.08 MBR06-2 15.83 40.29 4.30 19.41 4.45 1.18 5.18 0.80 5.06 1.01 2.80 0.43 2.74 0.40 MBR06-6 19.26 38.59 4.77 22.19 4.71 1.29 5.31 0.86 5.31 1.06 2.91 0.44 2.84 0.43 MBR06-10 13.51 36.08 3.40 14.91 3.30 0.87 3.32 0.55 3.31 0.67 1.82 0.28 1.74 0.26 MBR06-14 21.64 43.69 5.79 23.47 5.44 1.57 5.50 0.97 5.78 1.15 3.15 0.47 2.92 0.41 MBR06-18 20.59 45.08 5.48 22.64 5.06 1.42 4.95 0.88 5.20 1.04 2.84 0.45 2.85 0.42 MBR06-22 27.41 49.89 7.11 30.14 6.92 1.94 7.23 1.21 7.05 1.46 4.01 0.62 3.90 0.59 MBR06-26 28.63 51.56 7.45 31.22 7.35 1.93 7.79 1.29 7.80 1.60 4.32 0.67 4.34 0.64 MBR06-30 28.43 47.15 7.64 31.66 7.42 1.93 7.89 1.32 8.12 1.67 4.57 0.71 4.52 0.67 MBR06-34 30.76 46.48 8.39 33.60 8.38 2.21 8.87 1.52 9.48 1.89 5.15 0.82 5.22 0.75 MBR06-38 29.37 43.11 8.36 33.88 8.33 2.13 8.51 1.53 9.13 1.83 5.04 0.77 4.73 0.71 MBR06-40 28.83 52.43 8.88 37.17 8.93 2.42 9.72 1.56 9.51 1.95 5.46 0.83 5.17 0.78 表 2 马里亚纳海沟总有机碳放射性14C定年结果
Table 2. Total organic carbon AMS-14C dating results of the Mariana Trench sediments
样品编号 深度
/cm放射性14C年龄
/aBP校正后日历年龄
/cal.aBPMBR02-1 1 3 040±25 2 664±25 MBR02-5 5 3 675±30 3 421±30 MBR02-12 12 3 780±30 3 544±30 MBR02-18 18 3 615±30 3 352±30 MBR04-2 2 6 600±40 6 886±40 MBR04-10 10 10 960±60 12 285±60 MBR04-18 18 16 290±180 18 798±180 MBR04-24 24 16 040±130 18 517±130 MBR05-2 2 12 690±120 14 206±120 MBR05-10 10 10 590±90 11 703±90 MBR05-22 22 12 810±70 14 394±70 MBR05-44 44 16 950±130 19 559±130 MBR05-68 68 11 720±80 13 037±80 MBR06-2 2 6 095±40 6 327±40 MBR06-10 10 11 730±150 13 049±150 MBR06-18 18 15 240±150 17 630±150 MBR06-22 22 15 610±160 18 063±160 MBR06-40 40 14 300±140 16 473±140 表 4 各站位Sr-Nd同位素及含量
Table 4. Sr-Nd isotope and the concentrations in each site
样品名 87Sr/86Sr 143Nd//144Nd Sr含量/(μg/g) Nd含量/(μg/g) MBR02-2 0.7094 0.5125 135.07 21.10 MBR02-7 0.7086 0.5125 124.48 21.45 MBR02-12 0.7081 0.5125 139.06 23.48 MBR02-18 0.7089 0.5124 125.95 22.00 MBR04-4 0.7082 0.5124 205.77 43.84 MBR04-10 0.7083 0.5124 211.84 45.31 MBR04-18 0.7085 0.5124 222 48.02 MBR04-24 0.7087 0.5124 225.25 47.74 MBR05-2 0.7094 0.5124 132.55 20.8 MBR05-10 0.7098 0.5124 74.75 11.75 MBR05-24 0.7097 0.5124 113.28 19.56 MBR05-44 0.7094 0.5124 86.18 12.04 MBR05-68 0.7096 0.5124 38.67 4.98 MBR06-2 0.7075 0.5125 128.71 19.41 MBR06-10 0.7090 0.5124 88.07 14.91 MBR06-18 0.7093 0.5124 125.72 22.64 MBR06-26 0.7082 0.5124 182.9 31.22 MBR06-40 0.7086 0.5125 208.78 37.17 表 5 各站位黏土矿物含量
Table 5. Clay mineral composition and relevant parameters in each site
样品名 蒙脱石/% 伊利石/% 高岭石/% 绿泥石/% MBR05-6 64.5 13.1 4.5 17.8 MBR05-14 73.9 12.1 2.7 11.2 MBR05-26 71.9 14.7 3.4 10.0 MBR05-46 68.5 18.1 2.9 10.5 MBR05-70 79.5 10.8 2.1 7.5 MBR06-2 88.7 3.9 1.9 5.5 MBR06-10 74.5 11.5 2.5 11.5 MBR06-18 82.0 6.9 0.9 10.1 MBR06-26 77.9 8.6 1.4 12.1 MBR06-40 75.3 6.1 1.6 17.0 表 6 各站位沉积物平均粒度及组成
Table 6. Average grain size of sediments and relative fractions at each site
编号 平均粒径/μm 中值粒径/μm 黏土含量/% 粉砂含量/% 砂含量/% MBR02-2 9.28 6.15 34.89 65.11 0.00 MBR02-3 10.9 6.87 32.42 65.75 1.82 MBR02-4 9.36 6.48 34.41 65.59 0.00 MBR02-5 9.82 6.81 31.21 68.79 0.00 MBR02-6 12.5 8.8 24.17 75.22 0.00 MBR02-7 11.72 6.55 33.47 63.88 0.00 MBR02-8 10.77 7.11 30.81 69.14 0.00 MBR02-9 10.32 7.89 27.87 72.13 0.00 MBR02-10 11.78 8.78 24.94 71.26 0.00 MBR02-11 11.83 8.37 26.55 73.44 0.00 MBR02-12 14.61 10.02 22.6 76.82 0.55 MBR02-13 9.25 5.50 40.04 59.84 0.12 MBR02-14 8.62 5.71 37.85 62.15 0.00 MBR02-15 9.04 6.44 32.76 67.24 0.00 MBR02-16 10.54 7.5 27.71 72.29 0.00 MBR02-17 10.76 7.01 31.02 68.92 0.06 MBR02-18 10.28 6.9 31.42 67.86 0.02 MBR04-2 36.01 9.77 24.92 65.94 9.14 MBR04-4 17.34 7.35 30.55 63.00 6.45 MBR04-6 19.73 8.67 26.81 65.04 8.15 MBR04-8 21.13 8.09 31.16 60.47 8.37 MBR04-10 28.73 12.00 21.15 66.41 12.44 MBR04-12 20.09 8.38 29.02 63.70 7.28 MBR04-16 17.79 8.21 26.36 66.75 6.89 MBR04-18 14.10 6.55 31.72 62.83 5.46 MBR04-20 21.07 10.53 22.02 71.19 6.79 MBR04-22 21.95 12.56 18.82 74.00 7.18 MBR04-24 12.68 6.55 33.46 63.67 2.86 -
[1] Wolff T. The concept of the hadal or ultra-abyssal fauna [J]. Deep Sea Research and Oceanographic Abstracts, 1970, 17(6): 983-1003. doi: 10.1016/0011-7471(70)90049-5
[2] Jamieson A J, Fujii T, Mayor D J, et al. Hadal trenches: the ecology of the deepest places on Earth [J]. Trends in Ecology & Evolution, 2010, 25(3): 190-197.
[3] Nakanishi M, Hashimoto J. A precise bathymetric map of the world's deepest seafloor, Challenger Deep in the Mariana Trench [J]. Marine Geophysical Research, 2011, 32(4): 455-463. doi: 10.1007/s11001-011-9134-0
[4] Watling L, Guinotte J, Clark M R, et al. A proposed biogeography of the deep ocean floor [J]. Progress in Oceanography, 2013, 111: 91-112. doi: 10.1016/j.pocean.2012.11.003
[5] 林刚. 西太平洋新不列颠海沟沉积特征与源-汇过程及其时空变化[D]. 上海海洋大学硕士学位论文, 2019.
LIN Gang. The characteristics and source-sink processes of sediments in the New Britain Trench of western Pacific Ocean and their temporal and spatial variations[D]. Master Dissertation of Shanghai Ocean University, 2019.
[6] Nozaki Y, Ohta Y. Rapid and frequent turbidite accumulation in the bottom of Izu-Ogasawara Trench: Chemical and radiochemical evidence [J]. Earth and Planetary Science Letters, 1993, 120(3-4): 345-360. doi: 10.1016/0012-821X(93)90249-9
[7] Danovaro R, Croce N D, Dell’Anno A D, et al. A depocenter of organic matter at 7800m depth in the SE Pacific Ocean [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2003, 50(12): 1411-1420. doi: 10.1016/j.dsr.2003.07.001
[8] Glud R N, Wenzhöfer F, Middelboe M, et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth [J]. Nature Geoscience, 2013, 6(4): 284-288. doi: 10.1038/ngeo1773
[9] Oguri K, Kawamura K, Sakaguchi A, et al. Hadal disturbance in the Japan Trench induced by the 2011 Tohoku–Oki Earthquake [J]. Scientific Reports, 2013, 3: 1915. doi: 10.1038/srep01915
[10] Ikehara K, Kanamatsu T, Nagahashi Y, et al. Documenting large earthquakes similar to the 2011 Tohoku-oki earthquake from sediments deposited in the Japan Trench over the past 1500 years [J]. Earth & Planetary Science Letters, 2016, 445: 48-56.
[11] Howell D G, Murray R W. A budget for continental growth and denudation [J]. Science, 1986, 233(4762): 446-449. doi: 10.1126/science.233.4762.446
[12] Hay W W, Wold C N. Relation of selected mineral deposits to the mass/age distribution of Phanerozoic sediments [J]. Geologische Rundschau, 1990, 79(2): 495-512. doi: 10.1007/BF01830641
[13] Stewart H A, Jamieson A J. Habitat heterogeneity of hadal trenches: Considerations and implications for future studies [J]. Progress in Oceanography, 2018, 161: 47-65. doi: 10.1016/j.pocean.2018.01.007
[14] Glud R N, Berg P, Thamdrup B, et al. Hadal trenches are dynamic hotspots for early diagenesis in the deep sea [J]. Communications Earth & Environment, 2021, 2(1): 21.
[15] 吕成功. 马里亚纳海槽两沉积岩芯主要化学元素的因子分析[J]. 黄渤海海洋, 1992, 10(1):34-41
LV Chenggong. Factor analysis of major chemical elements in the sediments of two cores from the Mariana trough [J]. Journal of Oceanography of Huanghai & Bohai Seas, 1992, 10(1): 34-41.
[16] 吕海滨, 王永吉. 马里亚纳海槽沉积物中的火山碎屑及火山灰特征[J]. 海洋通报, 1998, 17(2):58-64
LV Haibin, WANG Yongji. A preliminary study on features of volcanic debris and ash layers in the Mariana trough [J]. Marine Science Bulletin, 1998, 17(2): 58-64.
[17] 王汾连, 何高文, 王海峰, 等. 马里亚纳海沟柱状沉积物稀土地球化学特征及其指示意义[J]. 海洋地质与第四纪地质, 2016, 36(4):67-75
WANG Fenlian, HE Gaowen, WANG Haifeng, et al. Geochemistry of rare earth elements in a core from Mariana Trench and its significance [J]. Marine Geology & Quaternary Geology, 2016, 36(4): 67-75.
[18] 朱坤杰, 何树平, 陈芳, 等. 马里亚纳海沟南部海域沉积物的工程地质特性及其成因[J]. 地质学刊, 2015, 39(2):251-257 doi: 10.3969/j.issn.1674-3636.2015.02.251
ZHU Kunjie, HE Shuping, CHEN Fang, et al. Engineering geological characteristics and genesis of the sediments from the southern Mariana Trench [J]. Journal of Geology, 2015, 39(2): 251-257. doi: 10.3969/j.issn.1674-3636.2015.02.251
[19] 张金鹏, 邓希光, 杨胜雄, 等. 马里亚纳海沟挑战者深渊南部7000 m水深处发现硅藻化石软泥[J]. 地质通报, 2015, 34(12):2352-2354 doi: 10.3969/j.issn.1671-2552.2015.12.021
ZHANG Jinpeng, DENG Xigaung, YANG Shengxiong, et al. Diatom ooze found in 7000m submarine area of Challenger Depth in Mariana Trench [J]. Geological Bulletin of China, 2015, 34(12): 2352-2354. doi: 10.3969/j.issn.1671-2552.2015.12.021
[20] 熊志方. 热带西太平洋硅藻席地球化学: 碳、硅循环及古海洋响应[D]. 中国科学院海洋研究所博士学位论文, 2010.
XIONG Zhifang. Geochemistry of diatom mats from tropical West Pacific: Implications for carbon and silicon cycle and response to paleoceanographic conditions[D]. Doctor Dissertation of the Institute of Oceanology, Chinese Academy of Sciences, 2010.
[21] Xiong Z F, Li T G, Algeo T, et al. Paleoproductivity and paleoredox conditions during late Pleistocene accumulation of laminated diatom mats in the tropical West Pacific [J]. Chemical Geology, 2012, 334: 77-91. doi: 10.1016/j.chemgeo.2012.09.044
[22] Xiong Z F, Li T G, Algeo T, et al. Rare earth element geochemistry of laminated diatom mats from tropical West Pacific: Evidence for more reducing bottomwaters and higher primary productivity during the Last Glacial Maximum [J]. Chemical Geology, 2012, 296-297: 103-118. doi: 10.1016/j.chemgeo.2011.12.012
[23] 唐琴琴, 詹文欢, 李健, 等. 南海东部边缘火山活动所反映的板片窗构造[J]. 海洋地质与第四纪地质, 2017, 37(2):119-126
TANG Qinqin, ZHAN Wenhuan, LI Jian, et al. Volcanic evidence for slab window induced by fossil ridge subduction at east edge of South China Sea [J]. Marine Geology & Quaternary Geology, 2017, 37(2): 119-126.
[24] Fryer P. Serpentinite mud volcanism: observations, processes, and implications [J]. Annual Review of Marine Science, 2012, 4(1): 345-373. doi: 10.1146/annurev-marine-120710-100922
[25] 刘鑫, 李三忠, 赵淑娟, 等. 马里亚纳俯冲系统的构造特征[J]. 地学前缘, 2017, 24(4):329-340
LIU Xin, LI Sanzhong, ZHAO Shujuan, et al. Structure of the Mariana subduction system [J]. Earth Science Frontiers, 2017, 24(4): 329-340.
[26] Shiraki K, Kuroda N, Maruyama S, et al. Evolution of the Tertiary volcanic rocks in the Izu-Mariana arc [J]. Bulletin Volcanologique, 1978, 41(4): 548-562. doi: 10.1007/BF02597386
[27] 刘志兴. 马里亚纳海沟深渊沉积物地球化学特征及其地质意义[D]. 长安大学硕士学位论文, 2019.
LIU Zhixing. Geochemical characteristics and geological significance of the hadal trench sediments in the Mariana Trench[D]. Master Dissertation of Chang'an University, 2019.
[28] Liu R L, Wang L, Wei Y L, et al. The hadal biosphere: Recent insights and new directions [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2018, 155: 11-18. doi: 10.1016/j.dsr2.2017.04.015
[29] Warren B A, Owens W B. Deep currents in the central subarctic Pacific Ocean [J]. Journal of Physical Oceanography, 1988, 18(4): 529-551. doi: 10.1175/1520-0485(1988)018<0529:DCITCS>2.0.CO;2
[30] Kawabe M. Deep water properties and circulation in the western North Pacific [J]. Elsevier Oceanography Series, 1993, 59: 17-37.
[31] Johnson G C. Deep water properties, velocities, and dynamics over ocean trenches [J]. Journal of Marine Research, 1998, 56(2): 329-347. doi: 10.1357/002224098321822339
[32] Rea D K, Janecek T R. Mass-accumulation rates of the non-authigenic inorganic crystalline (eolian) component of deep-sea sediments from the western mid-Pacific mountains, deep sea drilling project site 463 [J]. Deep Sea Drilling Project Initial Reports, 1981, 62: 653-659.
[33] Clemens S C, Prell W L. Late Pleistocene variability of Arabian Sea summer monsoon winds and continental aridity: Eolian records from the lithogenic component of deep-sea sediments [J]. Paleoceanography and Paleoclimatology, 1990, 5(2): 109-145.
[34] Biscaye P E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans [J]. Geological Society of America Bulletin, 1965, 76(7): 803-832. doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
[35] Calvert S E, Pedersen T F, Thunell R C. Geochemistry of the surface sediments of the Sulu and South China Seas [J]. Marine Geology, 1993, 114(3-4): 207-231. doi: 10.1016/0025-3227(93)90029-U
[36] Luo M, Algeo T J, Tong H P, et al. More reducing bottom-water redox conditions during the Last Glacial Maximum in the southern Challenger Deep (Mariana Trench, western Pacific) driven by enhanced productivity [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2018, 155: 70-82. doi: 10.1016/j.dsr2.2017.01.006
[37] Jacobsen S B, Wasserburg G J. Sm-Nd isotopic evolution of chondrites [J]. Earth & Planetary Science Letters, 1980, 50(1): 139-155.
[38] Williams N S, Dixon M F, Johnston D. Reappraisal of the 5 centimetre rule of distal excision for carcinoma of the rectum: A study of distal intramural spread and of patients' survival [J]. British Journal of Surgery, 1983, 70(3): 150-154.
[39] 赵万苍. 东亚沙漠粘粒地球化学研究: 矿物尘来源、传输及其示踪[D]. 南京大学博士学位论文, 2015.
ZHAO Wancang. Geochemistry characteristics of clay-sized fractions from East Asian deserts: Mineral dust provenance, transport and tracer[D]. Doctor Dissertation of Nanjing University, 2015.
[40] Jiang F Q, Frank M, Li T G, et al. Asian dust input in the western Philippine Sea: Evidence from radiogenic Sr and Nd isotopes [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(5): 1538-1551. doi: 10.1002/ggge.20116
[41] Luo M, Algeo T J, Chen L Y, et al. Role of dust fluxes in stimulating Ethmodiscus rex giant diatom blooms in the northwestern tropical Pacific during the Last Glacial Maximum [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 511: 319-331. doi: 10.1016/j.palaeo.2018.08.017
[42] Jiang Z Z, Sun Z L, Liu Z Q, et al. Rare-earth element geochemistry reveals the provenance of sediments on the southwestern margin of the Challenger Deep [J]. Journal of Oceanology and Limnology, 2019, 37(3): 998-1009. doi: 10.1007/s00343-019-8046-8
[43] Feng J L, Zhu L P, Zhen X L, et al. Grain size effect on Sr and Nd isotopic compositions in eolian dust: Implications for tracing dust provenance and Nd model age [J]. Geochemical Journal, 2009, 43(2): 123-131. doi: 10.2343/geochemj.1.0007
[44] Defant M J, Maury R C, Joron J L, et al. The geochemistry and tectonic setting of the northern section of the Luzon arc (the Philippines and Taiwan) [J]. Tectonophysics, 1990, 183(1-4): 187-205. doi: 10.1016/0040-1951(90)90416-6
[45] Honda M, Yabuki S, Shimizu H. Geochemical and isotopic studies of aeolian sediments in China [J]. Sedimentology, 2004, 51(2): 211-230. doi: 10.1111/j.1365-3091.2004.00618.x
[46] Woodhead J D, Fraser D G. Pb, Sr and 10Be isotopic studies of volcanic rocks from the Northern Mariana Islands. Implications for magma genesis and crustal recycling in the Western Pacific [J]. Geochimica et Cosmochimica Acta, 1985, 49(9): 1925-1930. doi: 10.1016/0016-7037(85)90087-0
[47] Woodhead J D. Geochemistry of the Mariana arc (western Pacific): Source composition and processes [J]. Chemical Geology, 1989, 76(1-2): 1-24. doi: 10.1016/0009-2541(89)90124-1
[48] Chen J, Li G J, Yang J D, et al. Nd and Sr isotopic characteristics of Chinese deserts: Implications for the provenances of Asian dust [J]. Geochimica et Cosmochimica Acta, 2007, 71(15): 3904-3914. doi: 10.1016/j.gca.2007.04.033
[49] Rao W B, Chen J, Yang J D, et al. Sr-Nd isotopic characteristics of eolian deposits in the Erdos Desert and Chinese Loess Plateau: Implications for their provenances [J]. Geochemical Journal, 2008, 42(3): 273-282. doi: 10.2343/geochemj.42.273
[50] Nakano T, Yokoo Y, Nishikawa M, et al. Regional Sr-Nd isotopic ratios of soil minerals in northern China as Asian dust fingerprints [J]. Atmospheric Environment, 2004, 38(19): 3061-3067. doi: 10.1016/j.atmosenv.2004.02.016
[51] Seo I, Lee Y I, Yoo C M, et al. Sr-Nd isotope composition and clay mineral assemblages in eolian dust from the central Philippine Sea over the last 600 kyr: Implications for the transport mechanism of Asian dust [J]. Journal of Geophysical Research:Atmospheres, 2014, 119(19): 11492-11504. doi: 10.1002/2014JD022025
[52] Allegre C J, Othman D B, Polve M, et al. The Nd-Sr isotopic correlation in mantle materials and geodynamic consequences [J]. Physics of the Earth & Planetary Interiors, 1979, 19(4): 293-306.
[53] Xiong Z F, Li T G, Algeo T, et al. The silicon isotope composition of Ethmodiscus rex laminated diatom mats from the tropical West Pacific: Implications for silicate cycling during the Last Glacial Maximum [J]. Paleoceanography, 2015, 30(7): 803-823. doi: 10.1002/2015PA002793
[54] Xu Z K, Wan S M, Colin C, et al. Enhanced terrigenous organic matter input and productivity on the western margin of the Western Pacific Warm Pool during the Quaternary sea-level lowstands: Forcing mechanisms and implications for the global carbon cycle [J]. Quaternary Science Reviews, 2020, 232: 106211. doi: 10.1016/j.quascirev.2020.106211
[55] Yu Z J, Wan S M, Colin C, et al. ENSO-like modulated tropical Pacific climate changes since 2.36 Myr and its implication for the middle Pleistocene transition [J]. Geochemistry, Geophysics, Geosystems, 2018, 19(2): 415-426. doi: 10.1002/2017GC007247
[56] Xiong Z F, Li T G, Jiang F Q, et al. Millennial-scale evolution of elemental ratios in bulk sediments from the western Philippine Sea and implications for chemical weathering in Luzon since the Last Glacial Maximum [J]. Journal of Asian Earth Sciences, 2019, 179: 127-137. doi: 10.1016/j.jseaes.2019.04.021
[57] Xiong Z F, Li T G, Chang F M, et al. Rapid precipitation changes in the tropical West Pacific linked to North Atlantic climate forcing during the last deglaciation [J]. Quaternary Science Reviews, 2018, 197: 288-306. doi: 10.1016/j.quascirev.2018.07.040
[58] 张富元, 李安春, 林振宏, 等. 深海沉积物分类与命名[J]. 海洋与湖沼, 2006, 37(6):517-523 doi: 10.3321/j.issn:0029-814X.2006.06.007
ZHANG Fuyuan, LI Anchun, LIN Zhenhong, et al. Classification and nomenclature of deep sea sediments [J]. Oceanologia et Limnologia Sinica, 2006, 37(6): 517-523. doi: 10.3321/j.issn:0029-814X.2006.06.007
[59] 刘华华. 中新世以来奄美三角盆地沉积物中粘土矿物的来源[D]. 中国科学院海洋研究所硕士学位论文, 2016.
LIU Huahua. Provenance of clay minerals in the sediments from the Amami Sankaku Basin since Miocene[D]. Master Dissertation of the Institute of Oceanology, Chinese Academy of Sciences, 2016.
[60] 王银, 吕士辉, 苏新, 等. 西北太平洋多金属结核区沉积物黏土矿物特征[J]. 中国有色金属学报, 2021, 31(10):2696-2712
WANG Yin, LÜ Shihui, SU Xin, et al. Assemblage of clay minerals at polymetallic nodules contract area in Northwest Pacific Ocean [J]. The Chinese Journal of Nonferrous Metals, 2021, 31(10): 2696-2712.
[61] Liu Z F, Zhao Y L, Colin C, et al. Chemical weathering in Luzon, Philippines from clay mineralogy and major-element geochemistry of river sediments [J]. Applied Geochemistry, 2009, 24(11): 2195-2205. doi: 10.1016/j.apgeochem.2009.09.025
[62] Biscaye P E, Grousset F E, Revel M, et al. Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core, Summit, Greenland [J]. Journal of Geophysical Research:Oceans, 1997, 102(C12): 26765-26781. doi: 10.1029/97JC01249
[63] German C R, Elderfield H. Rare earth elements in Saanich Inlet, British Columbia, a seasonally anoxic basin [J]. Geochimica et Cosmochimica Acta, 1989, 53(10): 2561-2571. doi: 10.1016/0016-7037(89)90128-2
[64] German C R, Holliday B P, Elderfield H. Redox cycling of rare earth elements in the suboxic zone of the Black Sea [J]. Geochimica et Cosmochimica Acta, 1991, 55(12): 3553-3558. doi: 10.1016/0016-7037(91)90055-A
[65] Alibo D S, Nozaki Y. Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation [J]. Geochimica et Cosmochimica Acta, 1999, 63(3-4): 363-372. doi: 10.1016/S0016-7037(98)00279-8
[66] Nozaki Y. Rare Earth Elements and their Isotopes in the Ocean[M]//Encyclopedia of Ocean Sciences. San Diego: Academic Press, 2001: 2354-2366.
[67] Luo M, Gieskes J, Chen L Y, et al. Sources, degradation, and transport of organic matter in the New Britain shelf-trench continuum, Papua New Guinea [J]. Journal of Geophysical Research:Biogeosciences, 2019, 124(6): 1680-1695. doi: 10.1029/2018JG004691