CO2-CH4置换水合物开采方法及其强化技术研究进展

王佳贤, 刘昌岭, 宁伏龙, 纪云开. CO2-CH4置换水合物开采方法及其强化技术研究进展[J]. 海洋地质与第四纪地质, 2023, 43(1): 190-204. doi: 10.16562/j.cnki.0256-1492.2022032101
引用本文: 王佳贤, 刘昌岭, 宁伏龙, 纪云开. CO2-CH4置换水合物开采方法及其强化技术研究进展[J]. 海洋地质与第四纪地质, 2023, 43(1): 190-204. doi: 10.16562/j.cnki.0256-1492.2022032101
WANG Jiaxian, LIU Changling, NING Fulong, JI Yunkai. Technological research progress on CO2-CH4 replacement for hydrate exploitation and enhancement[J]. Marine Geology & Quaternary Geology, 2023, 43(1): 190-204. doi: 10.16562/j.cnki.0256-1492.2022032101
Citation: WANG Jiaxian, LIU Changling, NING Fulong, JI Yunkai. Technological research progress on CO2-CH4 replacement for hydrate exploitation and enhancement[J]. Marine Geology & Quaternary Geology, 2023, 43(1): 190-204. doi: 10.16562/j.cnki.0256-1492.2022032101

CO2-CH4置换水合物开采方法及其强化技术研究进展

  • 基金项目: 国家自然科学基金“南海沉积物中水合物降压分解动力学行为及控制机理研究”(41876051);山东省泰山学者特聘专家计划(ts201712079);国家重点研发计划政府间国际科技创新合作重点专项“天然气水合物开采过程中井周储层动态响应行为与控制”(2018YFE0126400)
详细信息
    作者简介: 王佳贤(1995—),男,博士研究生,从事水合物生成微观机理研究,E-mail:wjxcz@cug.edu.cn
    通讯作者: 刘昌岭(1966—),男,博士,研究员,从事天然气水合物模拟实验研究,E-mail:qdliuchangling@163.com
  • 中图分类号: P744.4

Technological research progress on CO2-CH4 replacement for hydrate exploitation and enhancement

More Information
  • 天然气水合物具有资源储量大、分布范围广等特点,是一种潜力巨大的替代能源,经济、高效、安全地开发天然气水合物是目前研究的热点。CO2-CH4置换水合物开采法既可以置换出水合物储层中的甲烷,同时还将CO2封存其中以保持地层稳定,受到了广泛的关注。本文从CO2-CH4置换的可行性、实验模拟与数值模拟的角度综述了近些年CO2-CH4置换水合物开采法的最新研究进展,并针对置换过程效率低、速度慢等缺点,探讨了改变CO2注入相态、CO2协同小分子气体以及CO2置换联合开采法等强化置换技术,指出了不同强化方法的技术壁垒及应用局限,展望了CO2-CH4置换水合物开采技术的研究方向和发展前景。

  • 加载中
  • 图 1  不同水合物开采方法原理[9]

    Figure 1. 

    图 2  CO2-CH4水合物四相平衡图[72]

    Figure 2. 

    表 1  不同相态CO2的强化置换效果

    Table 1.  Enhanced displacement effect with CO2 in different states

    CO2相态检测手段介质体系温度/K压力/MPa甲烷回收效率文献来源
    GC冰粒/纯水263/275914%/40.3%Lee等[56]
    Raman纯水273.23.6/5.4/637.6%/27%/29%Ota等[62-63]
    GC纯水283.54.5/5.020.60%/18.11%张凤琦等[64]
    GC石英砂+水282.156~813%~45.4%Zhang等[42]
    GC石英砂+盐水275.24.19~4.2126%~33%Yuan等[33]
    GC石英砂+盐水280.24.235%Yuan等[33]
    GC石英砂+ SDS溶液281.2518.6%Zhou等[65]
    GC石英砂+盐水273.2426.4%Wang等[66]
    Raman+SEM纯水277611.4%Falenty等[67]
    MRI砂岩+盐水273.28.359%Kvamme等[68]
    乳液GC石英砂+ SDS溶液281.2517%/27.1%Zhou等[65,69]
    乳液GC石英砂+水281527.1%周锡堂等[70]
    超临界GC石英砂+冰颗粒/盐水275.27.537.5%Deusner等[71]
    超临界GC石英砂+冰颗粒/盐水275.2/281.2/283.2133.4%/40.7%/10.7%Deusner等[71]
     注:GC:气相色谱技术,Raman:拉曼光谱技术,SEM:扫描电子显微镜技术,MRI:核磁共振成像技术。
    下载: 导出CSV

    表 2  不同CO2/N2注气比的强化置换效果

    Table 2.  Enhanced displacement effect at different CO2/N2 injection ratios

    气体成分(CO2/N2)检测手段介质体系温度/K压力/MPa甲烷回收效率文献来源
    10%CO2+90%N2NMR+DSC多孔硅胶+水27411.54/14.59/18.5977%/80%/79%Lee等[74]
    10%CO2+90%N2GC纯水+SDS溶液298.159.0541%Pandey等[88]
    14.6%CO2+85.4%N2GC硅砂+水273.34.253.3%Yang等[89]
    19%CO2+81%N2GC石英砂+冰粒274.1515.86.1%王曦等[90]
    20%CO2+80%N2Raman+NMR粉末冰颗粒274.151285%Park等[91]
    20%CO2+80%N2SEM黏土+水273.151585%Koh等[92]
    20%CO2+80%N2NMR+GC多孔硅胶+水2731042%Cha等[93]
    20%CO2+80%N2GC玻璃珠+水275.159.849.2%Koh等[94]
    20%CO2+80%N2GC玻璃珠+水2749.539.3%Youn等[95]
    22%CO2+78%N2GC石英砂+盐水273.25.036.9Liu等[87]
    23%CO2+77%N2Raman+GC石英砂+水2811090%Schicks等[35]
    25%CO2+75%N2GC砂土+水274.21025%Pan等[96]
    25%CO2+75%N2GC高岭石+水274.21024.5%潘栋彬等[97]
    25%CO2+75%N2GC伊利石+水274.21025%潘栋彬等[97]
    25%CO2+75%N2GC蒙脱石+水274.21018.2%潘栋彬等[97]
    28%CO2+72%N2GC+CCD纯水+ SDS溶液284.29.0213.2%Niu等[98]
    40%CO2+60%N2NMR+GC多孔硅胶+水2741051%Seo等[99]
    50%CO2+50%N2Raman+CCD+GC纯水273.95/6.678.3%/17.7%Zhou等[100]
    53%CO2+47%N2GC石英砂+冰粒274.152.1/3.412.6%/19%王曦等[90]
    53%CO2+47%N2GC纯水279.158.0152.42%Ouyang等[101]
    53%CO2+47%N2GC石英砂+热水274.151491.6%操原[102]
    59%CO2+41%N2GC石英砂+水277.15740.8%Yasue等[86]
    60%CO2+40%N2GC石英砂+水277.15/280.15730%Masuda等[103]
    60%CO2+40%N2Raman+FTIR+GC纯水2744.573.42%Xu等[41]
    75%CO2+25%N2GC石英砂+冰粒275.15341.4%Li等[82]
    75%CO2+25%N2GC石英砂+水275.654.868.8%Tupsakhare等[104]
    75%CO2+25%N2Raman+CCD+GC纯水2742.6/3.11/3.59.5%/12.6%/17.9%Zhou等[100]
    87.6%CO2+12.4%N2GC石英砂+水277.158.946.32%Mu等[75]
     注:DSC:差式扫描量热技术,NMR:核磁共振技术,CCD:影像检测技术,FTIR:红外光谱技术。
    下载: 导出CSV

    表 3  不同热激发方式的强化置换效果

    Table 3.  Enhanced replacement effects in different thermal excitation methods

    热激发方式介质体系温度/K压力/MPa甲烷回收效率(无热激发)甲烷回收效率(有热激发)文献来源
    热烟气(CO2/N2)硅砂+水273.34.215.9%53.3%Yang等[89]
    短暂升高温度玻璃珠+水273.73.6911.55%59.16%Zhang等[108]
    重复注热+分阶段注热石英砂+冰粒271.15328%82%Stanwix等[109]
    间歇式原位加热纯水280.15835.64%64.80%欧阳潜[110]
    间歇式原位加热+脉冲注热纯水275.15419.83%35.50%Ouyang等[101]
    脉冲注热纯水279.15840%55%张育诚[111]
    热电偶原位加热石英砂+水275.653.324%99%Tupsakhare等[112]
    热电偶原位加热+注入CO2/N2石英砂+水275.654.850%68.8%Tupsakhare等[104]
    下载: 导出CSV

    表 4  不同强化方法对置换效率的影响对比

    Table 4.  Comparison of the effects in different strengthening methods on the replacement efficiency

    强化方法类型突出优势主要影响因素
    注液态CO2特定成核位置的CO2浓度更高,有利于快速成核水合物储层粒径
    注CO2乳化液具有更高的反应温度以及更好的传导性和扩散能力乳化液的含量和种类
    注CO2/N2混合气降低CH4分压,置换出512小笼子中的CH4分子不同气体比
    与热激发法联合缓解CH4水合物分解引起的局部热损水合物储层饱和度
    与降压法联合CH4水合物的局部分解为CO2的渗透作用提供了更加丰富的孔隙通道压降梯度
    与注化学剂法联合使相平衡条件向有利于CH4水合物分解和CO2水合物合成的方向移动化学剂浓度
    下载: 导出CSV
  • [1]

    Sloan E D Jr. Fundamental principles and applications of natural gas hydrates [J]. Nature, 2003, 426(6964): 353-359. doi: 10.1038/nature02135

    [2]

    Sloan E D Jr, Koh C A. Clathrate Hydrates of Natural Gases[M]. Boca Raton: CRC Press, 2007.

    [3]

    Nair V C, Prasad S K, Kumar R, et al. Energy recovery from simulated clayey gas hydrate reservoir using depressurization by constant rate gas release, thermal stimulation and their combinations [J]. Applied Energy, 2018, 225: 755-768. doi: 10.1016/j.apenergy.2018.05.028

    [4]

    Kou X, Wang Y, Li X S, et al. Influence of heat conduction and heat convection on hydrate dissociation by depressurization in a pilot-scale hydrate simulator [J]. Applied Energy, 2019, 251: 113405. doi: 10.1016/j.apenergy.2019.113405

    [5]

    Gambelli A M, Rossi F. Natural gas hydrates: Comparison between two different applications of thermal stimulation for performing CO2 replacement [J]. Energy, 2019, 172: 423-434. doi: 10.1016/j.energy.2019.01.141

    [6]

    Gupta P, Nair V C, Sangwai J S. Polymer-Assisted chemical inhibitor flooding: a novel approach for energy recovery from hydrate-bearing sediments [J]. Industrial & Engineering Chemistry Research, 2021, 60(22): 8043-8055.

    [7]

    Nair V C, Mech D, Gupta P, et al. Polymer flooding in artificial hydrate bearing sediments for methane gas recovery [J]. Energy & Fuels, 2018, 32(6): 6657-6668.

    [8]

    Rossi F, Gambelli A M, Sharma D K, et al. Experiments on methane hydrates formation in seabed deposits and gas recovery adopting carbon dioxide replacement strategies [J]. Applied Thermal Engineering, 2019, 148: 371-381. doi: 10.1016/j.applthermaleng.2018.11.053

    [9]

    Koh D Y, Kang H, Lee J W, et al. Energy-efficient natural gas hydrate production using gas exchange [J]. Applied Energy, 2016, 162: 114-130. doi: 10.1016/j.apenergy.2015.10.082

    [10]

    Fakher S, Elgahawy Y, Abdelaal H. A comprehensive review on gas hydrate reservoirs: Formation and dissociation thermodynamics and rock and fluid properties[C]//International Petroleum Technology Conference. Beijing: International Petroleum Technology Conference, 2019.

    [11]

    徐行, 罗贤虎, 彭登, 等. 中国首次试采天然气水合物成功[J]. 中国地质, 2017, 44(3):620-621 doi: 10.12029/gc20170323

    XU Xing, LUO Xianhu, PENG Deng, et al. First successful trial collection of natural gas hydrate in China [J]. China Geology, 2017, 44(3): 620-621. doi: 10.12029/gc20170323

    [12]

    叶建良, 秦绪文, 谢文卫, 等. 中国南海天然气水合物第二次试采主要进展[J]. 中国地质, 2020, 47(3):557-568 doi: 10.12029/gc20200301

    YE Jianliang, QIN Xuwen, XIE Wenwei, et al. Main progress of the second gas hydrate trial production in the South China Sea [J]. China Geology, 2020, 47(3): 557-568. doi: 10.12029/gc20200301

    [13]

    Komai T, Kawamura Y K T, Yoon J H. Extraction of Gas Hydrates using CO2 sequestration[C]//The Thirteenth International Offshore and Polar Engineering Conference. Honolulu: The International Society of Offshore and Polar Engineers, 2003.

    [14]

    Birkedal K A, Ersland G, Husebo J, et al. Geomechanical stability during CH4 production from hydrates-depressurization or CO2 sequestration with CO2-CH4 exchange[C]//44th U. S. Rock Mechanics Symposium and 5th U. S. -Canada Rock Mechanics Symposium. Salt Lake City: American Rock Mechanics Association, 2010.

    [15]

    张学民, 李银辉, 张山岭, 等. 多孔介质中CO2-CH4水合物置换过程的强化方法研究进展[J]. 过程工程学报, 2022, 22(4):438-447 doi: 10.12034/j.issn.1009-606X.221122

    ZHANG Xuemin, LI Yinhui, ZHANG Shanling, et al. Research progress of enhancement methods of CO2-CH4 hydrate displacement in porous media [J]. The Chinese Journal of Process Engineering, 2022, 22(4): 438-447. doi: 10.12034/j.issn.1009-606X.221122

    [16]

    Ebinuma T. Method for dumping and disposing of carbon dioxide gas and apparatus therefor: US, 5261490[P]. 1993-11-16.

    [17]

    王敏, 徐刚, 蔡晶, 等. “CH4-CO2”置换法开采天然气水合物[J]. 新能源进展, 2021, 9(1):62-68

    WANG Min, XU Gang, CAI Jing, et al. Research progress on the micro-mechanism and efficiency of CH4-CO2 replacement and extraction of CH4 hydrate [J]. Advances in New and Renewable Enengy, 2021, 9(1): 62-68.

    [18]

    Ohgaki K, Takano K, Sangawa H, et al. Methane exploitation by carbon dioxide from gas hydrates-phase equilibria for CO2-CH4 mixed hydrate system [J]. Journal of Chemical Engineering of Japan, 1996, 29(3): 478-483. doi: 10.1252/jcej.29.478

    [19]

    Schoderbek D, Farrell H, Howard J, et al. ConocoPhillips gas hydrate production test[R]. Houston, TX: ConocoPhillips Co. , 2013.

    [20]

    Schoderbek D, Boswell R. Iġnik Sikumi #1, gas hydrate test well, successfully installed on the Alaska North Slope [J]. Fire in the Ice-Methane Hydrate Newsletter, 2011, 11: 1-5.

    [21]

    Ohgaki K, Takano K, Moritoki M. Exploitation of CH4 hydrates under the Nankai Trough in combination with CO2 storage [J]. Kagaku kōgaku ronbunshū, 1994, 20(1): 121-123. doi: 10.1252/kakoronbunshu.20.121

    [22]

    Mu L, Von Solms N. Hydrate thermal dissociation behavior and dissociation enthalpies in methane-carbon dioxide swapping process [J]. The Journal of Chemical Thermodynamics, 2018, 117: 33-42. doi: 10.1016/j.jct.2017.08.018

    [23]

    Ota M, Abe Y, Watanabe M, et al. Methane recovery from methane hydrate using pressurized CO2 [J]. Fluid Phase Equilibria, 2005, 228-229: 553-559. doi: 10.1016/j.fluid.2004.10.002

    [24]

    Yezdimer E M, Cummings P T, Chialvo A A. Determination of the Gibbs free energy of gas replacement in SI clathrate hydrates by molecular simulation [J]. The Journal of Physical Chemistry A, 2002, 106(34): 7982-7987. doi: 10.1021/jp020795r

    [25]

    Huo Z X, Hester K, Sloan E D Jr, et al. Methane hydrate nonstoichiometry and phase diagram [J]. AIChE Journal, 2003, 49(5): 1300-1306. doi: 10.1002/aic.690490521

    [26]

    Circone S, Stern L A, Kirby S H, et al. CO2 hydrate: synthesis, composition, structure, dissociation behavior, and a comparison to structure I CH4 hydrate [J]. The Journal of Physical Chemistry B, 2003, 107(23): 5529-5539. doi: 10.1021/jp027391j

    [27]

    Geng C Y, Wen H, Zhou H. Molecular simulation of the potential of methane reoccupation during the replacement of methane hydrate by CO2 [J]. The Journal of Physical Chemistry A, 2009, 113(18): 5463-5469. doi: 10.1021/jp811474m

    [28]

    Yonkofski C M R, Horner J A, White M D. Experimental and numerical investigation of hydrate-guest molecule exchange kinetics [J]. Journal of Natural Gas Science and Engineering, 2016, 35: 1480-1489. doi: 10.1016/j.jngse.2016.03.080

    [29]

    张杰, 关富佳. CO2置换联合热采技术开采天然气水合物可行性分析[J]. 能源化工, 2018, 39(2):71-75 doi: 10.3969/j.issn.1006-7906.2018.02.015

    ZHANG Jie, GUAN Fujia. Feasibility analysis on CO2 replacement combined with heating technology for production of natural gas hydrate [J]. Energy Chemical Industry, 2018, 39(2): 71-75. doi: 10.3969/j.issn.1006-7906.2018.02.015

    [30]

    颜雨. CO2乳液稳定性评价和CO2乳液盖层改造降压开采水合物研究[D]. 中国石油大学(北京)硕士学位论文, 2019

    YAN Yu. Experimental study on stability of CO2 emulsion and hydrate depressurization exploitation after cap reformation via CO2 emulsion[D]. Master Dissertation of China University of Petroleum (Beijing), 2019.

    [31]

    Lee S, Lee Y, Lee J, et al. Experimental verification of methane–carbon dioxide replacement in natural gas hydrates using a differential scanning calorimeter [J]. Environmental Science & Technology, 2013, 47(22): 13184-13190.

    [32]

    Jung J W, Espinoza D N, Santamarina J C. Properties and phenomena relevant to CH4-CO2 replacement in hydrate-bearing sedim-ents [J]. Journal of Geophysical Research:Solid Earth, 2010, 115(B10): B10102. doi: 10.1029/2009JB000812

    [33]

    Yuan Q, Sun C Y, Liu B, et al. Methane recovery from natural gas hydrate in porous sediment using pressurized liquid CO2 [J]. Energy Conversion and Management, 2013, 67: 257-264. doi: 10.1016/j.enconman.2012.11.018

    [34]

    Yuan Q, Sun C Y, Yang X, et al. Recovery of methane from hydrate reservoir with gaseous carbon dioxide using a three-dimensional middle-size reactor [J]. Energy, 2012, 40(1): 47-58. doi: 10.1016/j.energy.2012.02.043

    [35]

    Schicks J M, Strauch B, Heeschen K U, et al. From microscale (400 μl) to macroscale (425 L): Experimental investigations of the CO2/N2-CH4 exchange in gas hydrates simulating the Iġnik Sikumi Field Trial [J]. Journal of Geophysical Research:Solid Earth, 2018, 123(5): 3608-3620. doi: 10.1029/2017JB015315

    [36]

    Gambelli A M, Filipponi M, Rossi F. How methane release may affect carbon dioxide storage during replacement processes in natural gas hydrate reservoirs [J]. Journal of Petroleum Science and Engineering, 2021, 205: 108895. doi: 10.1016/j.petrol.2021.108895

    [37]

    Xu C G, Zhang W, Yan K F, et al. Research on micro mechanism and influence of hydrate-based methane-carbon dioxide replacement for realizing simultaneous clean energy exploitation and carbon emission reduction [J]. Chemical Engineering Science, 2022, 248: 117266. doi: 10.1016/j.ces.2021.117266

    [38]

    Uchida T, Takeya S, Ebinuma T, et al. Replacing methane with CO2 in clathrate hydrate: observations using Raman spectroscopy[J]. 2001.

    [39]

    Ors O, Sinayuc C. An experimental study on the CO2-CH4 swap process between gaseous CO2 and CH4 hydrate in porous media [J]. Journal of Petroleum Science and Engineering, 2014, 119: 156-162. doi: 10.1016/j.petrol.2014.05.003

    [40]

    Mok J, Choi W, Seo Y. Time-dependent observation of a cage-specific guest exchange in sI hydrates for CH4 recovery and CO2 sequestration [J]. Chemical Engineering Journal, 2020, 389: 124434. doi: 10.1016/j.cej.2020.124434

    [41]

    Xu C G, Cai J, Yu Y S, et al. Research on micro-mechanism and efficiency of CH4 exploitation via CH4-CO2 replacement from natural gas hydrates [J]. Fuel, 2018, 216: 255-265. doi: 10.1016/j.fuel.2017.12.022

    [42]

    Zhang Y, Xiong L J, Li X S, et al. Replacement of CH4 in hydrate in porous sediments with liquid CO2 injection [J]. Chemical Engineering & Technology, 2014, 37(12): 2022-2029.

    [43]

    宋光春, 李玉星, 王武昌. 温度和压力对CO2置换甲烷水合物的影响[J]. 油气储运, 2016, 35(3):295-301

    SONG Guangchun, LI Yuxing, WANG Wuchang. Impacts of temperature and pressure on displacement of CH4 in hydrate by CO2 [J]. Oil and Gas Storage and Transportation, 2016, 35(3): 295-301.

    [44]

    Uchida T, Ikeda I Y, Takeya S, et al. Kinetics and stability of CH4-CO2 mixed gas hydrates during formation and long-term storage [J]. ChemPhysChem, 2005, 6(4): 646-654. doi: 10.1002/cphc.200400364

    [45]

    Huang X, Cai W J, Zhan L S, et al. Study on the reaction of methane hydrate with gaseous CO2 by Raman imaging microscopy [J]. Chemical Engineering Science, 2020, 222: 115720. doi: 10.1016/j.ces.2020.115720

    [46]

    Yoon J H, Kawamura T, Yamamoto Y, et al. Transformation of methane hydrate to carbon dioxide hydrate: In situ Raman spectroscopic observations[C]//The Fifteenth International Offshore and Polar Engineering Conference. Seoul, Korea: The International Society of Offshore and Polar Engineers, 2005.

    [47]

    王菲菲. 二氧化碳置换甲烷水合物微观实验研究[D]. 中国地质大学博士学位论文, 2015.

    WANG Feifei. Micro-experimental study onreplacement of CH4 hydrate by use of Co[D]. Doctor Dissertation of China University of Geosciences, 2015.

    [48]

    Wang T, Zhang L X, Sun L J, et al. Methane recovery and carbon dioxide storage from gas hydrates in fine marine sediments by using CH4/CO2 replacement [J]. Chemical Engineering Journal, 2021, 425: 131562. doi: 10.1016/j.cej.2021.131562

    [49]

    Pan D B, Zhong X P, Zhu Y, et al. CH4 recovery and CO2 sequestration from hydrate-bearing clayey sediments via CO2/N2 injection [J]. Journal of Natural Gas Science and Engineering, 2020, 83: 103503. doi: 10.1016/j.jngse.2020.103503

    [50]

    Ren J J, Liu X H, Niu M Y, et al. Effect of sodium montmorillonite clay on the kinetics of CH4 hydrate-implication for energy recovery [J]. Chemical Engineering Journal, 2022, 437: 135368. doi: 10.1016/j.cej.2022.135368

    [51]

    Gambelli A M. An experimental description of the double positive effect of CO2 injection in methane hydrate deposits in terms of climate change mitigation [J]. Chemical Engineering Science, 2021, 233: 116430. doi: 10.1016/j.ces.2020.116430

    [52]

    Zhang X M, Wang Y M, Li J P, et al. Recovering CH4 from natural gas hydrate with CO2 in porous media below the freezing point [J]. Petroleum Science and Technology, 2019, 37(7): 770-779. doi: 10.1080/10916466.2019.1566248

    [53]

    Khasanov M K, Stolpovsky M V, Gimaltdinov I K. Mathematical model of injection of liquid carbon dioxide in a reservoir saturated with methane and its hydrate [J]. International Journal of Heat and Mass Transfer, 2019, 132: 529-538. doi: 10.1016/j.ijheatmasstransfer.2018.12.033

    [54]

    Khasanov M K, Musakaev N G, Stolpovsky M V, et al. Mathematical Model of decomposition of methane hydrate during the injection of liquid carbon dioxide into a reservoir saturated with methane and its hydrate [J]. Mathematics, 2020, 8(9): 1482. doi: 10.3390/math8091482

    [55]

    Shagapov V S, Khasanov M K, Musakaev N G, et al. Theoretical research of the gas hydrate deposits development using the injection of carbon dioxide [J]. International Journal of Heat and Mass Transfer, 2017, 107: 347-357. doi: 10.1016/j.ijheatmasstransfer.2016.11.034

    [56]

    Lee B R, Koh C A, Sum A K. Quantitative measurement and mechanisms for CH4 production from hydrates with the injection of liquid CO2 [J]. Physical Chemistry Chemical Physics, 2014, 16(28): 14922-14927. doi: 10.1039/C4CP01780C

    [57]

    Qi Y X, Ota M, Zhang H. Molecular dynamics simulation of replacement of CH4 in hydrate with CO2 [J]. Energy Conversion and Management, 2011, 52(7): 2682-2687. doi: 10.1016/j.enconman.2011.01.020

    [58]

    Tung Y T, Chen L J, Chen Y P, et al. In situ methane recovery and carbon dioxide sequestration in methane hydrates: A molecular dynamics simulation study [J]. The Journal of Physical Chemistry B, 2011, 115(51): 15295-15302. doi: 10.1021/jp2088675

    [59]

    Hsieh P Y, Sean W Y, Sato T, et al. Mesoscale modeling of exploiting methane hydrate by CO2 replacement in homogeneous porous media [J]. International Journal of Heat and Mass Transfer, 2020, 158: 119741. doi: 10.1016/j.ijheatmasstransfer.2020.119741

    [60]

    Bai D S, Zhang X R, Chen G J, et al. Replacement mechanism of methane hydrate with carbon dioxide from microsecond molecular dynamics simulations [J]. Energy & Environmental Science, 2012, 5(5): 7033-7041.

    [61]

    刘一楠. 基于分子动力学模拟的天然气水合物分解和置换过程机理研究[D]. 天津大学硕士学位论文, 2017.

    LIU Yinan. Mechanism study on the decomposition andreplacement of natural gas hydrate basedon molecular dynamics simulation[D]. Master Dissertation of Tianjin University, 2017.

    [62]

    Ota M, Morohashi K, Abe Y, et al. Replacement of CH4 in the hydrate by use of liquid CO2 [J]. Energy Conversion and Management, 2005, 46(11-12): 1680-1691. doi: 10.1016/j.enconman.2004.10.002

    [63]

    Ota M, Saito T, Aida T, et al. Macro and microscopic CH4-CO2 replacement in CH4 hydrate under pressurized CO2 [J]. AIChE Journal, 2007, 53(10): 2715-2721. doi: 10.1002/aic.11294

    [64]

    张凤琦, 陈国兴, 郭开华, 等. 液态二氧化碳置换整形甲烷水合物过程特性[J]. 过程工程学报, 2018, 18(3):639-645 doi: 10.12034/j.issn.1009-606X.217304

    ZHANG Fengqi, CHEN Guoxing, GUO Kaihua, et al. Process characteristics on replacement of bulk-methane hydrates with liquid cardon dioxide [J]. The Chinese Journal of Process Engineering, 2018, 18(3): 639-645. doi: 10.12034/j.issn.1009-606X.217304

    [65]

    Zhou X T, Fan S S, Liang D Q, et al. Determination of appropriate condition on replacing methane from hydrate with carbon dioxide [J]. Energy Conversion and Management, 2008, 49(8): 2124-2129. doi: 10.1016/j.enconman.2008.02.006

    [66]

    Wang X H, Li F G, Xu Y X, et al. Elastic properties of hydrate-bearing sandy sediment during CH4-CO2 replacement [J]. Energy Conversion and Management, 2015, 99: 274-281. doi: 10.1016/j.enconman.2015.04.032

    [67]

    Falenty A, Qin J, Salamatin A N, et al. Fluid composition and kinetics of the in-situ replacement in CH4-CO2 hydrate system [J]. The Journal of Physical Chemistry C, 2016, 120(48): 27159-27172. doi: 10.1021/acs.jpcc.6b09460

    [68]

    Kvamme B, Graue A, Buanes T, et al. Storage of CO2 in natural gas hydrate reservoirs and the effect of hydrate as an extra sealing in cold aquifers [J]. International Journal of Greenhouse Gas Control, 2007, 1(2): 236-246. doi: 10.1016/S1750-5836(06)00002-8

    [69]

    Zhou X T, Fan S S, Liang D Q, et al. Replacement of methane from quartz sand-bearing hydrate with carbon dioxide-in-water emulsion [J]. Energy & Fuels, 2008, 22(3): 1759-1764.

    [70]

    周锡堂, 樊栓狮, 梁德青. CO2乳状液置换天然气水合物中CH4的动力学研究[J]. 天然气地球科学, 2013, 24(2):259-264

    ZHOU Xitang, FAN Shuanshi, LIANG Deqing. Kinetic research on replacement of methane in gas hydrate with carbon dioxide emulsion [J]. Natural Gas Geoscience, 2013, 24(2): 259-264.

    [71]

    Deusner C, Bigalke N, Kossel E, et al. Methane production from gas hydrate deposits through injection of supercritical CO2 [J]. Energies, 2012, 5(7): 2112-2140. doi: 10.3390/en5072112

    [72]

    Bi Y, Yang T, Guo K H. Determination of the upper-quadruple-phase equilibrium region for carbon dioxide and methane mixed gas hydrates [J]. Journal of Petroleum Science and Engineering, 2013, 101: 62-67. doi: 10.1016/j.petrol.2012.11.019

    [73]

    McGrail B P, Zhu T, Hunter R B, et al. A new method for enhanced production of gas hydrates with CO2 [J]. Gas Hydrates:Energy Resource Potential and Associated Geologic Hazards, 2004, 2004: 12-16.

    [74]

    Lee Y, Kim Y, Lee J, et al. CH4 recovery and CO2 sequestration using flue gas in natural gas hydrates as revealed by a micro-differential scanning calorimeter [J]. Applied Energy, 2015, 150: 120-127. doi: 10.1016/j.apenergy.2015.04.012

    [75]

    Mu L, von Solms N. Methane production and carbon capture by hydrate swapping [J]. Energy & Fuels, 2017, 31(4): 3338-3347.

    [76]

    Prasad P S R, Kiran B S. Stability and exchange of guest molecules in gas hydrates under the influence of CH4, CO2, N2 and CO2+N2 gases at low-pressures [J]. Journal of Natural Gas Science and Engineering, 2020, 78: 103311. doi: 10.1016/j.jngse.2020.103311

    [77]

    Lim D, Ro H, Seo Y, et al. Thermodynamic stability and guest distribution of CH4/N2/CO2 mixed hydrates for methane hydrate production using N2/CO2 injection [J]. The Journal of Chemical Thermodynamics, 2017, 106: 16-21. doi: 10.1016/j.jct.2016.11.012

    [78]

    Bhawangirkar D R, Sangwai J S. Insights into cage occupancies during gas exchange in CH4+CO2 and CH4+N2+CO2 mixed hydrate systems relevant for methane gas recovery and carbon dioxide sequestration in hydrate reservoirs: a thermodynamic approach [J]. Industrial & Engineering Chemistry Research, 2019, 58(31): 14462-14475.

    [79]

    Matsui H, Jia J H, Tsuji T, et al. Microsecond simulation study on the replacement of methane in methane hydrate by carbon dioxide, nitrogen, and carbon dioxide-nitrogen mixtures [J]. Fuel, 2020, 263: 116640. doi: 10.1016/j.fuel.2019.116640

    [80]

    Song W L, Sun X L, Zhou G G, et al. Molecular dynamics simulation study of N2/CO2 displacement process of methane hydrate [J]. ChemistrySelect, 2020, 5(44): 13936-13950. doi: 10.1002/slct.202003845

    [81]

    Sun Y H, Li S L, Zhang G B, et al. Hydrate phase equilibrium of CH4+N2+CO2 gas mixtures and cage occupancy behaviors [J]. Industrial & Engineering Chemistry Research, 2017, 56(28): 8133-8142.

    [82]

    Li B, Xu T F, Zhang G B, et al. An experimental study on gas production from fracture-filled hydrate by CO2 and CO2/N2 replacement [J]. Energy Conversion and Management, 2018, 165: 738-747. doi: 10.1016/j.enconman.2018.03.095

    [83]

    王晓辉. 注气开采天然气水合物实验模拟与能效分析[D]. 中国石油大学(北京)博士学位论文, 2017

    WANG Xiaohui. Experimental simulation and energy efficiency analysis of gas hydrates production by gas injection method[D]. Doctor Dissertation of China University of Petroleum (Beijing), 2017.

    [84]

    Chaturvedi K R, Sinha A S K, Nair V C, et al. Enhanced carbon dioxide sequestration by direct injection of flue gas doped with hydrogen into hydrate reservoir: Possibility of natural gas production [J]. Energy, 2021, 227: 120521. doi: 10.1016/j.energy.2021.120521

    [85]

    Sun Y H, Zhang G B, Li S L, et al. CO2/N2 injection into CH4+C3H8 hydrates for gas recovery and CO2 sequestration [J]. Chemical Engineering Journal, 2019, 375: 121973. doi: 10.1016/j.cej.2019.121973

    [86]

    Yasue M, Masuda Y, Liang Y F. Estimation of methane recovery efficiency from methane hydrate by the N2-CO2 gas mixture injection method [J]. Energy & Fuels, 2020, 34(5): 5236-5250.

    [87]

    Liu B, Pan H, Wang X H, et al. Evaluation of different CH4-CO2 replacement processes in hydrate-bearing sediments by measuring P-wave velocity [J]. Energies, 2013, 6(12): 6242-6254. doi: 10.3390/en6126242

    [88]

    Pandey J S, Solms N V. Hydrate stability and methane recovery from gas hydrate through CH4-CO2 replacement in different mass transfer scenarios [J]. Energies, 2019, 12(12): 2309. doi: 10.3390/en12122309

    [89]

    Yang J H, Okwananke A, Tohidi B, et al. Flue gas injection into gas hydrate reservoirs for methane recovery and carbon dioxide sequestration [J]. Energy Conversion and Management, 2017, 136: 431-438. doi: 10.1016/j.enconman.2017.01.043

    [90]

    王曦. CO2+N2混合气置换开采天然气水合物实验研究及过程模拟[D]. 华南理工大学硕士学位论文, 2017.

    WANG Xi. Experimental research and process simulation of natural gas hydrate replacement production by injecting CO2+N2 mixture gas[D]. Master Dissertation of South China University of Technology, 2017.

    [91]

    Park Y, Kim D Y, Lee J W, et al. Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates [J]. Proceedings of the National Academy of Sciences, 2006, 103(34): 12690-12694. doi: 10.1073/pnas.0602251103

    [92]

    Koh D Y, Kang H, Kim D O, et al. Recovery of methane from gas hydrates intercalated within natural sediments using CO2 and a CO2/N2 gas mixture [J]. ChemSusChem, 2012, 5(8): 1443-1448. doi: 10.1002/cssc.201100644

    [93]

    Cha M J, Shin K, Lee H, et al. Kinetics of methane hydrate replacement with carbon dioxide and nitrogen gas mixture using in situ NMR spectroscopy [J]. Environmental Science & Technology, 2015, 49(3): 1964-1971.

    [94]

    Koh D Y, Ahn Y H, Kang H, et al. One-dimensional productivity assessment for on-field methane hydrate production using CO2/N2 mixture gas [J]. AIChE Journal, 2015, 61(3): 1004-1014. doi: 10.1002/aic.14687

    [95]

    Youn Y, Cha M J, Kwon M, et al. One-dimensional approaches for methane hydrate production by CO2/N2 gas mixture in horizontal and vertical column reactor [J]. Korean Journal of Chemical Engineering, 2016, 33(5): 1712-1719. doi: 10.1007/s11814-015-0294-5

    [96]

    Pan D B, Zhong X P, Li B, et al. Experimental investigation into methane production from hydrate-bearing clayey sediment by CO2/N2 replacement [J]. Energy Exploration & Exploitation, 2020, 38(6): 2601-2617.

    [97]

    潘栋彬. 海洋天然气水合物射流破碎与注CO2/N2置换联合开采研究[D]. 吉林大学, 2021.

    PAN Dongbin. Research on joint exploitation of marine gas hydrate jet fragmentation and CO2/N2 replacement [D]. Jilin University, 2021.

    [98]

    Niu M Y, Wu G Z, Yin Z Y, et al. Effectiveness of CO2-N2 injection for synergistic CH4 recovery and CO2 sequestration at marine gas hydrates condition [J]. Chemical Engineering Journal, 2021, 420: 129615. doi: 10.1016/j.cej.2021.129615

    [99]

    Seo Y, Kang S P, Jang W. Study on mechanism of methane hydrate replacement by carbon dioxide injection[C]//The Nineteenth International Offshore and Polar Engineering Conference. Osaka, Japan: The International Society of Offshore and Polar Engineers, 2009.

    [100]

    Zhou X B, Liang D Q, Liang S, et al. Recovering CH4 from natural gas hydrates with the injection of CO2-N2 gas mixtures [J]. Energy & Fuels, 2015, 29(2): 1099-1106.

    [101]

    Ouyang Q, Fan S S, Wang Y H, et al. Enhanced methane production efficiency with in situ intermittent heating assisted CO2 replacement of hydrates [J]. Energy & Fuels, 2020, 34(10): 12476-12485.

    [102]

    操原. 二氧化碳与氮气混合气辅热联合置换开采天然气水合物实验研究[D]. 华南理工大学硕士学位论文, 2018.

    CAO Yuan. Experimental study on gas hydrate exploitation by combining N2 and CO2 mixture replacement and heat injection[D]. Master Dissertation of South China University of Technology, 2018.

    [103]

    Masuda Y. Methane recovery from hydrate-bearing sediments by N2-CO2 gas mixture injection: experimental investigation on CO2-CH4 exchange ratio[C]//International Conference on Gas Hydrate. 2011.

    [104]

    Tupsakhare S S, Castaldi M J. Efficiency enhancements in methane recovery from natural gas hydrates using injection of CO2/N2 gas mixture simulating in-situ combustion [J]. Applied Energy, 2019, 236: 825-836. doi: 10.1016/j.apenergy.2018.12.023

    [105]

    余静薇, 祁影霞, 魏欣宇. Ar提高CO2置换CH4水合物置换率研究[J]. 热能动力工程, 2020, 35(6):251-256

    YU Jingwei, QI Yingxia, WEI Xinyu. Promotion of replacement rate of CH4 hydrates with CO2 by adding small Ar gas [J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(6): 251-256.

    [106]

    Okwananke A, Yang J H, Tohidi B, et al. Enhanced depressurisation for methane recovery from gas hydrate reservoirs by injection of compressed air and nitrogen [J]. The Journal of Chemical Thermodynamics, 2018, 117: 138-146. doi: 10.1016/j.jct.2017.09.028

    [107]

    穆德富, 祁影霞. 热激励的CO2置换CH4水合物的实验研究[J]. 能源研究与信息, 2017, 33(1):13-18

    MU Defu, QI Yingxia. Experimental study on the replacement of methane hydrate by CO2 with thermal excitation [J]. Energy Research and Information, 2017, 33(1): 13-18.

    [108]

    Zhang L X, Yang L, Wang J Q, et al. Enhanced CH4 recovery and CO2 storage via thermal stimulation in the CH4/CO2 replacement of methane hydrate [J]. Chemical Engineering Journal, 2017, 308: 40-49. doi: 10.1016/j.cej.2016.09.047

    [109]

    Stanwix P L, Rathnayake N M, De Obanos F P P, et al. Characterising thermally controlled CH4-CO2 hydrate exchange in unconsolidated sediments [J]. Energy & Environmental Science, 2018, 11(7): 1828-1840.

    [110]

    欧阳潜. 置换联合原位加热强化开采天然气水合物及逆置换研究[D]. 华南理工大学硕士学位论文, 2020.

    OUYANG Qian. Investigation of replacement combined with in-situ heating enhanced exploitation of natural gas hydrates and the inverse[D]. Master Dissertation of South China University of Technology, 2020.

    [111]

    张育诚. 注热及CO2/N2置换开采天然气水合物实验研究[D]. 华南理工大学硕士学位论文, 2019

    ZHANG Yucheng. Recovery CHA via thermal stimulation and CO2/N2 nreplacement of methane hydrate[D]. Master Dissertation of South China University of Technology, 2019.

    [112]

    Tupsakhare S S, Fitzgerald G C, Castaldi M J. Thermally assisted dissociation of methane hydrates and the impact of CO2 injection [J]. Industrial & Engineering Chemistry Research, 2016, 55(39): 10465-10476.

    [113]

    Zhao J F, Chen X Q, Song Y C, et al. Experimental study on a novel way of methane hydrates recovery: combining CO2 replacement and depressurization [J]. Energy Procedia, 2014, 61: 75-79. doi: 10.1016/j.egypro.2014.11.910

    [114]

    Zhao J F, Zhang L X, Chen X Q, et al. Combined replacement and depressurization methane hydrate recovery method [J]. Energy Exploration & Exploitation, 2016, 34(1): 129-139.

    [115]

    Ouyang Q, Pandey J S, Von Solms N. Critical parameters influencing mixed CH4/CO2 hydrates dissociation during multistep depressurization[J]. Fuel, 2022, 320: 123985.

    [116]

    Lee Y, Deusner C, Kossel E, et al. Influence of CH4 hydrate exploitation using depressurization and replacement methods on mechanical strength of hydrate-bearing sediment [J]. Applied Energy, 2020, 277: 115569. doi: 10.1016/j.apenergy.2020.115569

    [117]

    Mohammadi A H, Eslamimanesh A, Richon D. Semi-clathrate hydrate phase equilibrium measurements for the CO2+H2/CH4+tetra-n-butylammonium bromide aqueous solution system [J]. Chemical Engineering Science, 2013, 94: 284-290. doi: 10.1016/j.ces.2013.01.063

    [118]

    龙小军. TBAB和TEAB存在下水合物法生物气脱碳技术研究[D]. 华南理工大学硕士学位论文, 2017.

    LONG Xiaojun. Study on hydrate based biogas decarburization technology in the presence of TBAB and TEAB[D]. Master Dissertation of South China University of Technology, 2017.

    [119]

    Babu P, Chin W I, Kumar R, et al. Systematic evaluation of tetra-n-butyl ammonium bromide (TBAB) for carbon dioxide capture employing the clathrate process [J]. Industrial & Engineering Chemistry Research, 2014, 53(12): 4878-4887.

    [120]

    王乐, 祁影霞, 邢艳青, 等. 置换法开采天然气水合物的实验研究[J]. 现代化工, 2014, 34(4):89-92 doi: 10.16606/j.cnki.issn0253-4320.2014.04.043

    WANG Le, QI Yingxia, XING Yanqing, et al. Experimental study on exploitation of natural gas hydrate by replacement with CO2 [J]. Modern Chemical Industry, 2014, 34(4): 89-92. doi: 10.16606/j.cnki.issn0253-4320.2014.04.043

    [121]

    Ricaurte M, Dicharry C, Renaud X, et al. Combination of surfactants and organic compounds for boosting CO2 separation from natural gas by clathrate hydrate formation [J]. Fuel, 2014, 122: 206-217. doi: 10.1016/j.fuel.2014.01.025

    [122]

    Gambelli A M, Castellani B, Nicolini A, et al. Water salinity as potential aid for improving the carbon dioxide replacement process’ effectiveness in natural gas hydrate reservoirs [J]. Processes, 2020, 8(10): 1298. doi: 10.3390/pr8101298

    [123]

    Gambelli A M, Castellani B, Filipponi M, et al. Chemical inhibitors as potential allied for CO2 replacement in gas hydrates reservoirs: Sodium chloride case study[C]//Proceedings of the 6th World Congress on Mechanical, Chemical, and Material Engineering (MCM'20). Prague, Czech Republic: ICCPE, 2020, 18.

    [124]

    Liu X J, Ren J J, Chen D Y, et al. Comparison of SDS and L-Methionine in promoting CO2 hydrate kinetics: Implication for hydrate-based CO2 storage [J]. Chemical Engineering Journal, 2022, 438: 135504. doi: 10.1016/j.cej.2022.135504

  • 加载中

(2)

(4)

计量
  • 文章访问数:  3257
  • PDF下载数:  142
  • 施引文献:  0
出版历程
收稿日期:  2022-03-21
修回日期:  2022-05-17
刊出日期:  2023-02-28

目录