-
摘要:
当前出于对全球气候变化的担心以及获取能源资源的需求,甲烷日渐成为人类社会关注的焦点。海洋中聚集了巨量的天然气水合物,存在与甲烷有关的多种重要生化作用,支持了海底繁盛的化能自养合成生物群落,有效调节了进入大气的甲烷通量,在全球碳循环中的地位无可替代。同时,因天然气水合物动态活动造成的甲烷泄漏是岩石圈向外部圈层进行物质和能量输送的重要途径,对海洋环境有着深远影响。系统介绍了现代海底甲烷泄漏的地质控制因素、沉积物和水体对富甲烷流体的消耗、海洋甲烷循环模拟研究以及全球典型海域甲烷观测及相关研究成果,最后指出了海洋甲烷循环研究发展趋势。综合考虑了环境、生物和技术因素对海洋甲烷循环的影响和限制,从一个地质工作者的视角对阶段成果和存在问题进行审视,并提出了自己的思考,借此引发全社会对与甲烷有关的重大科学问题及海洋观测技术的重视与支持。
Abstract:Out of concern for global climate change and the demand for energy resources, methane has increasingly become the current focus of human society. A large amount of natural gas hydrate is stored in the ocean, which has many important biochemical reactions related to methane, supports the prosperous chemoautotrophic synthetic biological community on the seabed, effectively regulates the methane flux into the atmosphere, and plays an irreplaceable role in the global carbon cycle. At the same time, methane seepage caused by the dynamic activity of natural gas hydrate is a critical way to transport material and energy from the lithosphere to the outer sphere, which has a far-reaching impact on the marine environment. In this paper, we systematically introduce the geological control factors of modern seabed methane seepage, the consumption of methane by sediments and water columns, the simulation research of marine methane cycle, the methane observation and relevant research results in typical sea areas, and finally points out the development trend of marine methane cycle research. This review comprehensively considers the influence and limitation of environmental, biological and technological factors on the marine methane cycle, examines the temporary achievements and existing problems from the perspective of a geologist, and puts forward our own thinking, hoping to arouse the attention and support of the whole society to the major scientific problems related to methane and subsequent marine observation technology.
-
图 2 东西伯利亚陆架区海水中溶解甲烷的含量、分布及海气通量[64]
Figure 2.
图 3 南海“海马”冷泉[70]
Figure 3.
图 4 斯瓦尔巴外海天然气水合物稳定带界线附近分布的冷泉活动探测图[22]
Figure 4.
图 6 利用回声探测获得的泥火山MV1处气体释放羽状流成像[96]
Figure 6.
-
[1] Reeburgh W S. Oceanic methane biogeochemistry [J]. Chemical Reviews, 2007, 107(2): 486-513. doi: 10.1021/cr050362v
[2] Dickens G R, Castillo M M, Walker J C. A blast of gas in the latest Paleocene: simulating first-order effects of massive dissociation of oceanic methane hydrate [J]. Geology, 1997, 25(3): 259-262. doi: 10.1130/0091-7613(1997)025<0259:ABOGIT>2.3.CO;2
[3] Kennett J P, Cannariato K G, Hendy I L, et al. Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials [J]. Science, 2000, 288(5463): 128-133. doi: 10.1126/science.288.5463.128
[4] Kennett J P, Cannariato K G, Hendy I L, et al. Methane Hydrates in Quaternary Climate Change: The Clathrate Gun Hypothesis[M]. Washington: American Geophysical Union, 2003.
[5] Ruppel C D, Kessler J D. The interaction of climate change and methane hydrates [J]. Reviews of Geophysics, 2017, 55(1): 126-168. doi: 10.1002/2016RG000534
[6] Boetius A, Wenzhöfer F. Seafloor oxygen consumption fuelled by methane from cold seeps [J]. Nature Geoscience, 2013, 6(9): 725-734. doi: 10.1038/ngeo1926
[7] 蔡峰, 吴能友, 闫桂京, 等. 海洋浅表层天然气水合物成藏特征[J]. 海洋地质前沿, 2020, 36(9):73-78 doi: 10.16028/j.1009-2722.2020.117
CAI Feng, WU Nengyou, YAN Guijing, et al. Characteristics of shallow gas hydrates accumulation in the sea [J]. Marine Geology Frontiers, 2020, 36(9): 73-78. doi: 10.16028/j.1009-2722.2020.117
[8] 孙治雷, 何拥军, 李军, 等. 海洋环境中甲烷厌氧氧化机理及环境效应[J]. 地球科学进展, 2012, 27(11):1262-1273
SUN Zhilei, HE Yongjun, LI Jun, et al. Progress and environmental effect in seafloor anaerobic oxidation of methane [J]. Advances in Earth Science, 2012, 27(11): 1262-1273.
[9] McIver R D. Gas hydrate[M]//Meyer R F, Olson C. Long-Term Energy Resources. Boston: Pitman, 1981: 713-726.
[10] Talukder A R. Review of submarine cold seep plumbing systems: leakage to seepage and venting [J]. Terra Nova, 2012, 24(4): 255-272. doi: 10.1111/j.1365-3121.2012.01066.x
[11] Reay D S, Smith P, Christensen T R, et al. Methane and global environmental change [J]. Annual Review of Environment and Resources, 2018, 43: 165-192. doi: 10.1146/annurev-environ-102017-030154
[12] German C R, Seyfried Jr W E. Hydrothermal processes[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 2014: 191-233.
[13] Waage M, Portnov A, Serov P, et al. Geological controls on fluid flow and gas hydrate pingo development on the Barents Sea margin [J]. Geochemistry, Geophysics, Geosystems, 2019, 20(2): 630-650. doi: 10.1029/2018GC007930
[14] Andreassen K, Hubbard A, Winsborrow M, et al. Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor [J]. Science, 2017, 356(6341): 948-953. doi: 10.1126/science.aal4500
[15] Solomon E A, Kastner M, MacDonald I R, et al. Considerable methane fluxes to the atmosphere from hydrocarbon seeps in the Gulf of Mexico [J]. Nature Geoscience, 2009, 2(8): 561-565. doi: 10.1038/ngeo574
[16] Shakhova N, Semiletov I, Leifer I, et al. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf [J]. Nature Geoscience, 2014, 7: 64-70. doi: 10.1038/ngeo2007
[17] Freire A F M, Matsumoto R, Akiba F. Geochemical analysis as a complementary tool to estimate the uplift of sediments caused by shallow gas hydrates in mounds at the seafloor of joetsu basin, eastern margin of the Japan Sea [J]. Journal of Geological Research, 2012, 2012: 839840.
[18] Tréhu A M, Flemings P B, Bangs N L, et al. Feeding methane vents and gas hydrate deposits at south Hydrate Ridge [J]. Geophysical Research Letters, 2004, 31(23): L23310.
[19] Xu W Y, Germanovich L N. Excess pore pressure resulting from methane hydrate dissociation in marine sediments: a theoretical approach [J]. Journal of Geophysical Research:Solid Earth, 2006, 111(B1): B01104. doi: 10.1029/2004JB003600
[20] Fischer D, Mogollón J M, Strasser M, et al. Subduction zone earthquake as potential trigger of submarine hydrocarbon seepage [J]. Nature Geoscience, 2013, 6(8): 647-651. doi: 10.1038/ngeo1886
[21] Boles J R, Clark J F, Leifer I, et al. Temporal variation in natural methane seep rate due to tides, Coal Oil Point area, California [J]. Journal of Geophysical Research:Oceans, 2001, 106(C11): 27077-27086. doi: 10.1029/2000JC000774
[22] Ferré B, Jansson P G, Moser M, et al. Reduced methane seepage from Arctic sediments during cold bottom-water conditions [J]. Nature Geoscience, 2020, 13(2): 144-148. doi: 10.1038/s41561-019-0515-3
[23] 苏明, 沙志彬, 匡增桂, 等. 海底峡谷侵蚀-沉积作用与天然气水合物成藏[J]. 现代地质, 2015, 29(1):155-162 doi: 10.3969/j.issn.1000-8527.2015.01.019
SU Ming, SHA Zhibin, KUANG Zenggui, et al. Erosion and sedimentation of the submarine canyons and the relationship with gas hydrate accumulation [J]. Geoscience, 2015, 29(1): 155-162. doi: 10.3969/j.issn.1000-8527.2015.01.019
[24] Paull C K, Schlining B, Ussler III W, et al. Distribution of chemosynthetic biological communities in Monterey Bay, California [J]. Geology, 2005, 33(2): 85-88. doi: 10.1130/G20927.1
[25] 韩喜球, 杨克红, 黄永样. 南海东沙东北冷泉流体的来源和性质: 来自烟囱状冷泉碳酸盐岩的证据[J]. 科学通报, 2013, 58(30):3689-3697 doi: 10.1007/s11434-013-5819-x
HAN Xiqiu, YANG Kehong, HUANG Yongxiang. Origin and nature of cold seep in northeastern Dongsha area, South China Sea: evidence from chimney-like seep carbonates [J]. Chinese Science Bulletin, 2013, 58(30): 3689-3697. doi: 10.1007/s11434-013-5819-x
[26] Tryon M D, Brown K M, Torres M E, et al. Measurements of transience and downward fluid flow near episodic methane gas vents, Hydrate Ridge, Cascadia [J]. Geology, 1999, 27(12): 1075-1078. doi: 10.1130/0091-7613(1999)027<1075:MOTADF>2.3.CO;2
[27] Niemann H, Lösekann T, De Beer D, et al. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink [J]. Nature, 2006, 443(7113): 854-858. doi: 10.1038/nature05227
[28] Alperin M, Hoehler T. The ongoing mystery of sea-floor methane [J]. Science, 2010, 329(5989): 288-289. doi: 10.1126/science.1189966
[29] Beal E J, House C H, Orphan V J. Manganese-and iron-dependent marine methane oxidation [J]. Science, 2009, 325(5937): 184-187. doi: 10.1126/science.1169984
[30] Egger M, Rasigraf O, Sapart C J, et al. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments [J]. Environmental Science & Technology, 2015, 49(1): 277-283.
[31] Sun Z L, Wu N Y, Cao H, et al. Hydrothermal metal supplies enhance the benthic methane filter in oceans: an example from the Okinawa Trough [J]. Chemical Geology, 2019, 525: 190-209. doi: 10.1016/j.chemgeo.2019.07.025
[32] Xie R, Wu D D, Liu J, et al. Geochemical evidence of metal-driven anaerobic oxidation of methane in the Shenhu area, the South China Sea [J]. International Journal of Environmental Research and Public Health, 2019, 16(19): 3559. doi: 10.3390/ijerph16193559
[33] Valentine D L. Emerging topics in marine methane biogeochemistr-y [J]. Annual Review of Marine Science, 2011, 3: 147-171. doi: 10.1146/annurev-marine-120709-142734
[34] Pohlman J W, Riedel M, Bauer J E, et al. Anaerobic methane oxidation in low-organic content methane seep sediments [J]. Geochimica et Cosmochimica Acta, 2013, 108: 184-201. doi: 10.1016/j.gca.2013.01.022
[35] Luff R, Wallmann K. Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at hydrate ridge, Cascadia Margin: numerical modeling and mass balances [J]. Geochimica et Cosmochimica Acta, 2003, 67(18): 3403-3421. doi: 10.1016/S0016-7037(03)00127-3
[36] Karaca D, Hensen C, Wallmann K. Controls on authigenic carbonate precipitation at cold seeps along the convergent margin off Costa Rica [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(8): Q08S27.
[37] Wallmann K, Drews M, Aloisi G, et al. Methane discharge into the Black Sea and the global ocean via fluid flow through submarine mud volcanoes [J]. Earth and Planetary Science Letters, 2006, 248(1-2): 545-560. doi: 10.1016/j.jpgl.2006.06.026
[38] Martens C S, Val Klump J. Biogeochemical cycling in an organic-rich coastal marine basin–I. Methane sediment-water exchange processes [J]. Geochimica et Cosmochimica Acta, 1980, 44(3): 471-490. doi: 10.1016/0016-7037(80)90045-9
[39] Ransom B, Bennett R H, Baerwald R, et al. In situ conditions and interactions between microbes and minerals in fine-grained marine sediments: a TEM microfabric perspective [J]. American Mineralogist, 1999, 84(1-2): 183-192. doi: 10.2138/am-1999-1-220
[40] Dale A W, Van Cappellen P, Aguilera D R, et al. Methane efflux from marine sediments in passive and active margins: estimations from bioenergetic reaction–transport simulations [J]. Earth and Planetary Science Letters, 2008, 265(3-4): 329-344. doi: 10.1016/j.jpgl.2007.09.026
[41] Boudreau B P, Ruddick B R. On a reactive continuum representation of organic matter diagenesis [J]. American Journal of Science, 1991, 291(5): 507-538. doi: 10.2475/ajs.291.5.507
[42] Van Cappellen P, Wang Y F. Cycling of iron and manganese in surface sediments; a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron, and manganese [J]. American Journal of Science, 1996, 296(3): 197-243. doi: 10.2475/ajs.296.3.197
[43] Nauhaus K, Boetius A, Krüger M, et al. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area [J]. Environmental Microbiology, 2002, 4(5): 296-305. doi: 10.1046/j.1462-2920.2002.00299.x
[44] Riedinger N, Pfeifer K, Kasten S, et al. Diagenetic alteration of magnetic signals by anaerobic oxidation of methane related to a change in sedimentation rate [J]. Geochimica et Cosmochimica Acta, 2005, 69(16): 4117-4126. doi: 10.1016/j.gca.2005.02.004
[45] Gardiner B S, Boudreau B P, Johnson B D. Growth of disk-shaped bubbles in sediments [J]. Geochimica et Cosmochimica Acta, 2003, 67(8): 1485-1494. doi: 10.1016/S0016-7037(02)01072-4
[46] Wegener G, Knittel K, Bohrmann G, et al. Benthic deep-sea life associated with asphaltic hydrocarbon emissions in the Southern gulf of mexico[M]//Teske A, Carvalho V. Marine Hydrocarbon Seeps. Cham: Springer, 2020: 101-123.
[47] Dong X Y, Greening C, Rattray J E, et al. Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage in deep-sea sediments [J]. Nature Communications, 2019, 10: 1816. doi: 10.1038/s41467-019-09747-0
[48] Leonte M, Kessler J D, Kellermann M Y, et al. Rapid rates of aerobic methane oxidation at the feather edge of gas hydrate stability in the waters of Hudson Canyon, US Atlantic margin [J]. Geochimica et Cosmochimica Acta, 2017, 204: 375-387. doi: 10.1016/j.gca.2017.01.009
[49] Sauter E J, Muyakshin S I, Charlou J L, et al. Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles [J]. Earth and Planetary Science Letters, 2006, 243(3-4): 354-365. doi: 10.1016/j.jpgl.2006.01.041
[50] Veloso‐Alarcón M E, Jansson P, De Batist M, et al. Variability of acoustically evidenced methane bubble emissions offshore western Svalbard [J]. Geophysical Research Letters, 2019, 46(15): 9072-9081. doi: 10.1029/2019GL082750
[51] Crespo-Medina M, Meile C D, Hunter K S, et al. The rise and fall of methanotrophy following a deepwater oil-well blowout [J]. Nature Geoscience, 2014, 7(6): 423-427. doi: 10.1038/ngeo2156
[52] Steinle L, Graves C A, Treude T, et al. Water column methanotrophy controlled by a rapid oceanographic switch [J]. Nature Geoscience, 2015, 8(5): 378-382. doi: 10.1038/ngeo2420
[53] Römer M, Wenau S, Mau S, et al. Assessing marine gas emission activity and contribution to the atmospheric methane inventory: a multidisciplinary approach from the dutch dogger bank seep area (north sea) [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(7): 2617-2633. doi: 10.1002/2017GC006995
[54] Biastoch A, Treude T, Rüpke L H, et al. Rising arctic ocean temperatures cause gas hydrate destabilization and ocean acidification [J]. Geophysical Research Letters, 2011, 38(8): L08602. doi: 10.1029/2011GL047222
[55] Reeburgh W S, Ward B B, Whalen S C, et al. Black sea methane geochemistry [J]. Deep Sea Research Part A. Oceanographic Research Papers, 1991, 38(S2): S1189-S1210.
[56] Mau S, Tu T H, Becker M, et al. Methane seeps and independent methane plumes in the South China Sea offshore Taiwan [J]. Frontiers in Marine Science, 2020, 7: 543. doi: 10.3389/fmars.2020.00543
[57] Fu X, Waite W F, Ruppel C D. Hydrate formation on marine seep bubbles and the implications for water column methane dissolution [J]. Journal of Geophysical Research:Oceans, 2021, 126(9): e2021JC017363.
[58] Seelig H D, Hoehn A, Stodieck L S, et al. The assessment of leaf water content using leaf reflectance ratios in the visible, near‐, and short‐wave‐infrared [J]. International Journal of Remote Sensing, 2008, 29(13): 3701-3713. doi: 10.1080/01431160701772500
[59] Michel A P M, Preston V L, Fauria K E, et al. Observations of shallow methane bubble emissions from Cascadia Margin [J]. Frontiers in Earth Science, 2021, 9: 613234. doi: 10.3389/feart.2021.613234
[60] Yamazaki T, Nakano Y, Monoe D, et al. A model analysis of methane plume behavior in an ocean water column[C]//Proceedings of the 16th International Offshore and Polar Engineering Conference. San Francisco: SPE, 2006.
[61] Graves C A, Steinle L, Rehder G, et al. Fluxes and fate of dissolved methane released at the seafloor at the landward limit of the gas hydrate stability zone offshore western Svalbard [J]. Journal of Geophysical Research:Oceans, 2015, 120(9): 6185-6201. doi: 10.1002/2015JC011084
[62] Nihous G C, Masutani S M. Notes on the dissolution rate of gas hydrates in undersaturated water [J]. Chemical Engineering Science, 2006, 61(23): 7827-7830. doi: 10.1016/j.ces.2005.09.010
[63] Bange H W, Bartell U H, Rapsomanikis S, et al. Methane in the baltic and north seas and a reassessment of the marine emissions of methane [J]. Global Biogeochemical Cycles, 1994, 8(4): 465-480. doi: 10.1029/94GB02181
[64] Shakhova N, Semiletov I, Salyuk A, et al. Extensive methane venting to the atmosphere from sediments of the east siberian arctic shelf [J]. Science, 2010, 327(5970): 1246-1250. doi: 10.1126/science.1182221
[65] 曹兴朋, 张桂玲, 马啸, 等. 春季东、黄海溶解甲烷的分布和海气交换通量[J]. 环境科学, 2013, 34(7):2565-2573 doi: 10.13227/j.hjkx.2013.07.027
CAO Xingpeng, ZHANG Guiling, MA Xiao, et al. Distribution and air-sea fluxes of methane in the Yellow Sea and the East China Sea in the spring [J]. Environmental Science, 2013, 34(7): 2565-2573. doi: 10.13227/j.hjkx.2013.07.027
[66] 陈多福, 陈先沛, 陈光谦. 冷泉流体沉积碳酸盐岩的地质地球化学特征[J]. 沉积学报, 2002, 20(1):34-40 doi: 10.3969/j.issn.1000-0550.2002.01.007
CHEN Duofu, CHEN Xianpei, CHEN Guangqian. Geology and geochemistry of cold seepage and venting-related carbonates [J]. Acta Sedimentologica Sinica, 2002, 20(1): 34-40. doi: 10.3969/j.issn.1000-0550.2002.01.007
[67] Feng D, Qiu J W, Hu Y, et al. Cold seep systems in the South China Sea: an overview [J]. Journal of Asian Earth Sciences, 2018, 168: 3-16. doi: 10.1016/j.jseaes.2018.09.021
[68] 阎贫, 王彦林, 郑红波, 等. 东沙群岛西南海区泥火山的地球物理特征[J]. 海洋学报, 2014, 36(7):142-148
YAN Pin, WANG Yanlin, ZHENG Hongbo, et al. Geophysical features of mud volcanoes in the waters southwest of Dongsha Islands [J]. Acta Oceanologica Sinica, 2014, 36(7): 142-148.
[69] Liang Q Y, Hu Y, Feng D, et al. Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: constraints on fluid sources, formation environments, and seepage dynamics [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2017, 124: 31-41. doi: 10.1016/j.dsr.2017.04.015
[70] Xu H C, Du M R, Li J T, et al. Spatial distribution of seepages and associated biological communities within Haima cold seep field, South China Sea [J]. Journal of Sea Research, 2020, 165: 101957. doi: 10.1016/j.seares.2020.101957
[71] Sun Q L, Wu S G, Cartwright J, et al. Shallow gas and focused fluid flow systems in the Pearl River Mouth Basin, northern South China Sea [J]. Marine Geology, 2012, 315-318: 1-14. doi: 10.1016/j.margeo.2012.05.003
[72] Sun Q L, Wu S G, Cartwright J, et al. Focused fluid flow systems of the Zhongjiannan Basin and Guangle Uplift, South China Sea [J]. Basin Research, 2013, 25(1): 97-111. doi: 10.1111/j.1365-2117.2012.00551.x
[73] Chen J X, Song H B, Guan Y X, et al. Morphologies, classification and genesis of pockmarks, mud volcanoes and associated fluid escape features in the northern Zhongjiannan Basin, South China Sea [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2015, 122: 106-117. doi: 10.1016/j.dsr2.2015.11.007
[74] Chen J X, Song H B, Guan Y X, et al. Geological and oceanographic controls on seabed fluid escape structures in the northern Zhongjiannan Basin, South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 38-47. doi: 10.1016/j.jseaes.2018.04.027
[75] Guan H X, Feng D, Wu N Y, et al. Methane seepage intensities traced by biomarker patterns in authigenic carbonates from the South China Sea [J]. Organic Geochemistry, 2016, 91: 109-119. doi: 10.1016/j.orggeochem.2015.11.007
[76] Zhang X, Du Z F, Luan Z D, et al. In situ Raman detection of gas hydrates exposed on the seafloor of the South China Sea [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(10): 3700-3713. doi: 10.1002/2017GC006987
[77] Chen F, Hu Y, Feng D, et al. Evidence of intense methane seepages from molybdenum enrichments in gas hydrate-bearing sediments of the northern South China Sea [J]. Chemical Geology, 2016, 443: 173-181. doi: 10.1016/j.chemgeo.2016.09.029
[78] Deng Y N, Chen F, Hu Y, et al. Methane seepage patterns during the middle Pleistocene inferred from molybdenum enrichments of seep carbonates in the South China Sea [J]. Ore Geology Reviews, 2020, 125: 103701. doi: 10.1016/j.oregeorev.2020.103701
[79] Li N, Yang X Q, Peckmann J, et al. Persistent oxygen depletion of bottom waters caused by methane seepage: evidence from the South China Sea [J]. Ore Geology Reviews, 2021, 129: 103949. doi: 10.1016/j.oregeorev.2020.103949
[80] Liu S, Feng X L, Feng Z Q, et al. Geochemical evidence of methane seepage in the sediments of the qiongdongnan basin, South China Sea [J]. Chemical Geology, 2020, 543: 119588. doi: 10.1016/j.chemgeo.2020.119588
[81] Jin M, Feng D, Huang K, et al. Behavior of Mg isotopes during precipitation of methane-derived carbonate: evidence from tubular seep carbonates from the South China Sea [J]. Chemical Geology, 2021, 567: 120101. doi: 10.1016/j.chemgeo.2021.120101
[82] Berndt C, Feseker T, Treude T, et al. Temporal constraints on hydrate-controlled methane seepage off Svalbard [J]. Science, 2014, 343(6168): 284-287. doi: 10.1126/science.1246298
[83] 吴能友, 孙治雷, 卢建国, 等. 冲绳海槽海底冷泉-热液系统相互作用[J]. 海洋地质与第四纪地质, 2019, 39(5):23-35 doi: 10.16562/j.cnki.0256-1492.2019070102
WU Nengyou, SUN Zhilei, LU Jianguo, et al. Interaction between seafloor cold seeps and adjacent hydrothermal activities in the Okinawa Trough [J]. Marine Geology & Quaternary Geology, 2019, 39(5): 23-35. doi: 10.16562/j.cnki.0256-1492.2019070102
[84] Wu N Y, Xu C L, Li A, et al. Oceanic carbon cycle in a symbiotic zone between hydrothermal vents and cold seeps in the Okinawa Trough [J]. Geosystems and Geoenvironment, 2022, 1(3): 100059. doi: 10.1016/j.geogeo.2022.100059
[85] Cao H, Sun Z L, Wu N Y, et al. Mineralogical and geochemical records of seafloor cold seepage history in the northern Okinawa Trough, East China Sea [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2020, 155: 103165. doi: 10.1016/j.dsr.2019.103165
[86] Li A, Cai F, Wu N, et al. Structural controls on widespread methane seeps in the back-arc basin of the Mid-Okinawa Trough [J]. Ore Geology Reviews, 2021, 129: 103950. doi: 10.1016/j.oregeorev.2020.103950
[87] Sun Z L, Li J, Huang W, et al. Generation of hydrothermal Fe-Si oxyhydroxide deposit on the Southwest Indian Ridge and its implication for the origin of ancient banded iron [J]. Journal of Geophysical Research:Biogeosciences, 2015, 120(1): 187-203. doi: 10.1002/2014JG002764
[88] Lin G M, Lu J G, Sun Z L, et al. Characterization of tissue-associated bacterial community of two Bathymodiolus species from the adjacent cold seep and hydrothermal vent environments [J]. Science of the Total Environment, 2021, 796: 149046. doi: 10.1016/j.scitotenv.2021.149046
[89] Zhang X R, Sun Z L, Fan D J, et al. Compositional characteristics and sources of DIC and DOC in seawater of the Okinawa Trough, East China Sea [J]. Continental Shelf Research, 2019, 174: 108-117. doi: 10.1016/j.csr.2018.12.014
[90] Xu C L, Wu N Y, Sun Z L, et al. Assessing methane cycling in the seep sediments of the mid-Okinawa Trough: insights from pore-water geochemistry and numerical modeling [J]. Ore Geology Reviews, 2021, 129: 103909. doi: 10.1016/j.oregeorev.2020.103909
[91] Judd A, Hovland M. Seabed Fluid Flow: the Impact on Geology, Biology and the Marine Environment[M]. Cambridge: Cambridge University Press, 2009.
[92] 党宏月, 李嘉. 变化海洋中的甲烷气候临爆点潜力及生成悖论[J]. 中国科学:地球科学, 2018, 61(12):1714-1727 doi: 10.1007/s11430-017-9265-y
DANG Hongyue, LI Jia. Climate tipping-point potential and paradoxical production of methane in a changing ocean [J]. Science China Earth Sciences, 2018, 61(12): 1714-1727. doi: 10.1007/s11430-017-9265-y
[93] Daines S J, Lenton T M. The effect of widespread early aerobic marine ecosystems on methane cycling and the Great Oxidation [J]. Earth and Planetary Science Letters, 2016, 434: 42-51. doi: 10.1016/j.jpgl.2015.11.021
[94] Yung Y L, Chen P. Methane on Mars [J]. Astrobiology & Outreach, 2015, 3(1): 1000125.
[95] 李超伦, 李富超. 深海极端环境与生命过程研究现状与对策[J]. 中国科学院院刊, 2016, 31(12):1302-1307 doi: 10.16418/j.issn.1000-3045.2016.12.003
LI Chaolun, LI Fuchao. Extreme environment and life process in deep-sea: research status and strategies [J]. Bulletin of Chinese Academy of Sciences, 2016, 31(12): 1302-1307. doi: 10.16418/j.issn.1000-3045.2016.12.003
[96] Hsu S K, Wang S Y, Liao Y C, et al. Tide-modulated gas emissions and tremors off SW Taiwan [J]. Earth and Planetary Science Letters, 2013, 369-370: 98-107. doi: 10.1016/j.jpgl.2013.03.013
[97] 邸鹏飞, 陈庆华, 陈多福. 海底冷泉渗漏气体流量原位在线测量技术研究[J]. 热带海洋学报, 2012, 31(5):83-87 doi: 10.3969/j.issn.1009-5470.2012.05.012
DI Pengfei, CHEN Qinghua, CHEN Duofu. In situ on-line measuring device of gas seeping flux at marine seep sites and experimental study [J]. Journal of Tropical Oceanography, 2012, 31(5): 83-87. doi: 10.3969/j.issn.1009-5470.2012.05.012