Constrains of seepage fluids based on the characteristics of authigenic deposition from Conical serpentinite mud volcano in the Mariana forearc
-
摘要:
马里亚纳弧前蛇纹岩泥火山顶部海底发育由低温碱性流体渗漏形成的自生沉积物,记录了渗漏流体特征,对俯冲带的物质循环研究有重要意义。但目前对复杂矿物组成的自生沉积物及其所指示的渗漏流体信息仍不清楚。对采自马里亚纳弧前Conical蛇纹岩泥火山的自生沉积物进行了岩石学、矿物学及主量和微量元素分析。结果表明,Conical蛇纹岩泥火山自生沉积物呈疏松多孔状,极易碎,碎块主要呈薄片状和球粒状。薄片状碎块呈白色,主要由针状文石和棱柱状方解石组成,CaO含量较高(49.3%~53.3%),MgO含量较低(2.3%~4.5%)。球粒状碎块呈黄色或白色,为无定形镁硅酸盐,MgO含量较高 (25.5%~29.1%),CaO 含量较低(0.5%~2.9%)。碳酸盐岩碎块的总稀土含量(ΣREE)为227.2~4 136.6 ng/g;无定形镁硅酸盐碎块的ΣREE为115.4~364.9 ng/g,均显示轻微重稀土富集的平坦型配分模式。自生沉积物的稀土配分模式显示,除两个稀土含量相对较高的碳酸盐岩样品外,渗漏流体的贡献高于90%,说明两类样品均形成于较强的渗漏环境,并且碳酸盐及镁硅酸盐可能分别形成于“低硅型”和“高硅型”不同的流体活跃期。
Abstract:Authigenic depositions induced by low-temperature alkaline seepage fluids occur on the top of the Mariana forearc serpentinite mud volcanoes, which are archives of the seepage fluids and are significant for studying the material circulation of the subduction zone. However, little is known about the features of the authigenic depositions composed of multiple minerals and their recording of seepage fluids. In this paper, we investigated the petrology, mineralogy and major and trace element compositions of authigenic depositions collected from Conical serpentinite mud volcano in Mariana forearc. The authigenic depositions from Conical serpentinite mud volcano are loose and extremely friable into lamellar and spherical fragments. The lamellar fragments are white, mainly composed of needle-like aragonite and prismatic calcite, with high CaO contents (49.3%~53.3%) and low MgO contents (2.3%~4.5%). The spherical fragments are yellow or white, made of amorphous magnesium silicate, with high MgO contents (25.5%~29.1%) and low CaO contents (0.5%~2.9%). ΣREE of the carbonate fragments range from 227.2 ng/g to 4136.6 ng/g, while the ΣREE of the amorphous magnesium silicate fragments are from 115.4 ng/g to 364.9 ng/g. All samples show flat distribution patterns with slight enrichment of heavy rare earth elements. The rare earth element distribution patterns of authigenic depositions indicate that the contribution of seepage fluids is higher than 90% except for two carbonate samples with relatively high rare earth element contents. This suggests that all samples should form in the intense seepage environments, but the carbonates and magnesium silicates may be induced by varied types of seepage fluid, namely, "low-silica type" and "high-silica type".
-
表 1 Conical蛇纹岩泥火山自生沉积物主量元素特征
Table 1. Characteristics of major elements in authigenic deposition from Conical serpentine mud volcano
% 样品编号 碎块类型 MgO CaO Na2O Al2O3 P2O5 K2O Fe2O3-T h1 薄片状 2.3 53.3 1.1 0.02 0.02 0.01 0.010 9 h2 薄片状 3.8 50.1 1.2 0.11 0.03 0.02 0.073 6 h3 薄片状 4.5 49.3 1.3 0.00 0.03 0.02 0.0030 h4 薄片状 3.4 49.7 1.1 0.01 0.02 0.01 0.006 3 h5 薄片状 2.5 52.8 1.2 0.22 0.03 0.02 0.053 0 h6 薄片状 2.3 50.9 1.1 0.27 0.06 0.02 0.130 2 h7 混合碎块 8.6 39.3 1.3 0.02 0.03 0.05 0.011 8 h8 混合碎块 18.9 18.2 1.8 0.06 0.03 0.10 0.025 5 h9 混合碎块 11.6 33.9 1.4 0.01 0.02 0.06 0.003 0 h10 混合碎块 7.8 41.1 1.4 0.01 0.03 0.04 0.006 8 h11 混合碎块 22.5 11.2 2.1 0.02 0.03 0.11 0.008 0 h12 混合碎块 8.0 40.6 1.4 0.01 0.03 0.04 0.003 3 h13 球粒状 28.1 0.7 2.0 0.01 0.02 0.14 0.013 0 h14 球粒状 27.2 2.1 2.1 0.00 0.03 0.13 0.006 7 h15 球粒状 28.6 0.7 2.2 0.00 0.02 0.13 0.001 1 h16 球粒状 28.1 0.7 2.2 0.00 0.02 0.13 0.001 5 h17 球粒状 27.9 0.5 2.3 0.01 0.02 0.13 0.002 2 h18 球粒状 27.7 0.9 2.6 0.00 0.03 0.14 0.000 2 h19 球粒状 27.0 0.8 2.5 0.00 0.02 0.13 0.002 7 h20 球粒状 25.5 2.9 2.2 0.00 0.03 0.13 0.002 3 h21 球粒状 29.1 0.5 2.5 0.01 0.02 0.14 0.002 3 h22 球粒状 27.0 2.2 2.4 0.00 0.03 0.13 0.003 4 注:主量元素分析结果未包含碳和硅元素含量,以及部分氧元素含量。 表 2 Conical蛇纹岩泥火山自生沉积物稀土元素含量及特征
Table 2. Contents and characteristics of REE in authigenic deposition of Conical serpentinite mud volcano
ng/g 样品编号 La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu ΣREE Ce/Ce* Eu/Eu* h1 40.5 155.8 7.3 89.7 8.8 10.0 5.8 3.1 9.3 125.0 3.0 9.3 0.4 6.2 1.4 350.6 2.07 5.40 h2 89.1 168.9 29.4 121.6 14.0 16.7 37.4 6.3 28.6 371.7 10.3 26.4 2.3 29.8 3.0 583.7 0.75 2.36 h3 51.9 97.7 6.5 36.2 9.2 5.5 2.0 1.4 7.2 99.0 2.9 3.7 0.3 2.8 0.3 227.2 1.17 8.00 h4 51.0 147.4 15.6 66.6 4.6 13.9 12.3 1.9 11.8 118.4 3.2 7.0 − 8.5 1.1 344.9 1.19 5.33 h5 848.4 161.5 121.1 516.9 84.9 22.6 89.4 12.9 107.9 1 201.3 24.0 67.3 14.0 105.3 18.4 2 194.8 0.11 1.17 h6 1 620.9 547.2 245.7 1 020.1 174.9 45.2 127.2 16.7 125.7 1 079.9 26.7 70.5 16.2 85.2 14.6 4 136.6 0.20 1.48 h7 47.7 91.5 9.2 37.4 9.0 7.3 12.0 2.0 22.3 160.1 3.2 7.8 1.4 9.8 2.1 262.7 1.00 3.22 h8 55.8 127.5 20.0 82.3 30.3 12.9 38.6 6.5 56.0 461.0 13.5 27.1 5.9 33.3 5.2 514.8 0.86 1.88 h9 16.9 69.1 3.6 20.6 8.0 10.1 11.9 1.0 5.6 89.0 2.2 4.5 0.4 0.9 1.9 156.7 2.06 4.88 h10 35.0 67.8 8.6 31.0 2.0 7.1 5.6 2.8 11.0 114.3 3.1 7.5 0.4 10.8 1.5 194.3 0.90 5.96 h11 54.8 124.6 8.0 48.3 19.4 11.9 13.6 4.2 14.1 120.7 5.3 7.8 − 12.4 1.4 325.7 1.34 4.56 h12 49.2 86.0 5.5 42.1 15.1 8.4 24.7 1.8 11.1 104.6 4.1 6.0 − 4.1 0.8 258.8 1.13 1.96 h13 55.7 142.5 6.1 54.4 11.6 12.4 17.8 4.4 16.0 319.6 6.3 16.0 1.8 18.4 1.3 364.9 1.67 3.71 h14 32.6 77.2 5.3 23.1 6.4 4.1 6.0 1.1 9.9 80.0 4.3 7.4 0.5 2.7 2.5 183.2 1.33 3.47 h15 21.9 50.9 2.5 25.1 4.8 3.6 2.5 1.6 11.4 139.5 3.6 8.0 − 6.1 1.3 143.3 1.49 5.50 h16 9.8 70.8 1.0 17.0 − 6.6 − 0.3 0.7 58.8 2.1 3.9 0.5 1.6 1.2 115.4 4.78 37.14 h17 57.0 81.8 9.0 42.0 2.9 9.1 8.2 2.1 8.6 158.3 3.4 6.3 0.4 12.1 1.8 244.7 0.82 5.29 h18 8.5 105.6 3.2 8.1 3.1 9.5 8.2 1.7 8.0 109.1 1.6 3.7 0.1 5.0 0.7 167.0 4.57 7.01 h19 8.3 97.9 − − − 4.3 8.3 0.3 14.0 61.8 2.9 5.2 − 2.6 0.6 144.5 11.32 3.36 h20 16.8 58.1 4.1 4.0 1.0 4.6 8.0 1.0 5.1 121.1 2.9 7.3 2.2 8.9 3.8 127.9 1.61 3.61 h21 48.8 135.2 6.4 67.3 9.5 5.5 9.9 0.6 5.3 126.1 2.6 7.6 0.1 2.5 1.2 302.6 1.69 2.46 h22 10.0 77.6 1.7 6.0 0.9 7.3 4.0 0.6 9.8 74.2 2.5 5.5 0.8 4.4 0.3 131.5 4.30 10.67 Ce/Ce*=2CeN/(LaN+PrN),Pr/Pr*=2PrN/(CeN+NdN),Eu/Eu*=EuN/(0.33NdN+0.67GdN),ΣREE不包括Y。“−”表示未检出。 -
[1] Fryer P. Serpentinite mud volcanism: observations, processes, and implications [J]. Annual Review of Marine Science, 2012, 4(1): 345-373. doi: 10.1146/annurev-marine-120710-100922
[2] Frery E, Fryer P, Kurz W, et al. Episodicity of structural flow in an active subduction system, new insights from mud volcano's carbonate veins – Scientific Ocean drilling expedition IODP 366 [J]. Marine Geology, 2021, 434(3): 106431.
[3] Mottl M J, Wheat C G, Fryer P, et al. Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting plate [J]. Geochimica et Cosmochimica Acta, 2004, 68(23): 4915-4933. doi: 10.1016/j.gca.2004.05.037
[4] Haggerty J. Evidence from fluid seeps atop serpentine seamounts in the Mariana Forearc: clues for emplacement of the seamounts and their relationship to Forearc Tectonics [J]. Marine Geology, 1991, 102(1-4): 293-309. doi: 10.1016/0025-3227(91)90013-T
[5] Fryer P, Wheat C G, Williams T, et al. Mariana serpentinite mud volcanism exhumes subducted seamount materials: implications for the origin of life [J]. Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences, 2020, 378(2165): 20180425. doi: 10.1098/rsta.2018.0425
[6] Parkinson I J, Pearce J A. Peridotites from the Izu-Bonin-Mariana forearc (ODP leg 125): Evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting [J]. Journal of Petrology, 1998, 39(9): 1577-1618. doi: 10.1093/petroj/39.9.1577
[7] Savov I P, Ryan J G, D'antonio M, et al. Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: Implications for the elemental recycling at subduction zones [J]. Geochemistry, Geophysics, Geosystems, 2005, 6(4): 1-24.
[8] Fryer P, Ambos E L, Hussong D M. Origin and emplacement of Mariana forearc seamounts [J]. Geology, 1985, 13(11): 774-777. doi: 10.1130/0091-7613(1985)13<774:OAEOMF>2.0.CO;2
[9] Haggerty J A. Petrology and Geochemistry of Neocene Sedimentary Rocks from Mariana Forearc Seamounts: Implications for Emplacement of the Seamounts [M]. Washington DC American Geophysical Union Geophysical Monograph Series, 1987, 175-185.
[10] Savov I P, Ryan J G, D'antonio M, et al. Shallow slab fluid release across and along the Mariana arc-basin system: Insights from geochemistry of serpentinized peridotites from the Mariana fore arc [J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B9).
[11] Haggerty J, Fisher J. Short-Chain Organic Acids in Interstitial Waters from Mariana and Bonin Forearc Serpentines: Leg 125 [J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1992: 125.
[12] Fryer P, Wheat C G, Mottl M J. Mariana blueschist mud volcanism: Implications for conditions within the subduction zone [J]. Geology, 1999, 27(2): 103-106. doi: 10.1130/0091-7613(1999)027<0103:MBMVIF>2.3.CO;2
[13] Mottl M J, Komor S C, Fryer P, et al. Deep-slab fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: Ocean Drilling Program Leg 195 [J]. Geochemistry Geophysics Geosystems, 2003, 4(11): 1-14.
[14] Hulme S M, Wheat C G, Fryer P, et al. Pore water chemistry of the Mariana serpentinite mud volcanoes: A window to the seismogenic zone [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(1): Q01X09.
[15] Tran T H, Kato K, Wada H, et al. Processes involved in calcite and aragonite precipitation during carbonate chimney formation on Conical Seamount, Mariana Forearc: Evidence from geochemistry and carbon, oxygen, and strontium isotopes [J]. Journal of Geochemical Exploration, 2014, 137: 55-64. doi: 10.1016/j.gexplo.2013.11.013
[16] 佟宏鹏, 姚凯, 陈琳莹, 等. 马里亚纳弧前Quaker蛇纹岩泥火山自生烟囱生长模式[J]. 海洋地质与第四纪地质, 2021, 41(06):15-26 doi: 10.16562/j.cnki.0256-1492.2021062501
TONG Hongpeng, YAO Kai, CHEN Linying, et al. Formation model of authigenic chimneys on the Quaker serpentinite mud volcano in the Mariana forearc [J]. Marine Geology & Quaternary Geology, 2021, 41(06): 15-26. doi: 10.16562/j.cnki.0256-1492.2021062501
[17] Fryer P, Saboda K L, Johnson L E, et al. Conical Seamount: SeaMARC II, Alvin submersible, and seismic reflection studies [M]. //Fryer P, Pearce J A, Stokking L B, et al. Proceedings of the Ocean Drilling Program Initial Reports. College Station, TX: Ocean Drilling Program, 1990: 69-80.
[18] Yamanaka T, Mizota C, Satake H, et al. Stable isotope evidence for a putative endosymbiont-based lithotrophic bathymodiolus sp. mussel community atop a serpentine seamount [J]. Geomicrobiology Journal, 2003, 20(3): 185-197. doi: 10.1080/01490450303876
[19] Gharib J, J. Clastic metabasites and authigenic minerals within serpentinite protrusions from the Mariana forearc: Implications for subforearc subduction processes [D]. Ph. D. Dissertation. Honolulu: University of Hawaii, 2006.
[20] Mottl M J. Pore waters from serpentinite seamounts in the Mariana and Izu-Bonin forearcs, Leg 125: evidence for volatiles from the subducting slab. [C]//Fryer P, Pearce J A, Stokking L B, et al. Proceedings of the Ocean Drilling Program Scientific Results. College Station, TX: Ocean Drilling Program, 1992: 373-385.
[21] Fryer P, Mottl M, Johnson L, et al. Serpentine bodies in the forearcs of western pacific convergent margins: origin and associated fluids [J]. Active Margins and marginal basins of the Western Pacific, 1995: 259-279.
[22] Charlou J L, Donval J P, Fouquet Y, et al. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14'N, MAR) [J]. Chemical Geology, 2002, 191(4): 345-359. doi: 10.1016/S0009-2541(02)00134-1
[23] Mccollom T. M. Laboratory Simulations of Abiotic Hydrocarbon Formation in Earth's Deep Subsurface [J]. Reviews in Mineralogy & Geochemistry, 2013, 75(1): 467-494.
[24] Mccollom T M, Seewald J S. A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine [J]. Geochimica Et Cosmochimica Acta, 2001, 65(21): 3769-3778. doi: 10.1016/S0016-7037(01)00655-X
[25] Proskurowski G, Lilley M D, Seewald J S, et al. Abiogenic Hydrocarbon Production at Lost City Hydrothermal Field [J]. Science, 2008, 319(5863): 604-607. doi: 10.1126/science.1151194
[26] 丁兴, 刘志锋, 黄瑞芳, 等. 大洋俯冲带的水岩作用——蛇纹石化[J]. 工程研究-跨学科视野中的工程, 2016, 8(3):268
DING Xing, LIU Zhifeng, HUANG Ruifang, et al. Water-Rock Interaction in Oceanic Subduction Zone: Serpentinization [J]. Journal of Engineering Studies, 2016, 8(3): 268.
[27] Bebout G E. The impact of subduction-zone metamorphism on mantle-ocean chemical cycling [J]. Chemical Geology, 1995, 126(2): 191-218. doi: 10.1016/0009-2541(95)00118-5
[28] Wheat C G, Seewald J S, Takai K. Fluid transport and reaction processes within a serpentinite mud volcano: South Chamorro Seamount [J]. Geochimica et Cosmochimica Acta, 2020, 269: 413-428. doi: 10.1016/j.gca.2019.10.037
[29] 冯俊熙, 罗敏, 胡钰, 等. 海底蛇纹岩化伴生的碳酸盐岩研究进展[J]. 矿物岩石地球化学通报, 2016, 35(4):789-799 doi: 10.3969/j.issn.1007-2802.2016.04.019
FENG Junxi, LUO Min, HU Yu, et al. Progress of the Research on Authigenic Carbonates Associated with Oceanic Serpentinization [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(4): 789-799. doi: 10.3969/j.issn.1007-2802.2016.04.019
[30] Albers E, Shervais J, Hansen C, et al. Shallow depth, substantial change: fluid-metasomatism causes major compositional modifications of subducted volcanics (Mariana forearc) [J]. Frontiers in Earth Science, 2021, 10: 826312.
[31] Alt J C, Shanks W C. Stable isotope compositions of serpentinite seamounts in the Mariana forearc: Serpentinization processes, fluid sources and sulfur metasomatism [J]. Earth and Planetary Science Letters, 2006, 242(3): 272-285.
[32] Fleet A J. Hydrothermal and hydrogenous ferro-manganese deposits: Do they form a continuum? The rare earth element evidence [M]. Springer US, 1983, 12: 535–555.
[33] Wheat C G, Fryer P, Fisher A T, et al. Borehole observations of fluid flow from South Chamorro Seamount, an active serpentinite mud volcano in the Mariana forearc [J]. Earth and Planetary Science Letters, 2008, 267(3-4): 401-409. doi: 10.1016/j.jpgl.2007.11.057