Deep magmatic process of new volcano ridge in Segment 27, Southwest Indian Ridge: Constraints from plagioclase phenocrysts
-
摘要:
前人对超慢速扩张西南印度洋脊(SWIR)玄武岩的研究多基于全岩粉末样品,而对能够记录更多岩浆过程的矿物斑晶开展的工作则较为匮乏。本文对西南印度洋脊断桥热液区所在的27段洋脊富含斜长石斑晶的玄武岩进行了全岩和单矿物的地球化学研究。玄武岩样品(34IV-TVG07 和 30III-TVG14)SiO2含量为49.16%和49.50%, MgO含量分别为6.76%和6.52%。全岩微量元素总体上和N-MORB(normal mid-ocean ridge basalts)类似。电子探针测试结果显示,斜长石的An值范围变化较大(76.2~87.9),且绝大部分的斜长石斑晶An值都在80以上,比SWIR 64°E 的Mount Jourdanne火山斜长石超斑玄武岩中的斜长石An值高得多(<70),暗示斜长石的成因不同于Mount Jourdanne,不是由下洋壳辉长岩中的斜长石被后期岩浆直接机械捕获携带上升而形成。运用Petrolg3软件计算模拟也显示斜长石无法由其寄主岩浆直接结晶产生。结合实验岩石学结果以及西南印度洋中脊地幔中存在古老地幔楔熔融残余的多方面地球化学证据推测,断桥区玄武岩中的高An值斜长石斑晶最有可能由软流圈地幔中的古老、亏损的岛弧地幔楔残余熔融形成的岩浆结晶形成。
Abstract:Most previous geochemical studies on basalts from the Southwest Indian Ridge (SWIR) were based on the analysis of bulk rocks, and those on phenocrysts are rare. We conducted bulk rock and mineral analyses of two rock samples of plagioclase-rich basalts from Segment 27, SWIR, where the Duanqiao hydrothermal field is located. The SiO2 and MgO contents of the two samples (34IV-TVG07 and 30III-TVG14) are 49.16% and 6.76%, and 49.50 and 6.52%, respectively. Their trace elemental patterns are similar to typical N-MORB (normal mid-ocean ridge basalts). The EPMA analysis show that the An (% of anorthite) of the plagioclase phenocrysts vary in the range of 76.2 to 87.9, and most are above 80, which is significantly greater than those of plagioclase in the Mount Jordanne basalts, indicating that the An-rich plagioclase phenocrysts at 50.4°E are not derived from the lower oceanic crust of the Mount Jordanne. In addition, the Petrolog3 modeling shows that they could not crystallize directly from the mother magma. By combining the experimental constrains and previous evidence for ancient mantle wedge-like component entrained beneath this ridge, we believe that the An-rich plagioclase in Segment 27 basalts were most likely crystallized from magma due to partial melting of an ancient depleted sub-arc mantle.
-
Key words:
- basalts /
- plagioclase phenocryst /
- sub-arc mantle /
- southwest Indian Ridge
-
图 2 西南印度洋中脊(SWIR)27段岩浆房示意图[5]
Figure 2.
表 1 西南印度洋中脊27段含长石斑晶玄武岩的主量元素含量
Table 1. Major element concentrations of plagioclase-hosted basalt from Segment 27, SWIR
样品编号 SiO2 TiO2 Al2O3 TFe2O3 MnO MgO CaO Na2O K2O P2O5 LOI SUM 30III-TVG14 49.50 1.30 17.83 10.28 0.16 6.52 11.98 2.65 0.20 0.12 −0.28 100.25 34IV-TVG07 49.16 0.98 18.25 9.43 0.15 6.76 12.90 2.53 0.12 0.09 −0.45 99.93 注:主量元素单位:wt/%。 表 2 西南印度洋中脊27段含长石斑晶玄武岩微量元素含量
Table 2. Trace element concentrations of plagioclase-hosted basalt from Segment 27, SWIR
样品编号 Li Be Sc V Cr Co Ni Cu Zn Ga Rb Sr Y 30III-TVG14 4.32 0.50 37.60 264.25 204.30 39.54 69.00 60.43 79.91 17.85 2.03 141.39 32.82 34IV-TVG07 4.25 0.37 38.90 231.06 272.04 36.67 62.96 60.60 67.28 16.16 1.05 134.49 24.60 样品编号 Zr Nb Sn Cs Ba La Ce Pr Nd Sm Eu Gd Tb 30III-TVG14 86.88 1.53 0.95 0.03 10.10 2.51 8.39 1.45 8.60 3.01 1.13 4.34 0.86 34IV-TVG07 56.77 0.97 0.62 0.03 6.77 1.72 5.59 1.01 5.85 2.29 0.88 3.25 0.64 样品编号 Dy Ho Er Tm Yb Lu Hf Ta Tl Pb Th U 30III-TVG14 5.55 1.12 3.35 0.48 3.23 0.49 2.40 0.12 0.08 0.72 0.12 0.11 34IV-TVG07 4.24 0.89 2.64 0.39 2.55 0.37 1.58 0.06 0.05 0.50 0.08 0.11 注:微量元素单位:wt/10−6。 表 3 斜长石斑晶电子探针分析结果
Table 3. Major element concentrations for plagioclase phenocrysts
分析点号 SiO2 Na2O K2O FeO Al2O3 MgO CaO MnO TiO2 Cr2O3 NiO Total An 30-III-TVG14(2)1-边 45.79 1.59 0.02 0.34 33.63 0.20 16.92 − 0.02 0.05 − 98.54 85.41 30-III-TVG14(2)1-幔 45.31 1.38 0.02 0.40 33.47 0.18 16.98 0.04 0.05 0.01 0.01 97.84 87.06 30-III-TVG14(2)1-核 46.21 1.52 0.01 0.29 33.01 0.21 16.78 − 0.04 0.04 − 98.11 85.87 30-III-TVG14(2)2-边 46.55 1.73 0.01 0.36 32.91 0.22 16.81 0.02 − 0.04 0.01 98.66 84.26 30-III-TVG14(2)2-幔 46.32 1.59 0.01 0.39 33.20 0.23 16.78 − 0.01 0.01 0.01 98.56 85.29 30-III-TVG14(2)2-核 46.90 1.80 0.03 0.36 33.10 0.23 16.64 − 0.01 0.04 − 99.11 83.52 30-III-TVG14(2)3-边 46.57 1.62 0.02 0.30 33.39 0.21 16.80 − 0.03 0.03 − 98.97 85.05 30-III-TVG14(2)3-幔 47.08 1.79 0.00 0.32 33.36 0.23 16.82 − 0.01 0.02 − 99.63 83.85 30-III-TVG14(2)3-核 46.64 1.73 0.03 0.32 33.13 0.22 16.61 0.03 − 0.04 0.00 98.73 84.00 30-III-TVG14(2)4-边 47.31 1.87 0.02 0.33 33.12 0.22 16.44 0.03 − − − 99.34 82.83 30-III-TVG14(2)4-幔 46.07 1.41 0.02 0.30 33.90 0.16 17.23 0.01 0.01 0.01 − 99.11 87.04 30-III-TVG14(2)4-核 46.86 1.50 0.01 0.31 33.81 0.17 17.13 − 0.07 0.02 0.02 99.91 86.23 30-III-TVG14(2)5-边 47.34 1.80 0.03 0.33 33.39 0.25 16.60 0.01 0.01 0.02 0.02 99.80 83.45 30-III-TVG14(2)5-幔 47.40 1.76 0.03 0.37 33.04 0.20 16.50 0.05 0.01 0.04 − 99.39 83.68 30-III-TVG14(2)5-核 47.29 1.80 0.02 0.33 33.34 0.22 16.60 − − − 0.03 99.64 83.45 30-III-TVG14(2)6-边 47.44 1.88 0.01 0.34 33.18 0.23 16.65 0.01 0.05 0.01 0.01 99.81 82.95 30-III-TVG14(2)6-幔 47.04 1.74 0.03 0.34 33.14 0.21 16.47 − 0.02 − − 98.97 83.83 30-III-TVG14(2)6-核 47.49 1.88 0.01 0.35 33.42 0.21 16.42 0.02 0.05 0.01 − 99.85 82.76 30-III-TVG14(2)7-边 47.25 1.80 0.03 0.33 33.45 0.21 16.66 0.03 0.02 − 0.01 99.77 83.54 30-III-TVG14(2)7-幔 47.25 1.86 0.02 0.34 33.42 0.21 16.66 − 0.01 − 0.00 99.77 83.11 30-III-TVG14(2)7-核 46.78 1.73 0.03 0.29 33.56 0.22 16.76 0.05 0.07 0.07 99.54 84.17 30-III-TVG14(2)8-边 47.05 1.82 0.02 0.36 33.26 0.22 16.73 0.03 − − 0.03 99.52 83.47 30-III-TVG14(2)8-幔 46.77 1.70 0.03 0.38 33.52 0.20 16.79 0.01 − − 0.02 99.42 84.37 30-III-TVG14(2)8-核 46.83 1.72 0.02 0.33 33.42 0.20 16.77 0.03 0.02 0.07 0.01 99.43 84.23 34IV-TVG07(1)13-边 47.74 1.90 0.01 0.41 33.22 0.19 16.46 − 0.03 0.02 0.01 99.98 82.72 34IV-TVG07(1)13-幔 47.34 1.79 0.02 0.40 33.43 0.16 16.63 − 0.01 − − 99.78 83.57 34IV-TVG07(1)13-核 47.50 1.78 0.02 0.38 33.49 0.18 16.57 0.01 0.06 − − 99.99 83.65 34IV-TVG07(1)12-边 47.28 1.70 0.03 0.36 33.84 0.19 16.83 − 0.04 − − 100.28 84.42 34IV-TVG07(1)12-幔 47.41 1.57 0.02 0.32 33.70 0.21 16.88 0.00 0.06 − − 100.18 85.53 34IV-TVG07(1)12-核 47.45 1.74 0.03 0.36 33.70 0.21 16.84 − 0.04 − − 100.36 84.10 34IV-TVG07(1)11-边 47.85 1.86 0.02 0.35 33.55 0.17 16.59 0.07 − − − 100.45 83.04 34IV-TVG07(1)11-幔 46.53 1.67 0.01 0.39 33.60 0.16 16.89 0.02 0.00 − 0.01 99.29 84.79 34IV-TVG07(1)11-核 46.44 1.68 0.01 0.34 33.75 0.17 16.91 − 0.04 − 0.03 99.37 84.74 34IV-TVG07(1)10-边 47.86 2.12 0.01 0.35 32.73 0.20 16.14 − 0.06 0.03 − 99.51 80.73 34IV-TVG07(1)10-幔 49.05 2.61 0.03 0.35 32.12 0.26 15.26 0.03 0.02 − − 99.74 76.23 34IV-TVG07(1)10-核 49.20 2.42 0.02 0.28 32.48 0.20 15.59 0.02 0.07 − 0.04 100.32 77.99 34IV-TVG07(1)9-边 46.94 1.71 0.01 0.35 33.93 0.17 16.98 − − 0.05 0.01 100.14 84.57 34IV-TVG07(1)9-幔 47.08 1.75 0.02 0.35 34.08 0.18 16.93 − − 0.04 100.42 84.13 34IV-TVG07(1)9-核 46.77 1.63 0.01 0.35 33.73 0.19 17.01 0.02 − − − 99.71 85.17 34IV-TVG07(1)8-边 47.24 1.63 0.01 0.37 33.70 0.16 16.83 0.00 0.04 0.02 0.02 100.01 85.02 34IV-TVG07(1)8-幔 47.95 2.15 0.01 0.37 33.25 0.21 16.20 0.03 0.06 − − 100.24 80.59 34IV-TVG07(1)8-核 47.59 2.06 0.02 0.35 33.02 0.26 16.25 0.02 0.05 − − 99.62 81.23 34IV-TVG07(1)7-边 46.97 1.64 0.01 0.37 33.19 0.20 16.67 0.01 − − − 99.05 84.87 34IV-TVG07(1)7-幔 46.27 1.77 0.06 0.44 33.54 0.18 16.60 − − 0.01 0.01 98.87 83.54 34IV-TVG07(1)7-核 46.96 1.71 0.02 0.35 33.78 0.15 17.01 − 0.02 − 0.03 100.03 84.51 34IV-TVG07(1)5-边 48.20 2.44 0.02 0.37 32.19 0.22 15.55 − 0.03 0.04 − 99.05 77.81 34IV-TVG07(1)5-幔 47.75 2.22 0.02 0.41 32.55 0.17 16.02 0.01 0.03 0.07 0.01 99.26 79.81 34IV-TVG07(1)5-核 47.69 1.98 0.03 0.39 33.01 0.15 16.24 0.01 0.01 − − 99.52 81.76 34IV-TVG07(1)4-边 47.25 1.96 0.02 0.38 32.86 0.16 16.36 − 0.02 0.02 − 99.03 82.05 34IV-TVG07(1)4-幔 47.96 2.01 0.01 0.39 32.71 0.20 15.99 0.01 0.01 0.01 − 99.31 81.41 34IV-TVG07(1)4-核 46.51 1.82 0.01 0.35 33.30 0.14 16.66 0.03 0.06 − 0.01 98.89 83.43 34IV-TVG07(1)3-边 46.32 1.60 0.02 0.35 33.78 0.20 16.83 0.03 0.02 − 0.02 99.16 85.24 34IV-TVG07(1)3-幔 46.45 1.52 0.01 0.36 33.88 0.17 17.15 − 0.03 − 0.05 99.62 86.11 34IV-TVG07(1)3-核 46.03 1.38 0.02 0.29 34.08 0.17 17.37 0.05 0.02 − − 99.40 87.35 34IV-TVG07(1)2-边 47.26 1.97 0.01 0.38 33.26 0.18 16.48 0.00 0.02 0.06 − 99.62 82.17 34IV-TVG07(1)2-幔 46.61 1.77 0.04 0.41 33.33 0.19 16.69 0.03 0.03 0.01 − 99.09 83.73 34IV-TVG07(1)2-核 47.32 1.73 0.01 0.36 33.41 0.18 16.76 0.02 0.03 − − 99.82 84.17 34IV-TVG07(1)1-边 46.41 1.52 0.02 0.40 33.79 0.18 17.00 0.01 0.07 0.07 0.01 99.47 86.01 34IV-TVG07(1)1-幔 47.07 1.70 0.03 0.36 33.63 0.17 16.80 0.03 0.06 0.03 − 99.87 84.41 34IV-TVG07(1)1-核 47.24 1.74 0.03 0.43 33.87 0.18 17.11 − 0.02 − − 100.61 84.36 34IV-TVG07(2)1-边 47.83 1.97 0.02 0.40 33.34 0.19 16.48 − 0.00 0.02 − 100.24 82.09 34IV-TVG07(2)1-幔 47.14 1.93 0.02 0.41 32.85 0.18 16.32 − 0.01 0.02 − 98.89 82.24 34IV-TVG07(2)1-核 46.91 1.62 0.03 0.36 33.96 0.16 16.94 − − − 0.01 99.99 85.10 34IV-TVG07(2)2-边 45.90 1.54 0.02 0.34 33.26 0.13 16.60 0.05 − 0.01 − 97.86 85.55 34IV-TVG07(2)2-幔 45.94 1.32 0.02 0.36 33.86 0.14 17.42 − − − − 99.06 87.86 34IV-TVG07(2)2-核 44.94 1.42 0.03 0.37 32.44 0.16 16.41 0.03 0.04 0.02 0.03 95.87 86.32 34IV-TVG07(2)3-边 47.75 2.21 0.02 0.35 32.39 0.19 16.01 − 0.03 − − 98.94 79.96 34IV-TVG07(2)3-幔 49.03 2.60 0.00 0.34 31.84 0.24 15.25 0.06 0.06 0.03 0.05 99.49 76.42 34IV-TVG07(2)3-核 48.17 2.28 0.03 0.43 32.22 0.21 15.62 0.01 − 0.04 0.01 99.01 78.98 34IV-TVG07(2)4-边 47.10 1.97 0.02 0.39 32.75 0.20 16.01 0.02 − 0.01 − 98.46 81.72 34IV-TVG07(2)4-幔 46.56 1.50 0.04 0.41 33.07 0.15 16.72 0.04 0.09 − 0.01 98.59 85.85 34IV-TVG07(2)4-核 47.21 1.89 0.02 0.45 33.03 0.19 16.23 0.04 0.01 − − 99.07 82.47 34IV-TVG07(2)5-边 47.02 1.53 0.02 0.38 33.76 0.20 17.02 0.03 0.01 0.03 − 100.00 85.94 34IV-TVG07(2)5-幔 46.37 1.62 0.02 0.37 33.42 0.22 16.88 − 0.02 0.01 − 98.90 85.14 34IV-TVG07(2)5-核 46.81 1.60 0.02 0.38 33.26 0.20 16.88 0.01 − 0.01 − 99.16 85.23 34IV-TVG07(2)6-边 46.90 1.64 0.02 0.43 33.44 0.19 16.88 − 0.01 − − 99.50 84.95 34IV-TVG07(2)6-幔 46.89 1.54 0.01 0.38 33.64 0.16 16.97 0.04 0.01 − − 99.65 85.81 34IV-TVG07(2)6-幔 46.61 1.52 0.02 0.39 33.79 0.16 17.06 0.02 0.03 − 99.59 86.05 34IV-TVG07(2)6-幔 46.93 1.67 0.01 0.39 33.57 0.16 16.83 0.03 0.02 − 0.04 99.64 84.74 34IV-TVG07(2)6-核 47.01 1.51 0.02 0.37 33.22 0.16 16.85 − 0.03 0.01 − 99.17 85.94 34IV-TVG07(2)7-边 47.48 1.78 0.02 0.48 33.34 0.21 16.26 − 0.02 0.06 0.02 99.66 0.83 34IV-TVG07(2)7-幔 48.94 2.42 0.04 0.45 32.29 0.22 15.34 − − − − 99.69 0.78 34IV-TVG07(2)7-幔 47.58 1.98 0.01 0.45 33.02 0.21 16.35 0.01 − 0.05 − 99.66 0.82 34IV-TVG07(2)7-幔 47.65 1.68 0.03 0.42 33.03 0.20 16.33 − 0.01 − − 99.33 0.84 34IV-TVG07(2)7-核 48.36 2.10 0.02 0.39 32.90 0.19 15.86 0.01 0.00 0.01 − 99.84 0.81 34IV-TVG07(2)8-边 46.24 1.38 0.02 0.31 33.65 0.15 17.10 0.02 0.05 − − 98.93 0.87 34IV-TVG07(2)8-幔 46.34 1.66 0.03 0.35 33.47 0.20 16.62 0.02 0.04 − 0.01 98.74 0.85 34IV-TVG07(2)8-核 46.87 1.74 0.03 0.39 33.58 0.20 16.72 0.03 0.03 − 99.59 0.84 34IV-TVG07(2)10-边 47.06 1.78 0.02 0.36 33.40 0.17 16.55 0.02 0.01 0.05 0.01 99.42 0.84 34IV-TVG07(2)10-幔 46.67 1.62 0.02 0.35 33.25 0.17 16.77 − 0.01 0.02 − 98.87 0.85 34IV-TVG07(2)10-核 45.81 1.69 0.03 0.37 33.11 0.16 16.69 − 0.05 − − 97.91 0.84 注:主量元素单位:wt/%。 表 4 Petrolog3结晶分异模拟计算结果
Table 4. Results of Petrolog3 simulation
样品编号 模拟压力 最高An值 30III-TVG14 1Kbar 78.2 3Kbar 74.8 5Kbar 71.3 7Kbar 67.9 34IV-TVG07 1Kbar 80.5 3Kbar 77.1 5Kbar 73.7 7Kbar 70.3 40II-TVG04 1Kbar 75.4 3Kbar 71.9 5Kbar 68.5 7Kbar 65.1 注:橄榄石、斜长石、单斜辉石模型均来自文献[19]。 -
[1] Sauter D, Cannat M. The ultraslow spreading Southwest Indian ridge[M]//Rona P A, DeveyC W, Dyment J, et al. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington, D. C.: American Geophysical Union, 2010, 88: 153-173.
[2] 孙国洪, 田丽艳, 李小虎, 等. 西南印度洋中脊岩石地球化学特征及其岩浆作用研究[J]. 海洋地质与第四纪地质, 2021, 41(5):126-138
SUN Guohong, TIAN Liyan, LI Xiaohu, et al. A review of studies on the magmatism at Southwest Indian Ridge from petrological and geochemical perspectives [J]. Marine Geology & Quaternary Geology, 2021, 41(5): 126-138.
[3] Dick H J B, Lin J, Schouten H. An ultraslow-spreading class of ocean ridge [J]. Nature, 2003, 426(6965): 405-412. doi: 10.1038/nature02128
[4] Li J B, Jian H C, Chen Y J, et al. Seismic observation of an extremely magmatic accretion at the ultraslow spreading Southwest Indian Ridge [J]. Geophysical Research Letters, 2015, 42(8): 2656-2663. doi: 10.1002/2014GL062521
[5] Jian H C, Singh S C, Chen Y J, et al. Evidence of an axial magma chamber beneath the ultraslow-spreading Southwest Indian Ridge [J]. Geology, 2017, 45(2): 143-146. doi: 10.1130/G38356.1
[6] Chen J, Cannat M, Tao C H, et al. 780 thousand years of upper - crustal construction at a melt-rich segment of the ultraslow spreading southwest Indian Ridge 50°28′E [J]. Journal of Geophysical Research:Solid Earth, 2021, 126(10): e2021JB022152.
[7] Yang A Y, Zhao T P, Zhou M F, et al. Isotopically enriched N-MORB: A new geochemical signature of off - axis plume - ridge interaction–A case study at 50°28′E, Southwest Indian Ridge [J]. Journal of Geophysical Research:Solid Earth, 2017, 122(1): 191-213. doi: 10.1002/2016JB013284
[8] Yu X, Dick H J B. Plate-driven micro-hotspots and the evolution of the Dragon Flag melting anomaly, Southwest Indian Ridge [J]. Earth and Planetary Science Letters, 2020, 531: 116002. doi: 10.1016/j.jpgl.2019.116002
[9] 李伟. 西南印度洋中脊玄武岩岩石地球化学特征: 对超慢速扩张的启示[D]. 中国地质大学博士学位论文, 2017
LI Wei. Petrogeochemical characteristics of basalts from Southwest Indian Ridge: Implications for magmatic processes at ultra-slow spreading ridge[D]. Doctor Dissertation of China University of Geosciences (Beijing), 2017.
[10] 初凤友, 陈建林, 马维林, 等. 中太平洋海山玄武岩的岩石学特征与年代[J]. 海洋地质与第四纪地质, 2005, 25(4):55-59
CHU Fengyou, CHEN Jianlin, MA Weilin, et al. Petrologic characteristics and ages of basalt in Middle Pacific mountains [J]. Marine Geology & Quaternary Geology, 2005, 25(4): 55-59.
[11] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes [J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[12] McDonough W F, Sun S S. The composition of the Earth [J]. Chemical Geology, 1995, 120(3-4): 223-253. doi: 10.1016/0009-2541(94)00140-4
[13] Li W, Tao C H, Zhang W, et al. Melt inclusions in plagioclase macrocrysts at mount Jourdanne, southwest Indian ridge (~64ºE): implications for an enriched mantle source and shallow magmatic processes [J]. Minerals, 2019, 9(8): 493. doi: 10.3390/min9080493
[14] Beard J S, Borgia A. Temporal variation of mineralogy and petrology in cognate gabbroic enclaves at Arenal volcano, Costa Rica [J]. Contributions to Mineralogy and Petrology, 1989, 103(1): 110-122. doi: 10.1007/BF00371368
[15] Crawford A J, Falloon T J, Eggins S. The origin of island arc high-alumina basalts [J]. Contributions to Mineralogy and Petrology, 1987, 97(3): 417-430. doi: 10.1007/BF00372004
[16] Sinton C W, Christie D M, Coombs V L, et al. Near-primary melt inclusions in anorthite phenocrysts from the Galapagos Platfrom [J]. Earth and Planetary Science Letters, 1993, 119(4): 527-537. doi: 10.1016/0012-821X(93)90060-M
[17] Stolz A J, Varne R, Wheller G E, et al. The geochemistry and petrogenesis of K-rich alkaline volcanics from the Batu Tara volcano, eastern Sunda arc [J]. Contributions to Mineralogy and Petrology, 1988, 98(3): 374-389. doi: 10.1007/BF00375187
[18] Kudo A M, Weill D F. An igneous plagioclase thermometer [J]. Contributions to Mineralogy and Petrology, 1970, 25(1): 52-65. doi: 10.1007/BF00383062
[19] Duncan R A, Green D H. The genesis of refractory melts in the formation of oceanic crust [J]. Contributions to Mineralogy and Petrology, 1987, 96(3): 326-342. doi: 10.1007/BF00371252
[20] Hirschmann M M. Water, melting, and the deep Earth H2O cycle [J]. Annual Review of Earth and Planetary Sciences, 2006, 34: 629-653. doi: 10.1146/annurev.earth.34.031405.125211
[21] Wang W, Kelley K A, Li Z G, et al. Volatile element evidence of local MORB mantle heterogeneity beneath the southwest Indian ridge, 48º-51ºE [J]. Geochemistry, Geophysics, Geosystems, 2021, 22(7): e2021GC009647.
[22] Liu J, Tao C H, Zhou J P, et al. Water enrichment in the mid-ocean ridge by recycling of mantle wedge residue [J]. Earth and Planetary Science Letters, 2022, 584: 117455. doi: 10.1016/j.jpgl.2022.117455
[23] Panjasawatwong Y, Danyushevsky L V, Crawford A J, et al. An experimental study of the effects of melt composition on plagioclase-melt equilibria at 5 and 10 kbar: implications for the origin of magmatic high-An plagioclase [J]. Contributions to Mineralogy and Petrology, 1995, 118(4): 420-432. doi: 10.1007/s004100050024
[24] Danyushevsky L V. The effect of small amounts of H2O on crystallisation of mid-ocean ridge and backarc basin magmas [J]. Journal of Volcanology and Geothermal Research, 2001, 110(3-4): 265-280. doi: 10.1016/S0377-0273(01)00213-X
[25] Gao C G, Dick H J B, Liu Y, et al. Melt extraction and mantle source at a Southwest Indian Ridge Dragon Bone amagmatic segment on the Marion Rise [J]. Lithos, 2016, 246-247: 48-60. doi: 10.1016/j.lithos.2015.12.007
[26] Michael P. Regionally distinctive sources of depleted MORB: Evidence from trace elements and H2O [J]. Earth and Planetary Science Letters, 1995, 131(3-4): 301-320. doi: 10.1016/0012-821X(95)00023-6