Obliquity-driven moisture changes in Qaidam Basin in Late Miocene during low eccentricity period
-
摘要:
当前间冰期正处在地球轨道低偏心率时期,在全球变暖的大趋势下北半球冰盖正逐渐消融。因此,解析北半球无冰背景下低偏心率时期亚洲内陆干湿变化规律和驱动机制,对预测该地区未来环境变化具有重要意义。然而,以前的研究关注亚洲内陆低偏心率时期环境变化的高分辨率记录较少,限制了对该区干湿循环和驱动机制的理解。柴达木盆地位于东亚季风降水边缘,对干湿变化非常敏感。选取柴达木盆地东北部大红沟剖面河湖相沉积地层,利用频率磁化率指标重建晚中新世时期(9~12 Ma)高分辨率干湿变化历史,揭示了典型的低偏心率时期干湿变化主导周期和轨道斜率驱动机制。结果表明,在低偏心率时期(9.2~9.4 、 9.6~9.8 和11.2~11.4 Ma),该区域干湿变化以4万年周期为主,对应倾角变化,说明在岁差振幅较小时,倾角变化可能上升为轨道调控干旱区干湿变化的主导因素。这一发现对理解未来气候变化具有一定的借鉴意义。
Abstract:The present interglacial period is at a period of low eccentricity, and the ice sheets in the northern hemisphere are gradually melting due to the global warming. Understanding the variation and the mechanism of dry-wet alternation in Asian inland during low eccentricity period under the ice-free background of the northern hemisphere is very important to predict the future environmental changes in the area. At present, little attention is paid to high-resolution records of environment variations during low eccentricity periods in inland Asia, which limits the understanding of moisture changes and the mechanism in the region. The Qaidam Basin, located at the edge of East Asian monsoon rain zone, is very sensitive to dry-wet climate alternation. In this study, we selected the fluvial-lacustrine strata of the Dahonggou section in the northeastern Qaidam Basin, along which the frequency magnetic susceptibility was measured, to reconstruct the high-resolution moisture history of the Late Miocene (12~9 Ma). Results revealed typical dry-wet changes and show that the local climate change has a clear 40-ka cycle, corresponding to the obliquity in typical low eccentricity condition when the precession amplitude is small during 9.4~9.2 Ma, 9.8~9.6 Ma, and 11.4~11.2 Ma. It suggests that obliquity factor may rise and become a dominant factor on orbital regulation of environment in arid area. This finding has important implications for understanding future climate change.
-
Key words:
- low eccentricity /
- moisture changes /
- cycle analysis /
- orbital forcing /
- Qaidam Basin
-
[1] Berger A, Loutre M F. An exceptionally long interglacial ahead? [J]. Science, 2002, 297(5585): 1287-1288. doi: 10.1126/science.1076120
[2] Laskar J, Robutel P, Joutel F et al. A long-term numerical solution for the insolation quantities of the Earth [J]. Astronomy & Astrophysics, 2004, 428(1): 261-285.
[3] IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Geneva: IPCC, 2014.
[4] Deconto R M, Pollard D, Wilson P A et al. Thresholds for Cenozoic bipolar glaciation [J]. Nature, 2008, 455(7213): 652-656. doi: 10.1038/nature07337
[5] Wunderling N, Willeit M, Donges J F et al. Global warming due to loss of large ice masses and Arctic summer sea ice [J]. Nature Communications, 2020, 11(1): 5177. doi: 10.1038/s41467-020-18934-3
[6] Holbourn A E, Kuhnt W, Clemens S C et al. Late Miocene climate cooling and intensification of southeast Asian winter monsoon [J]. Nature Communications, 2018, 9(1): 1584. doi: 10.1038/s41467-018-03950-1
[7] Westerhold T, Marwan N, Drury A J et al. An astronomically dated record of Earth's climate and its predictability over the last 66 million years [J]. Science, 2020, 369(6509): 1383-1387. doi: 10.1126/science.aba6853
[8] 丁仲礼. 米兰科维奇冰期旋回理论: 挑战与机遇[J]. 第四纪研究, 2006, 26(5):710-717 doi: 10.3321/j.issn:1001-7410.2006.05.005
DING Zhongli. The milankovitch theory of Pleistocene glacial cycles: challenges and chances [J]. Quaternary Sciences, 2006, 26(5): 710-717. doi: 10.3321/j.issn:1001-7410.2006.05.005
[9] 汪品先. 全球季风的地质演变[J]. 科学通报, 2009, 54(5):535-556 doi: 10.1360/csb2009-54-5-535
WANG Pinxian. Global monsoon in a geological perspective [J]. Chinese Science Bulletin, 2009, 54(5): 535-556. doi: 10.1360/csb2009-54-5-535
[10] Abels H A, Aziz H A, Ventra D et al. Orbital climate forcing in mudflat to marginal Lacustrine deposits in the Miocene Teruel Basin (Northeast Spain) [J]. Journal of Sedimentary Research, 2009, 79(11): 831-847. doi: 10.2110/jsr.2009.081
[11] Ao H, Rohling E J, Zhang R et al. Global warming-induced Asian hydrological climate transition across the Miocene-Pliocene boundary [J]. Nature Communications, 2021, 12(1): 6935. doi: 10.1038/s41467-021-27054-5
[12] Gao P, Nie J S, Yan Q et al. Millennial resolution late Miocene Northern China precipitation record spanning astronomical analogue interval to the future [J]. Geophysical Research Letters, 2021, 48(15): e2021GL093942.
[13] 杨彦峰, 符超峰, 徐新文, 等. 青藏高原东北缘尖扎盆地晚中新世地层绝对天文年代标尺的建立[J]. 地球科学与环境学报, 2021, 43(4):710-723 doi: 10.19814/j.jese.2020.10022
YANG Yanfeng, FU Chaofeng, XU Xinwen et al. Establishment of absolute astronomical time scale of late Miocene strata in Jianzha Basin, the northeastern margin of Tibetan Plateau, China [J]. Journal of Earth Sciences and Environment, 2021, 43(4): 710-723. doi: 10.19814/j.jese.2020.10022
[14] An Z S, Wu G X, Li J P et al. Global monsoon dynamics and climate change [J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 29-77. doi: 10.1146/annurev-earth-060313-054623
[15] Frisch K, Voigt S, Verestek V et al. Long-period astronomical forcing of Westerlies' strength in central Asia during Miocene climate cooling [J]. Paleoceanography and Paleoclimatology, 2019, 34(11): 1784-1806. doi: 10.1029/2019PA003642
[16] Wang Y C, Lu H Y, Wang K X et al. Combined high- and low-latitude forcing of East Asian monsoon precipitation variability in the Pliocene warm period [J]. Science Advances, 2020, 6(46): eabc2414. doi: 10.1126/sciadv.abc2414
[17] Wu N Q, Chen X Y, Rousseau D D et al. Climatic conditions recorded by terrestrial mollusc assemblages in the Chinese Loess Plateau during marine Oxygen Isotope Stages 12-10 [J]. Quaternary Science Reviews, 2007, 26(13-14): 1884-1896. doi: 10.1016/j.quascirev.2007.04.006
[18] An Z S, Clemens S C, Shen J et al. Glacial-interglacial Indian summer monsoon dynamics [J]. Science, 2011, 333(6043): 719-723. doi: 10.1126/science.1203752
[19] Hao Q Z, Wang L, Oldfield F et al. Delayed build-up of Arctic ice sheets during 400, 000-year minima in insolation variability [J]. Nature, 2012, 490(7420): 393-396. doi: 10.1038/nature11493
[20] Lu H Y, Yi S W, Liu Z Y et al. Variation of East Asian monsoon precipitation during the past 21 k. y. and potential CO2 forcing [J]. Geology, 2013, 41(9): 1023-1026. doi: 10.1130/G34488.1
[21] Shi P H, Yang T B, Tian Q C et al. Loess record of climatic changes during MIS 12-10 in the Jingyuan section, northwestern Chinese Loess Plateau [J]. Quaternary International, 2013, 296: 149-159. doi: 10.1016/j.quaint.2012.08.2102
[22] Song Y G, Fang X M, King J W et al. Magnetic parameter variations in the Chaona loess/paleosol sequences in the central Chinese Loess Plateau, and their significance for the middle Pleistocene climate transition [J]. Quaternary Research, 2014, 81(3): 433-444. doi: 10.1016/j.yqres.2013.10.002
[23] Kang S G, Wang X L, Roberts H M et al. Late Holocene anti-phase change in the East Asian summer and winter monsoons [J]. Quaternary Science Reviews, 2018, 188: 28-36. doi: 10.1016/j.quascirev.2018.03.028
[24] Liu J B, Shen Z W, Chen W et al. Dipolar mode of precipitation changes between north China and the Yangtze River Valley existed over the entire Holocene: Evidence from the sediment record of Nanyi Lake [J]. International Journal of Climatology, 2021, 41(3): 1667-1681. doi: 10.1002/joc.6906
[25] 张月婷, 吴乃琴, 李丰江, 等. 低偏心率间冰期(Mis 19)黄土高原生态环境变化及影响机制[J]. 中国科学:地球科学, 2020, 63(9):1408-1421 doi: 10.1007/s11430-020-9628-5
ZHANG Yueting, WU Naiqin, LI Fengjiang et al. Eco-environmental changes in the Chinese Loess Plateau during low-eccentricity interglacial Marine Isotope Stage 19 [J]. Science China Earth Sciences, 2020, 63(9): 1408-1421. doi: 10.1007/s11430-020-9628-5
[26] Wang Y J, Cheng H, Edwards R L et al. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224, 000 years [J]. Nature, 2008, 451(7182): 1090-1093. doi: 10.1038/nature06692
[27] Cheng H, Edwards R L, Sinha A et al. The Asian monsoon over the past 640, 000 years and ice age terminations [J]. Nature, 2016, 534(7609): 640-646. doi: 10.1038/nature18591
[28] Chen F H, Yu Z C, Yang M L et al. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history [J]. Quaternary Science Reviews, 2008, 27(3-4): 351-364. doi: 10.1016/j.quascirev.2007.10.017
[29] Zhao Y, Tzedakis P C, Li Q et al. Evolution of vegetation and climate variability on the Tibetan Plateau over the past 1.74 million years [J]. Science Advances, 2020, 6(19): eaay6193. doi: 10.1126/sciadv.aay6193
[30] Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records [J]. Paleoceanography, 2005, 20(1): PA1003.
[31] Wang P X, Wang B, Cheng H et al. The global monsoon across timescales: coherent variability of regional monsoons [J]. Climate of the Past, 2014, 10(6): 2007-2052. doi: 10.5194/cp-10-2007-2014
[32] Nomade S, Bassinot F, Marino M et al. High-resolution foraminifer stable isotope record of MIS 19 at Montalbano Jonico, southern Italy: a window into Mediterranean climatic variability during a low-eccentricity interglacial [J]. Quaternary Science Reviews, 2019, 205: 106-125. doi: 10.1016/j.quascirev.2018.12.008
[33] Huang E Q, Tian J, Steinke S. Millennial-scale dynamics of the winter cold tongue in the southern South China Sea over the past 26 ka and the East Asian winter monsoon [J]. Quaternary Research, 2011, 75(1): 196-204. doi: 10.1016/j.yqres.2010.08.014
[34] Loutre M F, Berger A. Marine isotope stage 11 as an analogue for the present interglacial [J]. Global and Planetary Change, 2003, 36(3): 209-217. doi: 10.1016/S0921-8181(02)00186-8
[35] Ding Z L, Liu T, Rutter N W et al. Ice-volume forcing of East Asian winter monsoon variations in the past 800, 000 years [J]. Quaternary Research, 1995, 44(2): 149-159. doi: 10.1006/qres.1995.1059
[36] Liu T, Ding Z L. Chinese loess and the paleomonsoon [J]. Annual Review of Earth and Planetary Sciences, 1998, 26: 111-145. doi: 10.1146/annurev.earth.26.1.111
[37] Sun Y B, Kutzbach J, An Z S et al. Astronomical and glacial forcing of East Asian summer monsoon variability [J]. Quaternary Science Reviews, 2015, 115: 132-142. doi: 10.1016/j.quascirev.2015.03.009
[38] Wu C H, Tsai P C. Obliquity-driven changes in East Asian seasonality [J]. Global and Planetary Change, 2020, 189: 103161. doi: 10.1016/j.gloplacha.2020.103161
[39] Roychowdhury R. Eccentricity Modulation of Precessional Variation in the Earth’s Climate Response to Astronomical Forcing: a Solution to the 41-kyr Mystery[D]. Doctor dissertation, University of Massachusetts Amherst, 2018.
[40] 石正国, 雷婧, 周朋, 等. 轨道尺度亚洲气候演化机理的数值模拟: 历史与展望[J]. 第四纪研究, 2020, 40(1):8-17 doi: 10.11928/j.issn.1001-7410.2020.01.02
SHI Zhengguo, LEI Jing, ZHOU Peng et al. Numerical simulation researches on orbital-scale Asian climate dynamics: history and perspective [J]. Quaternary Sciences, 2020, 40(1): 8-17. doi: 10.11928/j.issn.1001-7410.2020.01.02
[41] Wang Z X, Huang C J, Licht A et al. Middle to late Miocene eccentricity forcing on lake expansion in NE Tibet [J]. Geophysical Research Letters, 2019, 46(12): 6926-6935. doi: 10.1029/2019GL082283
[42] Nie J S, Garzione C, Su Q D et al. Dominant 100, 000-year precipitation cyclicity in a late Miocene lake from northeast Tibet [J]. Science Advances, 2017, 3(3): e1600762. doi: 10.1126/sciadv.1600762
[43] Wang Z X, Shen Y J, Licht A et al. Cyclostratigraphy and magnetostratigraphy of the middle Miocene Ashigong Formation, Guide Basin, China, and its implications for the paleoclimatic evolution of NE Tibet [J]. Paleoceanography and Paleoclimatology, 2018, 33(10): 1066-1085. doi: 10.1029/2018PA003409
[44] Han W X, Appel E, Galy A et al. Climate transition in the Asia inland at 0.8-0.6 Ma related to astronomically forced ice sheet expansion [J]. Quaternary Science Reviews, 2020, 248: 106580. doi: 10.1016/j.quascirev.2020.106580
[45] Miao Y F, Fang X M, Herrmann M et al. Miocene pollen record of KC-1 core in the Qaidam Basin, NE Tibetan Plateau and implications for evolution of the East Asian monsoon [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299(1-2): 30-38. doi: 10.1016/j.palaeo.2010.10.026
[46] Zhuang G S, Hourigan J K, Koch P L et al. Isotopic constraints on intensified aridity in Central Asia around 12Ma [J]. Earth and Planetary Science Letters, 2011, 312(1-2): 152-163. doi: 10.1016/j.jpgl.2011.10.005
[47] Fang X M, Zhang W L, Meng Q Q et al. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau [J]. Earth and Planetary Science Letters, 2007, 258(1-2): 293-306. doi: 10.1016/j.jpgl.2007.03.042
[48] Lu H J, Xiong S F. Magnetostratigraphy of the Dahonggou section, northern Qaidam Basin and its bearing on Cenozoic tectonic evolution of the Qilian Shan and Altyn Tagh Fault [J]. Earth and Planetary Science Letters, 2009, 288(3-4): 539-550. doi: 10.1016/j.jpgl.2009.10.016
[49] Chang H, Li L Y, Qiang X K et al. Magnetostratigraphy of Cenozoic deposits in the western Qaidam Basin and its implication for the surface uplift of the northeastern margin of the Tibetan Plateau [J]. Earth and Planetary Science Letters, 2015, 430: 271-283. doi: 10.1016/j.jpgl.2015.08.029
[50] Ji J L, Zhang K X, Clift P D et al. High-resolution magnetostratigraphic study of the Paleogene-Neogene strata in the Northern Qaidam Basin: implications for the growth of the Northeastern Tibetan Plateau [J]. Gondwana Research, 2017, 46: 141-155. doi: 10.1016/j.gr.2017.02.015
[51] Wang W T, Zheng W J, Zhang P Z et al. Expansion of the Tibetan Plateau during the Neogene [J]. Nature Communications, 2017, 8(1): 15887. doi: 10.1038/ncomms15887
[52] Nie J S, Ren X P, Saylor J E et al. Magnetic polarity stratigraphy, provenance, and paleoclimate analysis of Cenozoic strata in the Qaidam Basin, NE Tibetan Plateau [J]. GSA Bulletin, 2020, 132(1-2): 310-320. doi: 10.1130/B35175.1
[53] Chen F H, Jia J, Chen J H et al. A persistent Holocene wetting trend in arid central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China [J]. Quaternary Science Reviews, 2016, 146: 134-146. doi: 10.1016/j.quascirev.2016.06.002
[54] 汤良杰, 金之钧, 戴俊生, 等. 柴达木盆地及相邻造山带区域断裂系统[J]. 地球科学——中国地质大学学报, 2002, 27(6):676-682
TANG Liangjie, JIN Zhijun, DAI Junsheng et al. Regional fault systems of Qaidam Basin and adjacent Orogenic belts [J]. Earth Science-Journal of China University of Geosciences, 2002, 27(6): 676-682.
[55] Bush M A, Saylor J E, Horton B K et al. Growth of the Qaidam Basin during Cenozoic exhumation in the northern Tibetan Plateau: inferences from depositional patterns and multiproxy detrital provenance signatures [J]. Lithosphere, 2016, 8(1): 58-82. doi: 10.1130/L449.1
[56] 刘青松, 邓成龙. 磁化率及其环境意义[J]. 地球物理学报, 2009, 52(4):1041-1048 doi: 10.3969/j.issn.0001-5733.2009.04.021
LIU Qingsong, DENG Chenglong. Magnetic susceptibility and its environmental significances [J]. Chinese Journal of Geophysics, 2009, 52(4): 1041-1048. doi: 10.3969/j.issn.0001-5733.2009.04.021
[57] Liu Q S, Jackson M J, Banerjee S K et al. Mechanism of the magnetic susceptibility enhancements of the Chinese loess [J]. Journal of Geophysical Research:Solid Earth, 2004, 109(B12): B12107. doi: 10.1029/2004JB003249
[58] Maher B A, Thompson R. Paleorainfall reconstructions from pedogenic magnetic susceptibility variations in the Chinese loess and paleosols [J]. Quaternary Research, 1995, 44(3): 383-391. doi: 10.1006/qres.1995.1083
[59] Nie J S, Song Y G, King J W et al. Consistent grain size distribution of pedogenic maghemite of surface soils and Miocene loessic soils on the Chinese Loess Plateau [J]. Journal of Quaternary Science, 2010, 25(3): 261-266. doi: 10.1002/jqs.1304
[60] Song Y, Hao Q Z, Ge J Y et al. Quantitative relationships between magnetic enhancement of modern soils and climatic variables over the Chinese Loess Plateau [J]. Quaternary International, 2014, 334-335: 119-131. doi: 10.1016/j.quaint.2013.12.010
[61] Holbourn A, Kuhnt W, Clemens S et al. Middle to late Miocene stepwise climate cooling: evidence from a high-resolution deep water isotope curve spanning 8 million years [J]. Paleoceanography, 2013, 28(4): 688-699. doi: 10.1002/2013PA002538
[62] Holbourn A, Kuhnt W, Clemens S C et al. A ~12 Myr Miocene record of east Asian monsoon variability from the South China Sea [J]. Paleoceanography and Paleoclimatology, 2021, 36(7): e2021PA004267.
[63] Li T, Liu F, Abels H A et al. Continued obliquity pacing of East Asian summer precipitation after the mid-Pleistocene transition [J]. Earth and Planetary Science Letters, 2017, 457: 181-190. doi: 10.1016/j.jpgl.2016.09.045
[64] Mantsis D F, Lintner B R, Broccoli A J et al. The response of large-scale circulation to obliquity-induced changes in meridional heating gradients [J]. Journal of Climate, 2014, 27(14): 5504-5516. doi: 10.1175/JCLI-D-13-00526.1
[65] Levy R H, Meyers S R, Naish T R et al. Antarctic ice-sheet sensitivity to obliquity forcing enhanced through ocean connections [J]. Nature Geoscience, 2019, 12(2): 132-137. doi: 10.1038/s41561-018-0284-4
[66] Ao H, Roberts A P, Dekkers M J et al. Late Miocene–Pliocene Asian monsoon intensification linked to Antarctic ice-sheet growth [J]. Earth and Planetary Science Letters, 2016, 444: 75-87. doi: 10.1016/j.jpgl.2016.03.028
[67] Mantsis D F, Clement A C, Broccoli A J et al. Climate feedbacks in response to changes in obliquity [J]. Journal of Climate, 2011, 24(11): 2830-2845. doi: 10.1175/2010JCLI3986.1
[68] Chen G S, Liu Z Y, Clemens S C et al. Modeling the time-dependent response of the Asian summer monsoon to obliquity forcing in a coupled GCM: a PHASEMAP sensitivity experiment [J]. Climate Dynamics, 2011, 36(3): 695-710.
[69] Ren X P, Nie J S, Saylor J E et al. Provenance control on chemical weathering index of Fluvio-Lacustrine sediments: evidence from the Qaidam Basin, NE Tibetan Plateau [J]. Geochemistry, Geophysics, Geosystems, 2019, 20(7): 3216-3224. doi: 10.1029/2019GC008330