基于化学示踪的海床细颗粒渗流测量方法研究

王虎, 黄博, 孙永福. 基于化学示踪的海床细颗粒渗流测量方法研究[J]. 海洋地质与第四纪地质, 2022, 42(6): 200-206. doi: 10.16562/j.cnki.0256-1492.2022012802
引用本文: 王虎, 黄博, 孙永福. 基于化学示踪的海床细颗粒渗流测量方法研究[J]. 海洋地质与第四纪地质, 2022, 42(6): 200-206. doi: 10.16562/j.cnki.0256-1492.2022012802
WANG Hu, HUANG Bo, SUN Yongfu. Measuring method on the seepage of fine particles on seabed based on chemical tracer[J]. Marine Geology & Quaternary Geology, 2022, 42(6): 200-206. doi: 10.16562/j.cnki.0256-1492.2022012802
Citation: WANG Hu, HUANG Bo, SUN Yongfu. Measuring method on the seepage of fine particles on seabed based on chemical tracer[J]. Marine Geology & Quaternary Geology, 2022, 42(6): 200-206. doi: 10.16562/j.cnki.0256-1492.2022012802

基于化学示踪的海床细颗粒渗流测量方法研究

  • 基金项目: 青岛海洋科学与技术试点国家实验室海洋地质过程与环境功能实验室开放基金(MGQNLM-KF201810);国家自然科学基金“基于波致动力固结的黄河三角洲铁板砂形成过程研究”(41702307)
详细信息
    作者简介: 王虎(1986—),男,副教授,主要从事海洋工程地质方面的研究,Email:hu.wang@tju.edu.cn
  • 中图分类号: P716.7

Measuring method on the seepage of fine particles on seabed based on chemical tracer

  • 海床内部孔隙水及细颗粒的渗流和输运对于海底沉积动力过程、海床稳定性有重要影响。针对海床内部渗流发展过程难于描述、细颗粒渗流难于定量测定的问题,本文以在海床中物理化学性质稳定的白色氢氧化镁粉末作为示踪剂,通过分层取样加盐酸反应及离子色谱测试等手段,实现海床细颗粒渗流的指示及定量测量。试验及分析表明,本方法清晰显示了细颗粒在动荷载引起的粉土海床内部超孔隙水压力和向上的渗流压力梯度作用下向上运移,形成规模和形状各异的渗流通道,最终部分到达海床表面的渗流发展过程,实现了细颗粒从海床内部至床面逐层渗流量的定量表征,对于进一步理清波浪作用下粉土海床液化、渗流、再悬浮耦合机理及开发相应的定量评价方法具有重要意义。

  • 加载中
  • 图 1  粒径累积曲线

    Figure 1. 

    图 2  氢氧化镁粉末向上渗流及形成的渗流通道

    Figure 2. 

    图 3  试验装置

    Figure 3. 

    图 4  海床表面以下不同深度处孔隙水压力变化情况

    Figure 4. 

    图 5  试验结果

    Figure 5. 

    图 6  不同深度的海床细颗粒渗流量

    Figure 6. 

    表 1  海床土体物理参数

    Table 1.  Physical parameters of seabed soil

    容重γ/(kN·m−2)含水率w/%孔隙比e密度Gs粒径d50/mm
    19300.72.70.035
    下载: 导出CSV
  • [1]

    Wang J, Leung C, Chow Y. Numerical solutions for flow in porous media [J]. International Journal for numerical and analytical methods in geomechanics, 2003, 27(7): 565-583. doi: 10.1002/nag.286

    [2]

    Tam V T, Nga T T V. Assessment of urbanization impact on groundwater resources in Hanoi, Vietnam [J]. Journal of Environmental Management, 2018, 227(1): 107-116.

    [3]

    Jia Y, Zhang L, Zheng J, et al. Effects of wave-induced seabed liquefaction on sediment re-suspension in the Yellow River Delta [J]. Ocean Engineering, 2014, 89(1): 146-156.

    [4]

    Guo Z, Jeng D S, Zhao H, et al. Effect of seepage flow on sediment incipient motion around a free spanning pipeline [J]. Coastal Engineering, 2019, 143: 50-62. doi: 10.1016/j.coastaleng.2018.10.012

    [5]

    Liu X, Jia Y, Zheng J, et al. An experimental investigation of wave‐induced sediment responses in a natural silty seabed: New insights into seabed stratification [J]. Sedimentology, 2017, 64(2): 508-529. doi: 10.1111/sed.12312

    [6]

    单红仙, 刘涛, 陈友媛, 等. 波浪载荷导致黄河口潮坪沉积物垂向运移现场观测研究[J]. 工程地质学报, 2008, 16(2):216-221 doi: 10.3969/j.issn.1004-9665.2008.02.013

    Shan Hongxian, Liu Tao, Chen Youyuan, et al. Field observational study on vertical migration of tidal flat sediments in the Yellow River Estuary caused by wave loads [J]. Chinese Journal of Engineering Geology, 2008, 16(2): 216-221. doi: 10.3969/j.issn.1004-9665.2008.02.013

    [7]

    Zhang S, Jia Y, Wen M, et al. Vertical migration of fine-grained sediments from interior to surface of seabed driven by seepage flows: “sub-bottom sediment pump action” [J]. Journal of Ocean University of China, 2017, 16(1): 15-24. doi: 10.1007/s11802-017-3042-0

    [8]

    Uchiyama Y, Nadaoka K, Rölke P, et al. Submarine groundwater discharge into the sea and associated nutrient transport in a sandy beach [J]. Water Resources Research, 2000, 36(6): 1467-1479. doi: 10.1029/2000WR900029

    [9]

    王虎, 粟莉, 白玉川. 河口海岸铁板砂研究进展[J]. 水科学进展, 2019, 30(4):601-612 doi: 10.14042/j.cnki.32.1309.2019.04.015

    WANG Hu, SU Li, BAI Yuchuan. Research progress of estuarine and coastal iron plate sand [J]. Advances in Water Science, 2019, 30(4): 601-612. doi: 10.14042/j.cnki.32.1309.2019.04.015

    [10]

    张民生, 王秀海, 刘红军, 等. 循环水压作用下粉土渗流试验研究[J]. 中国海洋大学学报:自然科学版, 2014(9):82-89

    ZHANG Minsheng, WANG Xiuhai, LIU Hongjun, et al. Experimental study on silt seepage under the action of circulating water pressure [J]. Journal of Ocean University of China:Natural Science Edition, 2014(9): 82-89.

    [11]

    Takahashi H, Sassa S, Morikawa Y, et al. Stability of caisson-type breakwater foundation under tsunami-induced seepage [J]. Soils and Foundations, 2014, 54(4): 789-805. doi: 10.1016/j.sandf.2014.07.002

    [12]

    白玉川, 杨细根, 冀自青, 等. 波浪条件下海底管线与沙质海床间的相互作用[J]. 天津大学学报, 2011, 44(1):64-68

    BAI Yuchuan, YANG Xigen, JI Ziqing, et al. Interaction between submarine pipeline and sandy seabed under wave conditions [J]. Journal of Tianjin University, 2011, 44(1): 64-68.

    [13]

    Cheng X, Li G, Chen J, et al. Seismic response of a submarine tunnel under the action of a sea wave [J]. Marine structures, 2018, 60: 122-135. doi: 10.1016/j.marstruc.2018.03.004

    [14]

    Burnett W C, Dulaiova H. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements [J]. Journal of environmental radioactivity, 2003, 69(1-2): 21-35. doi: 10.1016/S0265-931X(03)00084-5

    [15]

    陈建生, 董海洲, 李兴文, 等. 新安江右坝裂隙岩体渗流同位素示踪研究[J]. 水科学进展, 2001, 12(3):336-342 doi: 10.3321/j.issn:1001-6791.2001.03.010

    CHEN Jiansheng, DONG Haizhou, LI Xingwen, et al. Isotope tracing of seepage in the fractured rock mass of Youba in Xin'anjiang River [J]. Advances in Water Science, 2001, 12(3): 336-342. doi: 10.3321/j.issn:1001-6791.2001.03.010

    [16]

    孙晓宇, 刘华, 何长林, 等. 温度示踪法确定库水-地下水垂向交换速率[J]. 海洋湖沼通报, 2020(1):56-64

    SUN Xiaoyu, LIU Hua, HE Changlin, et al. Determining the vertical exchange rate of reservoir water and groundwater by temperature tracing method [J]. Bulletin of Oceanology and Limnology, 2020(1): 56-64.

    [17]

    Cascarano R N, Reeves D M, Henry M A. A Dye Tracer Approach for Quantifying Fluid and Solute Flux Across the Sediment–Water Interface [J]. Groundwater, 2021, 59(3): 428-437. doi: 10.1111/gwat.13060

    [18]

    高兴军, 徐薇薇, 余义常, 等. 智能化学示踪剂技术及其在油藏监测中的应用[J]. 地球科学进展, 2018, 33(05):532-544 doi: 10.11867/j.issn.1001-8166.2018.05.0532

    GAO Xingjun, XU Weiwei, YU Yichang, et al. Intelligent chemical tracer technology and its application in reservoir monitoring [J]. Advances in Earth Science, 2018, 33(05): 532-544. doi: 10.11867/j.issn.1001-8166.2018.05.0532

    [19]

    张丽萍, 贾永刚, 侯伟, 等. 液化过程对海床土性质改造的波浪水槽试验[J]. 海洋地质与第四纪地质, 2013, 33(3):171-180 doi: 10.3724/SP.J.1140.2013.030171

    ZHANG Liping, JIA Yonggang, HOU Wei, et al. Wave flume experiment on seabed soil property modification by liquefaction process [J]. Marine Geology & Quaternary Geology, 2013, 33(3): 171-180. doi: 10.3724/SP.J.1140.2013.030171

    [20]

    张少同, 贾永刚, 刘晓磊, 等. 现代黄河三角洲沉积物动态变化过程的特征与机理[J]. 海洋地质与第四纪地质, 2016, 36(6):33-44

    ZHANG Shaotong, JIA Yonggang, LIU Xiaolei, et al. Characteristics and mechanism of sediment dynamic change process in modern Yellow River Delta [J]. Marine Geology & Quaternary Geology, 2016, 36(6): 33-44.

    [21]

    Wang H, Liu H. Evaluation of storm wave-induced silty seabed instability and geo-hazards: A case study in the Yellow River delta [J]. Applied Ocean Research, 2016, 58: 135-145. doi: 10.1016/j.apor.2016.03.013

    [22]

    李广信. 高等土力学[M]. 清华大学出版社, 2004.

    Li Guangxin. Advanced Soil Mechanics [M]. Tsinghua University Press, 2004.

    [23]

    Wang L, Liang T, Kleinman P J A, et al. An experimental study on using rare earth elements to trace phosphorous losses from nonpoint sources [J]. Chemosphere, 2011, 85(6): 1075-1079. doi: 10.1016/j.chemosphere.2011.07.038

    [24]

    Lin R, Soong Y, Granite E J. Evaluation of trace elements in US coals using the USGS COALQUAL database version 3.0. Part I: Rare earth elements and yttrium (REY) [J]. International Journal of Coal Geology, 2018, 192: 1-13. doi: 10.1016/j.coal.2018.04.004

    [25]

    Wang X, Li N, Feng D, et al. Using chemical compositions of sediments to constrain methane seepage dynamics: a case study from Haima cold seeps of the South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 137-144. doi: 10.1016/j.jseaes.2018.11.011

    [26]

    Jasechko S, Gibson J J, Birks S J, et al. Quantifying saline groundwater seepage to surface waters in the Athabasca oil sands region [J]. Applied Geochemistry, 2012, 27(10): 2068-2076. doi: 10.1016/j.apgeochem.2012.06.007

    [27]

    Su C, Zhang X, Fei Y, et al. Lateral seepage scope of downstream of Yellow River after the operation of Xiaolangdi reservoir and its impact on groundwater environment [J]. Geology in China, 2021, 48(6): 1669-1680.

    [28]

    Balvín A, Hokr M, Šteklová K, et al. Inverse modeling of natural tracer transport in a granite massif with lumped-parameter and physically based models: case study of a tunnel in Czechia [J]. Hydrogeology Journal, 2021, 29(8): 2633-2654. doi: 10.1007/s10040-021-02389-x

    [29]

    王刚, 许国辉, 黄哲, 等. 粉质土底床液化塌陷量形成试验研究[J]. 海洋地质与第四纪地质, 2014, 34(5):171-178

    WANG Gang, XU Guohui, HUANG Zhe, et al. Experimental study on the formation of liquefaction and collapse of silty soil bed [J]. Marine Geology & Quaternary Geology, 2014, 34(5): 171-178.

    [30]

    刘晓磊. 波浪导致现代黄河三角洲海床沉积物非均质化过程研究[D]. 中国海洋大学, 2013

    LIU Xiaolei. Study on the heterogeneity process of seabed sediments in the modern Yellow River Delta caused by waves [D]. Ocean University of China, 2013

  • 加载中

(6)

(1)

计量
  • 文章访问数:  1235
  • PDF下载数:  18
  • 施引文献:  0
出版历程
收稿日期:  2022-01-28
修回日期:  2022-05-03
刊出日期:  2022-12-28

目录