俄罗斯极地海表层海水悬浮体浓度和磁性矿物分布特征及其影响因素

边佳琪, 时美楠, 吴怀春, 汪卫国. 俄罗斯极地海表层海水悬浮体浓度和磁性矿物分布特征及其影响因素[J]. 海洋地质与第四纪地质, 2022, 42(5): 94-102. doi: 10.16562/j.cnki.0256-1492.2022061602
引用本文: 边佳琪, 时美楠, 吴怀春, 汪卫国. 俄罗斯极地海表层海水悬浮体浓度和磁性矿物分布特征及其影响因素[J]. 海洋地质与第四纪地质, 2022, 42(5): 94-102. doi: 10.16562/j.cnki.0256-1492.2022061602
BIAN Jiaqi, SHI Meinan, WU Huaichun, WANG Weiguo. Concentration of suspended particulate matter and magnetic minerals from surface seawater in Russian Arctic Seas: Distribution and influencing factors[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 94-102. doi: 10.16562/j.cnki.0256-1492.2022061602
Citation: BIAN Jiaqi, SHI Meinan, WU Huaichun, WANG Weiguo. Concentration of suspended particulate matter and magnetic minerals from surface seawater in Russian Arctic Seas: Distribution and influencing factors[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 94-102. doi: 10.16562/j.cnki.0256-1492.2022061602

俄罗斯极地海表层海水悬浮体浓度和磁性矿物分布特征及其影响因素

  • 基金项目: 国家自然科学基金青年科学基金“中国南海IODP368航次U1501站位渐新世以来高精度年代地层学研究”(42002028)
详细信息
    作者简介: 边佳琪(1997—),女,硕士研究生,海洋科学专业,E-mail:bjq0317@qq.com
    通讯作者: 汪卫国(1970—),男,研究员,主要从事海洋地质与第四纪地质研究,E-mail:wangwg@vip.126.com
  • 中图分类号: P736

Concentration of suspended particulate matter and magnetic minerals from surface seawater in Russian Arctic Seas: Distribution and influencing factors

More Information
  • 为了解俄罗斯极地海悬浮体颗粒物(Suspended Particulate Matter,SPM)的分布特征及其沉积学意义,对2019年中俄北极联合考察(AMK78航次)在喀拉海-拉普捷夫海-东西伯利亚海表层海水采集的SPM样品开展了颗粒浓度、组成和岩石磁学分析。研究发现,SPM主要由陆源碎屑和硅质浮游生物碎屑组成。悬浮体浓度在德米特里拉普捷夫海峡及其东侧海域最高,鄂毕河和叶尼塞河河口外侧次之,其他海域整体较低。悬浮体中携磁矿物为单畴、多畴磁铁矿。陆源碎屑集中分布在近岸和河流入海口附近海域,离海岸和河口较远海域悬浮体中硅质生物碎屑占比升高。SPM浓度主要受到河流搬运入海的陆源碎屑通量和海岸侵蚀的影响,而SPM中磁性矿物与流域内岩石类型有关,并受西伯利亚沿岸流的影响,磁性矿物集中在洋流流速缓慢的区域,粒径粗的磁性矿物分布在沿岸地区,可能与海岸侵蚀有关。

  • 加载中
  • 图 1  北极西伯利亚陆架概况和主要洋流[13-18](a)及采样站位(b)

    Figure 1. 

    图 2  SPM浓度空间分布特征

    Figure 2. 

    图 3  典型SPM颗粒组分扫描电镜照片

    Figure 3. 

    图 4  P17站位低温κ-T曲线

    Figure 4. 

    图 5  SPM代表性样品Loop曲线

    Figure 5. 

    图 6  磁性矿物Day图

    Figure 6. 

    图 7  SPM磁化率空间分布特征

    Figure 7. 

    图 8  SPM频率磁化率空间分布特征

    Figure 8. 

    图 9  SPM天然剩磁空间分布特征

    Figure 9. 

  • [1]

    Kravchishina M D, Lisitsyn A P, Klyuvitkin A A, et al. Suspended particulate matter as a main source and proxy of the sedimentation processes[M]//Lisitsyn A P, Demina L L. Sedimentation Processes in the White Sea. Cham: Springer, 2018: 13-48.

    [2]

    胡吉连, 杜晓琴. 舟山海域悬浮体的特征及输运机制[J]. 海洋地质与第四纪地质, 2020, 40(6):39-48 doi: 10.16562/j.cnki.0256-1492.2019111304

    HU Jilian, DU Xiaoqin. Characteristics and transport mechanism of suspended particles in offshore area of Zhoushan Islands [J]. Marine Geology & Quaternary Geology, 2020, 40(6): 39-48. doi: 10.16562/j.cnki.0256-1492.2019111304

    [3]

    李文建, 王珍岩, 黄海军. 夏季南黄海悬浮体粒度分布及其影响因素[J]. 海洋地质与第四纪地质, 2020, 40(6):49-60

    LI Wenjian, WANG Zhenyan, HUANG Haijun. Grain size distribution pattern and influencing factors of suspended matters in the southern Yellow Sea during summer season [J]. Marine Geology & Quaternary Geology, 2020, 40(6): 49-60.

    [4]

    Stein R. The Late Mesozoic-Cenozoic arctic ocean climate and sea ice history: a challenge for past and future scientific ocean drilling [J]. Paleoceanography and Paleoclimatology, 2019, 34(12): 1851-1894. doi: 10.1029/2018PA003433

    [5]

    Larkin C S, Piotrowski A M, Hindshaw R S, et al. Constraints on the source of reactive phases in sediment from a major Arctic river using neodymium isotopes [J]. Earth and Planetary Science Letters, 2021, 565: 116933. doi: 10.1016/j.jpgl.2021.116933

    [6]

    汪卫国, 方建勇, 陈莉莉, 等. 楚科奇海悬浮体含量分布及其颗粒组分特征[J]. 极地研究, 2014, 26(1):79-88

    WANG Weiguo, FANG Jianyong, CHEN Lili, et al. The Distribution and composition of suspended particles in the Chukchi Sea [J]. Chinese Journal of Polar Research, 2014, 26(1): 79-88.

    [7]

    Kravchishina M, Lein A, Burenkov V, et al. Distribution and sources of suspended particulate matter in the Kara Sea[C]//Complex Interfaces Under Change: Sea-River-Groundwater-Lake. Gothenburg: IAHS, 2014: 42-48.

    [8]

    Wegner C, Hölemann J A, Dmitrenko I, et al. Suspended particulate matter on the Laptev Sea shelf (Siberian Arctic) during ice-free conditions [J]. Estuarine, Coastal and Shelf Science, 2003, 57(1-2): 55-64. doi: 10.1016/S0272-7714(02)00328-1

    [9]

    Rachold V, Eisenhauer A, Hubberten H W, et al. Sr isotopic composition of suspended particulate material (SPM) of east Siberian rivers: sediment transport to the arctic ocean [J]. Arctic and Alpine Research, 1997, 29(4): 422-429. doi: 10.2307/1551990

    [10]

    Stein R, Dittmers K, Fahl K, et al. Arctic (palaeo) river discharge and environmental change: evidence from the Holocene Kara Sea sedimentary record [J]. Quaternary Science Reviews, 2004, 23(11-13): 1485-1511. doi: 10.1016/j.quascirev.2003.12.004

    [11]

    Matul A G, Khusid T A, Mukhina V V, et al. Recent and Late Holocene environments on the southeastern shelf of the Laptev Sea as inferred from microfossil data [J]. Oceanology, 2007, 47(1): 80-90. doi: 10.1134/S0001437007010110

    [12]

    李秋玲, 乔淑卿, 石学法, 等. 北极东西伯利亚陆架沉积物物源: 来自黏土矿物和化学元素的证据[J]. 海洋学报, 2021, 43(3):76-89

    LI Qiuling, QIAO Shuqing, SHI Xuefa, et al. Sediment provenance of the East Siberian arctic shelf: evidence from clay minerals and chemical elements [J]. Haiyang Xuebao, 2021, 43(3): 76-89.

    [13]

    Lien V S, Trofimov A G. Formation of Barents sea branch water in the north-eastern Barents Sea [J]. Polar Research, 2013, 32(1): 18905. doi: 10.3402/polar.v32i0.18905

    [14]

    Schauer U, Loeng H, Rudels B, et al. Atlantic water flow through the Barents and Kara seas [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2002, 49(12): 2281-2298. doi: 10.1016/S0967-0637(02)00125-5

    [15]

    Rozhkova A Y, Dmitrenko I A, Baukh D, et al. Variations in characteristics of the Barents branch of the Atlantic Water in the Nansen Basin under the influence of atmospheric circulation over the Barents Sea [J]. Doklady Earth Sciences, 2008, 418(1): 149-154. doi: 10.1134/S1028334X08010339

    [16]

    Weingartner T J, Danielson S, Sasaki Y, et al. The Siberian coastal current: a wind- and buoyancy-forced arctic coastal current [J]. Journal of Geophysical Research:Oceans, 1999, 104(C12): 29697-29713. doi: 10.1029/1999JC900161

    [17]

    贾福福, 沙龙滨, 李冬玲, 等. 西伯利亚极地海域第四纪以来古海洋环境研究进展[J]. 极地研究, 2020, 32(2):250-263 doi: 10.13679/j.jdyj.20190074

    JIA Fufu, SHA Longbin, LI Dongling, et al. Review of research on Quaternary paleoceanography of the Siberian arctic seas [J]. Chinese Journal of Polar Research, 2020, 32(2): 250-263. doi: 10.13679/j.jdyj.20190074

    [18]

    田引, 白学志, 黄颖祺. 北冰洋穿极流强度和源头位置变动机制分析[J]. 极地研究, 2021, 33(4):529-544 doi: 10.13679/j.jdyj.20210034

    TIAN Yin, BAI Xuezhi, HUANG Yingqi. Analysis of the variation in intensity and source region of the arctic transpolar drift [J]. Chinese Journal of Polar Research, 2021, 33(4): 529-544. doi: 10.13679/j.jdyj.20210034

    [19]

    Deng C, Zhu R, Jackson M J, et al. Variability of the temperature-dependent susceptibility of the Holocene Eolian deposits in the Chinese loess plateau: a Pedogenesis indicator [J]. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy, 2001, 26(11-12): 873-878. doi: 10.1016/S1464-1895(01)00135-1

    [20]

    Verwey E J W. Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures [J]. Nature, 1939, 144(3642): 327-328.

    [21]

    Tauxe L, Bertram H N, Seberino C. Physical interpretation of hysteresis loops: micromagnetic modeling of fine particle magnetite [J]. Geochemistry, Geophysics, Geosystems, 2002, 3(10): 1-22.

    [22]

    Roberts A P, Tauxe L, Heslop D, et al. A critical appraisal of the “day” diagram [J]. Journal of Geophysical Research:Solid Earth, 2018, 123(4): 2618-2644. doi: 10.1002/2017JB015247

    [23]

    Dunlop D J. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data [J]. Journal of Geophysical Research:Solid Earth, 2002, 107(B3): 2056. doi: 10.1029/2001JB000486

    [24]

    Dunlop D J. Theory and application of the day plot (Mrs/Ms versus Hcr/Hc) 2. Application to data for rocks, sediments, and soils [J]. Journal of Geophysical Research:Solid Earth, 2002, 107(B3): 2057. doi: 10.1029/2001JB000487

    [25]

    Thompson R, Oldfield F. Environmental Magnetism[M]. London: Allen & Unwin, 1986.

    [26]

    敖红, 邓成龙. 磁性矿物的磁学鉴别方法回顾[J]. 地球物理学进展, 2007, 22(2):432-442 doi: 10.3969/j.issn.1004-2903.2007.02.015

    AO Hong, DENG Chenglong. Review in the identification of magnetic minerals [J]. Progress in Geophysics, 2007, 22(2): 432-442. doi: 10.3969/j.issn.1004-2903.2007.02.015

    [27]

    Rudenko О, Taldenkova Е, Ovsepyan Y, et al. A multiproxy-based reconstruction of the mid- to Late Holocene paleoenvironment in the Laptev Sea off the Lena River Delta (Siberian Arctic) [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 540: 109502. doi: 10.1016/j.palaeo.2019.109502

  • 加载中

(9)

计量
  • 文章访问数:  662
  • PDF下载数:  8
  • 施引文献:  0
出版历程
收稿日期:  2022-06-16
修回日期:  2022-08-11
录用日期:  2022-08-11
刊出日期:  2022-10-28

目录