帕里西维拉海盆岩浆-构造过程及钻探建议

鄢全树, 袁龙, 石学法. 帕里西维拉海盆岩浆-构造过程及钻探建议[J]. 海洋地质与第四纪地质, 2022, 42(5): 103-109. doi: 10.16562/j.cnki.0256-1492.2022062003
引用本文: 鄢全树, 袁龙, 石学法. 帕里西维拉海盆岩浆-构造过程及钻探建议[J]. 海洋地质与第四纪地质, 2022, 42(5): 103-109. doi: 10.16562/j.cnki.0256-1492.2022062003
YAN Quanshu, YUAN Long, SHI Xuefa. Magmatism and tectonic evolution of the Parece Vela Basin and the drilling proposal[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 103-109. doi: 10.16562/j.cnki.0256-1492.2022062003
Citation: YAN Quanshu, YUAN Long, SHI Xuefa. Magmatism and tectonic evolution of the Parece Vela Basin and the drilling proposal[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 103-109. doi: 10.16562/j.cnki.0256-1492.2022062003

帕里西维拉海盆岩浆-构造过程及钻探建议

  • 基金项目: 青岛海洋科学与技术试点国家实验室山东省专项经费项目“俯冲带岩浆活动与构造约束”(2022QNLM050201-3);国家自然科学基金“海底岩石学”(41322036); 山东省泰山学者建设工程项目.
详细信息
    作者简介: 鄢全树(1976—),研究员,从事海底岩石学研究,E-mail:yanquanshu@163.com
  • 中图分类号: P736.11

Magmatism and tectonic evolution of the Parece Vela Basin and the drilling proposal

  • 揭示位于太平洋板块、欧亚板块与印澳板块之间的菲律宾海板块的地质演化是理解西太平洋沟-弧-盆体系形成演化的重要一环。隶属于菲律宾海板块的帕里西维拉海盆及其北侧的四国海盆,是菲律宾海板块发生第二次扩张的产物,记录了菲律宾海板块生长、太平洋板块西向俯冲消减的过程及弧后扩张的重要信息。基于前人研究成果,综述了帕里西维拉海盆的地质与地球物理特征,并将其分为4个区域:东区、西区、南区及中央裂谷区。其中:(1)东区的沉积物较厚(最厚达3 500 m),地形较为平滑,未能识别出磁异常条带,基底熔岩具有类似于弧后盆地玄武岩的微量元素特征和印度洋型MORB(洋中脊玄武岩)的同位素特征。(2)西区的沉积物较薄,地形较为复杂,可识别出10-5D号磁异常条带,海底熔岩的特点类似于东区。(3)南区地形复杂,海山、裂谷、丘陵等海底组构相间分布,可进一步分为5个次级单元,无磁异常条带,其基底熔岩具有类似于N(正常)-MORB和IAB(岛弧玄武岩)之间的微量元素特征和印度洋型MORB的同位素特征。(4)裂谷区,沉积物较薄,广泛分布了拆离断层和核杂岩,水深较深(最深处超过7500 m),该区域同时出露有肥沃型橄榄岩和难熔型橄榄岩。最后,本文建议了8个钻孔站位,以解决该海盆尚存的一些有关构造-岩浆过程、深部地幔过程、俯冲带过程及沉积古环境方面的重要的基础科学问题。

  • 加载中
  • 图 1  菲律宾海板块及主要构造单元

    Figure 1. 

    图 2  帕里西维拉海盆地质及建议钻探位置图

    Figure 2. 

  • [1]

    Sharp W D, Clague D A. 50-Ma initiation of Hawaiian-Emperor Bend records major change in Pacific Plate motion [J]. Science, 2006, 313(5791): 1281-1284. doi: 10.1126/science.1128489

    [2]

    Meade B J. Present-day kinematics at the India-Asia collision zone [J]. Geology, 2007, 35(1): 81-84. doi: 10.1130/G22924A.1

    [3]

    Whittaker J M, Müller R D, Leitchenkov G, et al. Major Australian-Antarctic plate reorganization at Hawaiian-Emperor bend time [J]. Science, 2007, 318(5847): 83-86. doi: 10.1126/science.1143769

    [4]

    Najman Y, Appel E, Boudagher-Fadel M, et al. Timing of India-Asia collision: geological, biostratigraphic, and palaeomagnetic constraints [J]. Journal of Geophysical Research, 2010, 115(B12): B12416. doi: 10.1029/2010JB007673

    [5]

    Torsvik T H, Doubrovine P V, Steinberger B, et al. Pacific plate motion change caused the Hawaiian-Emperor Bend [J]. Nature Communications, 2017, 8: 15660. doi: 10.1038/ncomms15660

    [6]

    Hickey-Vargas R. Origin of the Indian ocean-type isotopic signature in basalts from Philippine Sea plate spreading centers: an assessment of local versus large-scale processes [J]. Journal of Geophysical Research, 1998, 103(B9): 20963-20979. doi: 10.1029/98JB02052

    [7]

    Hickey-Vargas R. Basalt and tonalite from the Amami Plateau, northern West Philippine Basin: new early Cretaceous ages and geochemical results, and their petrologic and tectonic implications [J]. Island Arc, 2005, 14(4): 653-665. doi: 10.1111/j.1440-1738.2005.00474.x

    [8]

    Savov I P, Hickey-Vargas R, D'antonio M, et al. Petrology and geochemistry of West Philippine Basin basalts and Early Palau–Kyushu arc volcanic clasts from ODP Leg 195, Site 1201D: implications for the early history of the Izu–Bonin–Mariana Arc [J]. Journal of Petrology, 2006, 47(2): 277-299. doi: 10.1093/petrology/egi075

    [9]

    Reagan M K, Ishizuka O, Stern R J, et al. Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): Q03X12.

    [10]

    Yuan L, Yan Q S, Liu Y G, et al. In situ geochemical compositions of the minerals in basaltic rocks from the West Philippine Basin: constraints on source lithology and magmatic processes [J]. Lithosphere, 2020, 2020(1): 8878501. doi: 10.2113/2020/8878501

    [11]

    石学法, 鄢全树. 西太平洋典型边缘海盆的岩浆活动[J]. 地球科学进展, 2013, 28(7):737-750 doi: 10.11867/j.issn.1001-8166.2013.07.0737

    SHI Xuefa, YAN Quanshu. Magmatism of typical marginal basins (or back-arc basins) in the West Pacific [J]. Advances in Earth Science, 2013, 28(7): 737-750. doi: 10.11867/j.issn.1001-8166.2013.07.0737

    [12]

    Shervais J W, Reagan M, Haugen E, et al. Magmatic response to subduction initiation: part 1. Fore-arc basalts of the Izu-Bonin arc from IODP expedition 352 [J]. Geochemistry, Geophysics, Geosystems, 2019, 20(1): 314-338. doi: 10.1029/2018GC007731

    [13]

    Karig D E. Origin and development of marginal basins in the western pacific [J]. Journal of Geophysical Research, 1971, 76(11): 2542-2561. doi: 10.1029/JB076i011p02542

    [14]

    Hilde T W C, Lee C S. Origin and evolution of the West Philippine Basin: a new interpretation [J]. Tectonophysics, 1984, 102(1-4): 85-104. doi: 10.1016/0040-1951(84)90009-X

    [15]

    Ishizuka O, Taylor R N, Ohara Y, et al. Upwelling, rifting, and age-progressive magmatism from the Oki-Daito mantle plume [J]. Geology, 2013, 41(9): 1011-1014. doi: 10.1130/G34525.1

    [16]

    Deschamps A, Lallemand S. The West Philippine Basin: an Eocene to early Oligocene back arc Basin opened between two opposed subduction zones [J]. Journal of Geophysical Research, 2002, 107(B12): 2322.

    [17]

    Kroenke L, Scott R, Balshaw K, et al. Initial Reports of DeepGSea Drilling Project Leg 59[M]. Washington DC: US Government Printing Office, 1980, 321-483.

    [18]

    Yuan L, Yan Q S. Source lithology and magmatic processes recorded in the mineral of basalts from the Parece Vela Basin[J]. Acta Geologica Sinica (English Edition), 2022,doi: 10.1111/1755-6724.14937.

    [19]

    Yan Q S, Shi X F. Geological comparative studies of Japan arc system and Kyushu-Palau arc [J]. Acta Oceanologica Sinica, 2011, 30(4): 107-121. doi: 10.1007/s13131-011-0134-3

    [20]

    Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations [J]. Journal of Asian Earth Sciences, 2002, 20(4): 353-431. doi: 10.1016/S1367-9120(01)00069-4

    [21]

    Hall R, Ali J R, Anderson C D, et al. Origin and motion history of the Philippine Sea Plate [J]. Tectonophysics, 1995, 251(1-4): 229-250. doi: 10.1016/0040-1951(95)00038-0

    [22]

    Dietrich V, Emmermann R, Oberhänsli R, et al. Geochemistry of basaltic and gabbroic rocks from the West Mariana Basin and the Mariana trench [J]. Earth and Planetary Science Letters, 1978, 39(1): 127-144. doi: 10.1016/0012-821X(78)90149-8

    [23]

    Tani K, Dunkley D J, Ohara Y. Termination of backarc spreading: zircon dating of a giant oceanic core complex [J]. Geology, 2011, 39(1): 47-50. doi: 10.1130/G31322.1

    [24]

    Akizawa N, Ohara Y, Okino K, et al. Geochemical characteristics of back-arc Basin Lower crust and Upper mantle at final spreading stage of Shikoku Basin: an example of Mado Megamullion [J]. Progress in Earth and Planetary Science, 2021, 8(1): 65. doi: 10.1186/s40645-021-00454-3

    [25]

    俞恂, 陈立辉. 弧后盆地玄武岩的成分变化及其成因[J]. 岩石学报, 2020, 36(7):1953-1972 doi: 10.18654/1000-0569/2020.07.02

    YU Xun, CHEN Lihui. Geochemical variation of back-arc Basin basalt and its genesis [J]. Acta Petrologica Sinica, 2020, 36(7): 1953-1972. doi: 10.18654/1000-0569/2020.07.02

    [26]

    Okino K, Kasuga S, Ohara Y. A new scenario of the Parece Vela Basin genesis [J]. Marine Geophysical Researches, 1998, 20(1): 21-40. doi: 10.1023/A:1004377422118

    [27]

    Ohara Y, Yoshida T, Kato Y, et al. Giant megamullion in the Parece Vela Backarc Basin [J]. Marine Geophysical Researches, 2001, 22(1): 47-61. doi: 10.1023/A:1004818225642

    [28]

    Ohara Y, Fujioka K, Ishii T, et al. Peridotites and gabbros from the Parece Vela backarc Basin: unique tectonic window in an extinct backarc spreading ridge [J]. Geochemistry, Geophysics, Geosystems, 2003, 4(7): 8611.

    [29]

    Ishizuka O, Yuasa M, Taylor R N, et al. Two contrasting magmatic types coexist after the cessation of back-arc spreading [J]. Chemical Geology, 2009, 266(3-4): 274-296. doi: 10.1016/j.chemgeo.2009.06.014

    [30]

    Ohara Y, Fujioka K, Ishizuka O, et al. Peridotites and volcanics from the yap arc system: implications for tectonics of the southern Philippine Sea Plate [J]. Chemical Geology, 2002, 189(1-2): 35-53. doi: 10.1016/S0009-2541(02)00062-1

    [31]

    Mrozowski C L, Hayes D E. The evolution of the Parece Vela Basin, eastern Philippine Sea [J]. Earth and Planetary Science Letters, 1979, 46(1): 49-67. doi: 10.1016/0012-821X(79)90065-7

    [32]

    殷征欣, 李正元, 沈泽中, 等. 西太平洋帕里西维拉海盆不对称性发育特征及其成因[J]. 吉林大学学报:地球科学版, 2019, 49(1):218-229

    YIN Zhengxin, LI Zhengyuan, SHEN Zezhong, et al. Asymmetric geological developments and their geneses of the Parece Vela Basin in western Pacific Ocean [J]. Journal of Jilin University:Earth Science Edition, 2019, 49(1): 218-229.

    [33]

    Fryer P, Sinton J M, Philpotts J A. Basaltic glasses from the Mariana trough[M]//Initial Reports of the Deep Sea Drilling Project, 60. Washington: US Government Printing Office, 1981, doi: 10.2973/dsdp.proc.60.132.1982.

    [34]

    Stolper E, Newman S. The role of water in the Petrogenesis of Mariana trough magmas [J]. Earth and Planetary Science Letters, 1994, 121(3-4): 293-325. doi: 10.1016/0012-821X(94)90074-4

    [35]

    Okino K, Ohara Y, Fujiwara T, et al. Tectonics of the southern tip of the Parece Vela Basin, Philippine Sea Plate [J]. Tectonophysics, 2009, 466(3-4): 213-228. doi: 10.1016/j.tecto.2007.11.017

    [36]

    Nisbet E G, Pearce J A. Clinopyroxene composition in mafic lavas from different tectonic settings [J]. Contributions to Mineralogy and Petrology, 1977, 63(2): 149-160. doi: 10.1007/BF00398776

    [37]

    Dong D D, Zhang Z Y, Bai Y L, et al. Topographic and sedimentary features in the yap subduction zone and their implications for the Caroline ridge subduction [J]. Tectonophysics, 2018, 722: 410-421. doi: 10.1016/j.tecto.2017.11.030

    [38]

    Ohara Y, Okino K, Snow J E, et al. Preliminary report of Kairei KR03-01 cruise: Amagmatic tectonics and lithospheric composition of the Parece Vela Basin [J]. InterRidge News, 2003, 12(1): 27-29.

    [39]

    Yan Q S, Shi X F, Yuan L, et al. Tectono-magmatic evolution of the Philippine Sea Plate: a review [J]. Geosystems and Geoenvironment, 2022, 1(2): 100018. doi: 10.1016/j.geogeo.2021.100018

    [40]

    Yan Q S, Straub S, Shi X F. Hafnium isotopic constraints on the origin of Late Miocene to Pliocene seamount basalts from the South China Sea and its tectonic implications [J]. Journal of Asian Earth Sciences, 2019, 171: 162-168. doi: 10.1016/j.jseaes.2018.06.027

    [41]

    Yan Q S, Shi X F, Castillo P R. The Late Mesozoic-Cenozoic tectonic evolution of the South China Sea: a petrologic perspective [J]. Journal of Asian Earth Sciences, 2014, 85: 178-201. doi: 10.1016/j.jseaes.2014.02.005

    [42]

    鄢全树, 石学法. 海南地幔柱与南海形成演化[J]. 高校地质学报, 2007, 13(2):311-322 doi: 10.3969/j.issn.1006-7493.2007.02.014

    YAN Quanshu, SHI Xuefa. Hainan mantle plume and the Formation and evolution of the South China Sea [J]. Geological Journal of China Universities, 2007, 13(2): 311-322. doi: 10.3969/j.issn.1006-7493.2007.02.014

    [43]

    李三忠, 吕海青, 侯方辉, 等. 海洋核杂岩[J]. 海洋地质与第四纪地质, 2006, 26(1):47-52 doi: 10.16562/j.cnki.0256-1492.2006.01.008

    LI Sanzhong, LÜ Haiqing, HOU Fanghui, et al. Oceanic core complex [J]. Marine Geology & Quaternary Geology, 2006, 26(1): 47-52. doi: 10.16562/j.cnki.0256-1492.2006.01.008

    [44]

    余星, 初凤友, 董彦辉, 等. 拆离断层与大洋核杂岩: 一种新的海底扩张模式[J]. 地球科学:中国地质大学学报, 2013, 38(5):995-1004 doi: 10.3799/dqkx.2013.097

    YU Xing, CHU Fengyou, DONG Yanhui, et al. Detachment fault and oceanic core complex: a new mode of seafloor spreading [J]. Earth Science:Journal of China University of Geosciences, 2013, 38(5): 995-1004. doi: 10.3799/dqkx.2013.097

    [45]

    Basch V, Sanfilippo A, Sani C, et al. Crustal accretion in a slow spreading back-arc Basin: Insights from the Mado Megamullion oceanic core complex in the Shikoku Basin [J]. Geochemistry, Geophysics, Geosystems, 2020, 21(11): e2020GC009199.

    [46]

    Tucholke B E, Behn M D, Buck W R, et al. Role of melt supply in oceanic detachment faulting and Formation of megamullions [J]. Geology, 2008, 36(6): 455-458. doi: 10.1130/G24639A.1

    [47]

    Tucholke B E, Lin J, Kleinrock M C. Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge [J]. Journal of Geophysical Research, 1998, 103(B5): 9857-9866. doi: 10.1029/98JB00167

    [48]

    Nooner S L, Sasagawa G S, Blackman D K, et al. Structure of oceanic core complexes: constraints from seafloor gravity measurements made at the Atlantis Massif [J]. Geophysical Research Letters, 2003, 30(8): 1446.

  • 加载中

(2)

计量
  • 文章访问数:  711
  • PDF下载数:  59
  • 施引文献:  0
出版历程
收稿日期:  2022-06-20
修回日期:  2022-06-30
录用日期:  2022-06-30
刊出日期:  2022-10-28

目录