南海共轭大陆边缘发育演变时空特征的非均性与目标钻探井位

祝文君, 杜学鑫, 尚鲁宁, 李攀峰, 潘军, 祁江豪, 孟元库, 胡刚. 南海共轭大陆边缘发育演变时空特征的非均性与目标钻探井位[J]. 海洋地质与第四纪地质, 2022, 42(5): 110-123. doi: 10.16562/j.cnki.0256-1492.2022062001
引用本文: 祝文君, 杜学鑫, 尚鲁宁, 李攀峰, 潘军, 祁江豪, 孟元库, 胡刚. 南海共轭大陆边缘发育演变时空特征的非均性与目标钻探井位[J]. 海洋地质与第四纪地质, 2022, 42(5): 110-123. doi: 10.16562/j.cnki.0256-1492.2022062001
ZHU Wenjun, DU Xuexin, SHANG Luning, LI Panfeng, PAN Jun, QI Jianghao, MENG Yuanku, HU Gang. Spatiotemporal heterogeneity of the conjugate continental margin evolution in the South China Sea and future ocean drilling wells[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 110-123. doi: 10.16562/j.cnki.0256-1492.2022062001
Citation: ZHU Wenjun, DU Xuexin, SHANG Luning, LI Panfeng, PAN Jun, QI Jianghao, MENG Yuanku, HU Gang. Spatiotemporal heterogeneity of the conjugate continental margin evolution in the South China Sea and future ocean drilling wells[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 110-123. doi: 10.16562/j.cnki.0256-1492.2022062001

南海共轭大陆边缘发育演变时空特征的非均性与目标钻探井位

  • 基金项目: 中国地质调查局海洋地质调查项目(DD20190236, DD20221710);自然资源部海岸带科学与综合管理重点实验室开放基金(2021COSIMZ003)
详细信息
    作者简介: 祝文君(1998—),硕士研究生,主要从事海洋地质学研究,E-mail:1094569539@qq.com
    通讯作者: 胡刚(1979—),博士,正高级工程师,主要从事海洋沉积学研究,E-mail:hugang@mail.cgs.gov.cn
  • 中图分类号: P736.1

Spatiotemporal heterogeneity of the conjugate continental margin evolution in the South China Sea and future ocean drilling wells

More Information
  • 南海是西太平洋最大的边缘海之一,位于欧亚板块、菲律宾海板块和印度-澳大利亚板块的转换交接部位,也是太平洋构造域与特提斯洋构造域全球两大构造体系的交汇点,蕴含着丰富的前沿地球科学问题。聚焦南海区域4+1次大洋钻探航次(ODP184、IODP349、IODP367、IODP368及IODP368X),系统总结了中生代以来南海深海盆从陆缘张裂、海底扩张,到气候环境和沉积演变取得的重要进展。基于南海共轭大陆边缘在形成演化过程中时空分布不均一性,凝练了陆缘伸展减薄过程、洋陆过渡带张破裂过程、岩浆活动动力学机制和莫霍面优选等4个科学主题。以往的大洋钻探多数限于南海大陆边缘北部中段,对整个南海的控制约束作用有限。针对上述科学问题,对南海相关数据进行了详细解释分析,在南海东北次海盆、西南次海盆和西北次海盆提出9个科学钻探站位,以期全面、完整和具体地揭示南海生命史。在今后工作中坚持深浅结合、难易结合的原则,开展实施南海大洋钻探,不仅具有支撑未来天然气水合物钻采船在南海海域钻探的现实需求,而且对刻画南海完整生命史具有重要科学意义。

  • 加载中
  • 图 1  南海地形地貌与构造纲要图[7]

    Figure 1. 

    图 2  历次南海大洋钻探站位图[8]

    Figure 2. 

    图 3  南海西北次海盆陆缘伸展与张破裂钻探井位(M3测线)

    Figure 3. 

    图 4  南海西北次海盆洋陆过渡带钻探站位(M3测线)

    Figure 4. 

    图 5  南海西南次海盆洋陆过渡带钻探站位(M1测线)

    Figure 5. 

    图 6  南海西南次海盆扩张停止机制钻探站位(M1测线)

    Figure 6. 

    图 7  南海西南次海盆NH973-1测线中央峡谷位置莫霍面钻探靶区[51]

    Figure 7. 

    图 8  南海深部科学钻探井位汇总图

    Figure 8. 

    表 1  南海深部科学钻探计划站位汇总

    Table 1.  Summary of sites for the future scientific drilling program in the South China Sea

    编号坐标水深/m终孔深度/m钻进深度/m科学主题
    SCSD119.2°N、118.35°E5 0006 7001 700洋陆过渡带与破裂
    SCSD221°N、120.65°E2 1003 1001 000俯冲带与环境效应
    SCSD317.51°N、114.62°E4 7507 2002 450陆缘伸展减薄过程
    SCSD417.09°N、113.74°E3 7004 8001 100洋陆过渡带与资源
    SCSD513.19°N、112.95°E2 9005 0002 100陆缘伸展减薄过程
    SCSD611.05°N、113.72°E5 5007 1501 650陆缘伸展减薄过程
    SCSD79.49°N、110.55°E2 9005 9003 000洋陆过渡带与破裂
    SCSD810.17°N、114.02°E2 5004 4501 950洋陆过渡带与破裂
    SCSD912.39°N、113.79°E4 4009 5005 100莫霍面钻探
    下载: 导出CSV
  • [1]

    石耀霖, 王其允. 俯冲带的后撤与弧后扩张[J]. 地球物理学报, 1993, 36(1):37-43 doi: 10.3321/j.issn:0001-5733.1993.01.005

    SHI Yaolin, WANG Qiyun. Roll-back subduction and back-arc opening [J]. Acta Geophysica Sinica, 1993, 36(1): 37-43. doi: 10.3321/j.issn:0001-5733.1993.01.005

    [2]

    方念乔. “海南陆缘弧”体系的构建与“特提斯南海”的识别: 一个关于“古南海”演化新模式的探讨[J]. 地学前缘, 2016, 23(6):107-119

    FANG Nianqiao. A new model on the Mesozoic "South China Sea"(SCS): reconstructing the Hainan marginal arc and recognizing the Tethyan SCS [J]. Earth Science Frontiers, 2016, 23(6): 107-119.

    [3]

    李三忠, 李涛, 赵淑娟, 等. 东亚原特提斯洋(Ⅴ): 北界西段陆缘属性及微陆块拼合[J]. 岩石学报, 2017, 33(6):1633-1652

    LI Sanzhong, LI Tao, ZHAO Shujuan, et al. Proto-Tethys ocean in East Asia (V): attribute of contientnal margin and microcontinental assembly in the west segment of the northern Proto-Tethys Tectonic Domain [J]. Acta Petrologica Sinica, 2017, 33(6): 1633-1652.

    [4]

    Tapponnier P, Peltzer G, Le Dain A Y, et al. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine [J]. Geology, 1982, 10(12): 611-616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2

    [5]

    Li C F, Zhou Z Y, Li J B, et al. Structures of the northeasternmost South China Sea continental margin and ocean basin: geophysical constraints and tectonic implications [J]. Marine Geophysical Researches, 2007, 28(1): 59-79. doi: 10.1007/s11001-007-9014-9

    [6]

    Li C F, Xu X, Lin J, et al. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349 [J]. Geochemistry, Geophysics, Geosystems, 2014, 15(12): 4958-4983.

    [7]

    Song T R, Li C F, Wu S G, et al. Extensional styles of the conjugate rifted margins of the South China Sea [J]. Journal of Asian Earth Sciences, 2019, 177: 117-128. doi: 10.1016/j.jseaes.2019.03.008

    [8]

    翦知湣. 进军深海科学前沿: 我国参与大洋钻探的进展[J]. 科学通报, 2018, 63(36):3877-3882 doi: 10.1360/N972018-01159

    JIAN Zhimin. Towards the scientific frontier of deep-sea research: progress of China's participation in ocean drilling [J]. Chinese Science Bulletin, 2018, 63(36): 3877-3882. doi: 10.1360/N972018-01159

    [9]

    Wang P X, Prell W, Blum P. Proceedings of the ocean drilling program, 184 Initial Report[R]. College Station, TX: Ocean Drilling Program, 2000.

    [10]

    Li C F, Lin J, Kulhanek D K, et al. Proceedings of the international ocean discovery program, 349: South China Sea Tectonics[R]. College Station, TX, 2015.

    [11]

    Sun Z, Stock J, Klaus A. Expedition 367 preliminary report: South China Sea rifted margin[R]. International Ocean Discovery Program, 2018.

    [12]

    Jian Z, Larsen H C, Alvarez Zarikian C A. Expedition 368 preliminary report: South China Sea rifted margin[R]. International Ocean Discovery Program, 2018.

    [13]

    Childress L B, Briais A, Deng J M, et al. Expedition 368X preliminary report: South China Sea rifted margin[R]. International Ocean Discovery Program, 2019.

    [14]

    Sun Z, Ding W W, Zhao X X, et al. The latest spreading periods of the South China Sea: new constraints from macrostructure analysis of IODP Expedition 349 cores and geophysical data [J]. Journal of Geophysical Research:Solid Earth, 2019, 124(10): 9980-9998. doi: 10.1029/2019JB017584

    [15]

    Larsen H C, Mohn G, Nirrengarten M, et al. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea [J]. Nature Geoscience, 2018, 11(10): 782-789. doi: 10.1038/s41561-018-0198-1

    [16]

    Gao J W, Wu S G, Mcintosh K, et al. Crustal structure and extension mode in the northwestern margin of the South China Sea [J]. Geochemistry, Geophysics, Geosystems, 2016, 17(6): 2143-2167. doi: 10.1002/2016GC006247

    [17]

    Huang C Y, Wang P X, Yu M M, et al. Potential role of strike-slip faults in opening up the South China Sea [J]. National Science Review, 2019, 6(5): 891-901. doi: 10.1093/nsr/nwz119

    [18]

    Zhao F, Alves T M, Wu S G, et al. Prolonged post-rift magmatism on highly extended crust of divergent continental margins (Baiyun Sag, South China Sea) [J]. Earth and Planetary Science Letters, 2016, 445: 79-91. doi: 10.1016/j.jpgl.2016.04.001

    [19]

    汪品先. 低纬过程的轨道驱动[J]. 第四纪研究, 2006, 26(5):694-701 doi: 10.3321/j.issn:1001-7410.2006.05.003

    WANG Pinxian. Orbital forcing of the low-latitude processes [J]. Quaternary Sciences, 2006, 26(5): 694-701. doi: 10.3321/j.issn:1001-7410.2006.05.003

    [20]

    Li X H, Li J B, Yu X, et al. 40Ar/39Ar ages of seamount trachytes from the South China Sea and implications for the evolution of the northwestern sub-basin [J]. Geoscience Frontiers, 2015, 6(4): 571-577. doi: 10.1016/j.gsf.2014.08.003

    [21]

    张也, 黄宝春. 特提斯喜马拉雅地块白垩纪古纬度变化对印欧碰撞模式的制约[J]. 中国科学:地球科学, 2017, 60(6):1057-1066 doi: 10.1007/s11430-016-9042-7

    ZHANG Ye, HUANG Baochun. The influence of Cretaceous paleolatitude variation of the Tethyan Himalaya on the India-Asia collision pattern [J]. Science China Earth Sciences, 2017, 60(6): 1057-1066. doi: 10.1007/s11430-016-9042-7

    [22]

    Franke D, Barckhausen U, Baristeas N, et al. The continent-ocean transition at the southeastern margin of the South China Sea [J]. Marine and Petroleum Geology, 2011, 28(6): 1187-1204. doi: 10.1016/j.marpetgeo.2011.01.004

    [23]

    丁巍伟, 李家彪. 南海南部陆缘构造变形特征及伸展作用: 来自两条973多道地震测线的证据[J]. 地球物理学报, 2011, 54(12):3038-3056 doi: 10.3969/j.issn.0001-5733.2011.12.006

    DING Weiwei, LI Jiabiao. Seismic stratigraphy, tectonic structure and extension factors across the southern margin of the South China Sea: evidence from two regional multi-channel seismic profiles [J]. Chinese Journal of Geophysics, 2011, 54(12): 3038-3056. doi: 10.3969/j.issn.0001-5733.2011.12.006

    [24]

    邱宁, 姚永坚, 张江阳, 等. 南海东南部陆缘地壳结构特征及其构造意义[J]. 地球物理学报, 2019, 62(7):2607-2621 doi: 10.6038/cjg2019M0103

    QIU Ning, YAO Yongjian, ZHANG Jiangyang, et al. Characteristics of the crustal structure and its tectonic significance of the continental margin of SE South China Sea [J]. Chinese Journal of Geophysics, 2019, 62(7): 2607-2621. doi: 10.6038/cjg2019M0103

    [25]

    张云帆, 孙珍, 周蒂, 等. 南海北部陆缘新生代地壳减薄特征及其动力学意义[J]. 中国科学 D辑:地球科学, 2007, 37(12):1609-1616

    ZHANG Yunfan, SUN Zhen, ZHOU Di, et al. Charateristics of Cenozoic crustal thinning in the northern continental margin of the South China Sea and its dynamic significance [J]. Science in China (Series D:Earth Sciences), 2007, 37(12): 1609-1616.

    [26]

    雷超, 任建业, 佟殿君. 南海北部洋陆转换带盆地发育动力学机制[J]. 地球物理学报, 2013, 56(4):1287-1299 doi: 10.6038/cjg20130423

    LEI Chao, REN Jianye, TONG Dianjun. Geodynamics of the ocean-continent transition zone, northern margin of the South China Sea: implications for the opening of the South China Sea [J]. Chinese Journal of Geophysics, 2013, 56(4): 1287-1299. doi: 10.6038/cjg20130423

    [27]

    佟殿君, 任建业, 雷超, 等. 琼东南盆地深水区岩石圈伸展模式及其对裂后期沉降的控制[J]. 地球科学——中国地质大学学报, 2009, 34(6):963-974 doi: 10.3799/dqkx.2009.110

    TONG Dianjun, REN Jianye, LEI Chao, et al. Lithosphere stretching model of deep water in Qiongdongnan Basin, northern continental margin of South China Sea, and controlling of the post-rift subsidence [J]. Earth Science-Journal of China University of Geosciences, 2009, 34(6): 963-974. doi: 10.3799/dqkx.2009.110

    [28]

    Li C F, Li J B, Ding W W, et al. Seismic stratigraphy of the central South China Sea basin and implications for neotectonics [J]. Journal of Geophysical Research:Solid Earth, 2015, 120(3): 1377-1399. doi: 10.1002/2014JB011686

    [29]

    Mcintosh K, Lavier L, van Avendonk H, et al. Crustal structure and inferred rifting processes in the northeast South China Sea [J]. Marine and Petroleum Geology, 2014, 58: 612-626. doi: 10.1016/j.marpetgeo.2014.03.012

    [30]

    Li C F, Zhou Z Y, Hao H J, et al. Late Mesozoic tectonic structure and evolution along the present-day northeastern South China Sea continental margin [J]. Journal of Asian Earth Sciences, 2008, 31(4-6): 546-561. doi: 10.1016/j.jseaes.2007.09.004

    [31]

    Barckhausen U, Engels M, Franke D, et al. Evolution of the South China Sea: revised ages for breakup and seafloor spreading [J]. Marine and Petroleum Geology, 2014, 58: 599-611. doi: 10.1016/j.marpetgeo.2014.02.022

    [32]

    Song X X, Li C F, Yao Y J, et al. Magmatism in the evolution of the South China Sea: geophysical characterization [J]. Marine Geology, 2017, 394: 4-15. doi: 10.1016/j.margeo.2017.07.021

    [33]

    Wan X L, Li C F, Zhao M H, et al. Seismic velocity structure of the magnetic quiet zone and continent-ocean boundary in the northeastern South China Sea [J]. Journal of Geophysical Research:Solid Earth, 2019, 124(11): 11866-11899. doi: 10.1029/2019JB017785

    [34]

    Hou W A, Li C F, Wan X L, et al. Crustal S‐wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation [J]. Earth and Planetary Physics, 2019, 3(4): 314-329. doi: 10.26464/epp2019033

    [35]

    Cameselle A L, Ranero C R, Franke D, et al. The continent-ocean transition on the northwestern South China Sea [J]. Basin Research, 2017, 29(S1): 73-95.

    [36]

    Braitenberg C, Wienecke S, Wang Y. Basement structures from satellite-derived gravity field: South China Sea ridge [J]. Journal of Geophysical Research:Solid Earth, 2006, 111(B5): B05407.

    [37]

    Sun Z, Zhong Z H, Keep M, et al. 3D analogue modeling of the South China Sea: a discussion on breakup pattern [J]. Journal of Asian Earth Sciences, 2009, 34(4): 544-556. doi: 10.1016/j.jseaes.2008.09.002

    [38]

    Franke D, Savva D, Pubellier M, et al. The final rifting evolution in the South China Sea [J]. Marine and Petroleum Geology, 2014, 58: 704-720. doi: 10.1016/j.marpetgeo.2013.11.020

    [39]

    丘学林, 赵明辉, 敖威, 等. 南海西南次海盆与南沙地块的OBS探测和地壳结构[J]. 地球物理学报, 2011, 54(12):3117-3128 doi: 10.3969/j.issn.0001-5733.2011.12.012

    QIU Xuelin, ZHAO Minghui, AO Wei, et al. OBS survey and crustal structure of the Southwest Sub-basin and Nansha Block, South China Sea [J]. Chinese Journal of Geophysics, 2011, 54(12): 3117-3128. doi: 10.3969/j.issn.0001-5733.2011.12.012

    [40]

    Fan C Y, Xia S H, Zhao F, et al. New insights into the magmatism in the northern margin of the South China Sea: spatial features and volume of intraplate seamounts [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(6): 2216-2239.

    [41]

    Zhang Y X, Xia S H, Cao J H, et al. Extensional tectonics and post-rift magmatism in the southern South China Sea: new constraints from multi-channel seismic data [J]. Marine and Petroleum Geology, 2020, 117: 104396. doi: 10.1016/j.marpetgeo.2020.104396

    [42]

    Jiang Y L, Hu H J, Gluyas J, et al. Distribution characteristics and accumulation model for the coal-formed gas generated from permo-carboniferous coal measures in Bohai Bay Basin, China: a review [J]. Acta geologica Sinica - English Edition, 2019, 93(6): 1869-1884. doi: 10.1111/1755-6724.14290

    [43]

    Zhao M H, He E Y, Sibuet J C, et al. Postseafloor spreading volcanism in the central east South China Sea and its formation through an extremely thin oceanic crust [J]. Geochemistry, Geophysics, Geosystems, 2018, 19(3): 621-641. doi: 10.1002/2017GC007034

    [44]

    欧阳青, 吴振利, 卫小冬, 等. 南海海盆残留扩张中心地壳速度结构对比及构造意义[J]. 科学通报, 2017, 62(21):2380-2391 doi: 10.1360/N972017-00079

    OUYANG Qing, WU Zhenli, WEI Xiaodong, et al. Comparison of crustal structures in the fossil spreading center of South China Sea basins and the tectonic significance [J]. Chinese Science Bulletin, 2017, 62(21): 2380-2391. doi: 10.1360/N972017-00079

    [45]

    Chang J H, Lee T Y, Hsu H H, et al. Comment on Barckhausen et al., 2014 – Evolution of the South China Sea: revised ages for breakup and seafloor spreading [J]. Marine and Petroleum Geology, 2015, 59: 676-678. doi: 10.1016/j.marpetgeo.2014.09.003

    [46]

    吴招才, 高金耀, 丁巍伟, 等. 南海海盆三维重力约束反演莫霍面深度及其特征[J]. 地球物理学报, 2017, 60(7):2599-2613 doi: 10.6038/cjg20170709

    WU Zhaocai, GAO Jinyao, DING Weiwei, et al. Moho depth of the South China Sea basin from three-dimensional gravity inversion with constraint points [J]. Chinese Journal of Geophysics, 2017, 60(7): 2599-2613. doi: 10.6038/cjg20170709

    [47]

    Li C F, Song T R. Magnetic recording of the Cenozoic oceanic crustal accretion and evolution of the South China Sea basin [J]. Chinese Science Bulletin, 2012, 57(24): 3165-3181. doi: 10.1007/s11434-012-5063-9

    [48]

    Ding W W, Sun Z, Mohn G, et al. Lateral evolution of the rift-to-drift transition in the South China Sea: evidence from multi-channel seismic data and IODP Expeditions 367&368 drilling results [J]. Earth and Planetary Science Letters, 2020, 531: 115932. doi: 10.1016/j.jpgl.2019.115932

    [49]

    Fan C Y, Xia S H, Cao J H, et al. Lateral crustal variation and post-rift magmatism in the northeastern South China Sea determined by wide-angle seismic data [J]. Marine Geology, 2019, 410: 70-87. doi: 10.1016/j.margeo.2018.12.007

    [50]

    Zhang J, Li J B, Ruan A G, et al. The velocity structure of a fossil spreading centre in the Southwest Sub-basin, South China Sea [J]. Geological Journal, 2016, 51(S1): 548-561.

    [51]

    Yu J H, Yan P, Wang Y L, et al. Seismic evidence for tectonically dominated seafloor spreading in the Southwest Sub-basin of the South China Sea [J]. Geochemistry, Geophysics, Geosystems, 2018, 19(9): 3459-3477.

  • 加载中

(8)

(1)

计量
  • 文章访问数:  1040
  • PDF下载数:  43
  • 施引文献:  0
出版历程
收稿日期:  2022-06-20
修回日期:  2022-08-10
刊出日期:  2022-10-28

目录