粤东汕头近岸海域灾害地质风险综合评价

左瀚穹, 刘胜, 汪洋, 郭依群, 王万虎, 王洋. 粤东汕头近岸海域灾害地质风险综合评价[J]. 海洋地质与第四纪地质, 2023, 43(2): 119-127. doi: 10.16562/j.cnki.0256-1492.2022072101
引用本文: 左瀚穹, 刘胜, 汪洋, 郭依群, 王万虎, 王洋. 粤东汕头近岸海域灾害地质风险综合评价[J]. 海洋地质与第四纪地质, 2023, 43(2): 119-127. doi: 10.16562/j.cnki.0256-1492.2022072101
ZUO Hanqiong, LIU Sheng, WANG Yang, GUO Yiqun, WANG Wanhu, WANG Yang. Comprehensive assessment of disaster geological risk in Shantou coastal waters in eastern Guangdong[J]. Marine Geology & Quaternary Geology, 2023, 43(2): 119-127. doi: 10.16562/j.cnki.0256-1492.2022072101
Citation: ZUO Hanqiong, LIU Sheng, WANG Yang, GUO Yiqun, WANG Wanhu, WANG Yang. Comprehensive assessment of disaster geological risk in Shantou coastal waters in eastern Guangdong[J]. Marine Geology & Quaternary Geology, 2023, 43(2): 119-127. doi: 10.16562/j.cnki.0256-1492.2022072101

粤东汕头近岸海域灾害地质风险综合评价

  • 基金项目: 中国地质调查局地质调查二级项目“潮汕海岸带综合地质调查”(DD20208013)
详细信息
    作者简介: 左瀚穹(1996—),男,硕士研究生,主要研究方向为地质灾害防治,E-mail:499837216@qq.com
    通讯作者: 刘胜(1982—),男,硕士,高级工程师,主要从事海洋基础地质研究,E-mail:3034928902@qq.com
  • 中图分类号: P736

Comprehensive assessment of disaster geological risk in Shantou coastal waters in eastern Guangdong

More Information
  • 基于粤东汕头近岸海域地质和地球物理资料,通过对物探数据进行解译,查明了该区域内主要有活动断层、埋藏古河道、浅层气、不规则浅埋基岩等灾害地质类型,并结合层次分析法和模糊数学法建立了以断层、埋藏古河道、浅层气、浅埋基岩为评价指标的风险评价体系,得出海域内的不同区块的风险性等级,共分低、较低、中、较高、高5个等级。研究区超过70%的区域灾害风险不高,高风险区分布在榕江外河口、海门湾南部,主要受埋藏古河道和断层影响。较高—高风险区工程地质条件较差,存在的不良地质条件可能会给海上工程建设带来风险,选址时应尽量避开此类区域。评价结果与已查明的灾害分布特点吻合,对以后海上工程项目施工有一定的参考价值。

  • 加载中
  • 图 1  测线分布

    Figure 1. 

    图 2  海域断裂分布

    Figure 2. 

    图 3  研究区埋藏古河道分布

    Figure 3. 

    图 4  研究区浅层气及浅埋基岩分布

    Figure 4. 

    图 5  断层断距分布

    Figure 5. 

    图 7  河道埋深分布

    Figure 7. 

    图 6  河道厚度分布

    Figure 6. 

    图 8  断层活动时期定量取值分布

    Figure 8. 

    图 9  评价结果

    Figure 9. 

    图 10  断层断距单因子分级

    Figure 10. 

    图 11  河道埋深单因子分级

    Figure 11. 

    表 1  评价指标权值判别

    Table 1.  Evaluation index weight discrimination

    断层
    断距
    断层活动
    时期
    古河道
    埋深
    古河道
    厚度
    浅层气浅埋
    基岩
    断层断距133588
    断层活动时期1/311366
    古河道埋深1/311366
    古河道厚度1/51/31/3144
    浅层气1/81/61/61/411
    浅埋基岩1/81/61/61/411
    下载: 导出CSV

    表 2  各项指标权值

    Table 2.  Weight of each indicator

    断层断距断层活动时期古河道埋深古河道厚度浅层气浅埋基岩
    0.430.210.210.090.030.03
    下载: 导出CSV

    表 3  评价指标分级

    Table 3.  Grading of assessment indices

    评价指标V1V2V3V4V5
    u1/m0~22~88~1414~24>24
    u2012~34~56
    u3/m>2419~2415~1912~150~12
    u4/m0~11~44~77~11>11
    u5/km20~0.080.08~0.280.28~0.580.58~1.30>1.30
    u6/m>1312~1310~125~10<5
    下载: 导出CSV

    表 4  断层活动时期影响因子

    Table 4.  Influence factors of fault action period

    风险级别V1V2V3V4V5
    000000
    101000
    2~300100
    4~500010
    600001
    下载: 导出CSV

    表 5  各风险等级评价单元个数及占比

    Table 5.  Number and proportion of risk assessment units

    风险等级评价单元/个百分比/%
    低风险23346.05
    较低风险193.75
    中风险10721.75
    较高风险7214.23
    高风险7514.82
    下载: 导出CSV

    表 6  断距及河道埋深单因子高风险等级单元个数

    Table 6.  The number of single factor high risk grade units of fault distance and river buried depth

    风险等级 断距单因子河道埋深单因子
    高风险等级16个68个
    与综合评价一致为高风险等级13个60个
    下载: 导出CSV
  • [1]

    马胜中. 北部湾广西近岸海洋地质灾害类型及分布规律[D]. 中国地质大学(北京)硕士学位论文, 2011

    MA Shengzhong. Marine geological disaster factors in Beibu Gulf inshore of Guangxi Province[D]. Master Dissertation of China University of Geosciences (Beijing), 2011.

    [2]

    Carpenter G B, Mccarthy J C. Hazards analysis on the Atlantic outer continental shelf[C]//Proceedings of the Annual Offshore Technology Conference. Houston: OTC, 1980: 419-424.

    [3]

    李平. 黄河三角洲近岸海底浅表层典型灾害地质类型发育机制及其分区[D]. 中国海洋大学博士学位论文, 2015

    LI Ping. Formation mechanism of typical geological hazards and division in the seabed surface and sub-bottom of the yellow river delta inshore[D]. Doctor Dissertation of Ocean University of China, 2015.

    [4]

    刘守全, 刘锡清, 王圣洁, 等. 南海灾害地质类型及分区[J]. 中国地质灾害与防治学报, 2000, 11(4):39-44 doi: 10.3969/j.issn.1003-8035.2000.04.009

    LIU Shouquan, LIU Xiqing, WHANG Shengjie, et al. Kinds of hazardous geology and division in South China Sea [J]. The Chinese Journal of Geological Hazard and Control, 2000, 11(4): 39-44. doi: 10.3969/j.issn.1003-8035.2000.04.009

    [5]

    陈俊仁, 李廷桓. 南海地质灾害类型与分布规律[J]. 地质学报, 1993, 67(1):76-85

    CHEN Junren, LI Tinghuan. Types and distribution of geological hazards in the South China Sea [J]. Acta Geologica Sinica, 1993, 67(1): 76-85.

    [6]

    张虎男, 陈伟光, 黄坤荣, 等. 华南沿海新构造运动与地质环境[M]. 北京: 地震出版社, 1990: 262-264

    ZHANG Hu’nan, CHEN Weiguang, HUANG Kunrong, et al. Neotectonics and Geological Settings of the South China Coasts[M]. Beijing: Seismological Press, 1990: 262-264.

    [7]

    张虎男. 南海地震活动与区域稳定性评价[M]. 北京: 科学出版社, 2002: 456-493

    ZHANG Hu’nan. Seismicity and Regional Stability Evaluation of South China Sea[M]. Beijing: Science Press, 2002: 456-493.

    [8]

    詹文欢, 钟建强, 刘以宣. 华南沿海地质灾害[M]. 北京: 科学出版社, 1996: 24-71

    ZHAN Wenhuan, ZHONG Jianqiang, LIU Yixuan. Geological Hazards of South China Coast[M]. Beijing: Science Press, 1996: 24-71.

    [9]

    詹文欢, 张乔民, 孙宗勋, 等. 南澎列岛及邻近海域地质地貌与灾害地质分析[J]. 热带海洋学报, 2002, 21(1):11-17 doi: 10.3969/j.issn.1009-5470.2002.01.002

    ZHAN Wenhuan, ZHANG Qiaomin, SUN Zongxun, et al. Geologic and geomorphologic characteristics and geological hazards of Nanpeng archipelago and adjacent waters, northeastern South China Sea [J]. Journal of the Tropical Oceanography, 2002, 21(1): 11-17. doi: 10.3969/j.issn.1009-5470.2002.01.002

    [10]

    周英. 汕头市大陆海岸的主要地质灾害[J]. 热带地理, 2008, 28(4):331-337 doi: 10.13284/j.cnki.rddl.001168

    ZHOU Ying. Primary geological hazards to the continental coast in Shantou [J]. Tropical Geography, 2008, 28(4): 331-337. doi: 10.13284/j.cnki.rddl.001168

    [11]

    广东省海岸带和海涂资源综合调查大队. 广东省海岸带和海涂资源综合调查报告[M]. 北京: 海洋出版社, 1987: 10-108, 140, 379

    Guangdong Coast and Coast Resources Survey Team. Comprehensive Investigation Report on Coastal Zone and Marine Resources in Guangdong Province[M]. Beijing: China Ocean Press, 1987: 10-108, 140, 379.

    [12]

    吴正, 黄山, 胡守春, 等. 华南海岸风沙地貌研究[M]. 北京: 科学出版社, 1995: 31-33

    WU Zheng, HUANG Shan, HU Shouchun, et al. Research on the Landforms of the Wind-Drift Sand in South China Coast[M]. Beijing: Science Press, 1995: 31-33.

    [13]

    黄镇国, 谢先德, 范锦春, 等. 广东海平面变化及其影响与对策[M]. 广州: 广东科技出版社, 2000

    HUANG Zhenguo, XIE Xiande, FAN Jinchun, et al. The Sea Level Change in Guangdong and its Influence and Countermeasures[M]. Guangzhou: Guangdong Science and Technology Press, 2000.

    [14]

    张志忠, 顾兆峰, 刘锡清, 等. 南黄海灾害地质及地质环境演变[J]. 海洋地质与第四纪地质, 2007, 27(5):15-22 doi: 10.16562/j.cnki.0256-1492.2007.05.007

    ZHANG Zhizhong, GU Zhaofeng, LIU Xiqing, et al. Hazardous geology and marine geologic environmental evolution in the South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2007, 27(5): 15-22. doi: 10.16562/j.cnki.0256-1492.2007.05.007

    [15]

    宋亚娅, 张航泊. 基于加权模糊概率的地质灾害易发性评价模型研究[J]. 人民长江, 2020, 51(11):109-115 doi: 10.16232/j.cnki.1001-4179.2020.11.019

    SONG Yaya, ZHANG Hangbo. Study on geological hazards susceptibility assessment based on weighted fuzzy probability exponential model [J]. Yangtze River, 2020, 51(11): 109-115. doi: 10.16232/j.cnki.1001-4179.2020.11.019

    [16]

    陈哲锋, 吴静, 郭玉斌, 等. 层次分析与模糊数学综合评价法在矿山环境评价中的应用[J]. 华东地质, 2018, 39(4):305-310

    CHEN Zhefeng, WU Jing, GUO Yubin, et al. Application of AHP and fuzzy mathematics in comprehensive assessment of mine environment [J]. East China Geology, 2018, 39(4): 305-310.

    [17]

    宋玉鹏, 孙永福, 杜星, 等. 渤海海域海底地质灾害危险性区划[J]. 中国地质灾害与防治学报, 2021, 32(3):140-146

    SONG Yupeng, SUN Yongfu, DU Xing, et al. Risk zonation on the submarine geological hazards in Bohai Sea [J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 140-146.

    [18]

    杨康, 薛喜成, 李识博. 信息量融入GA优化SVM模型下的地质灾害易发性评价[J]. 安全与环境工程, 2022, 29(3):109-118 doi: 10.13578/j.cnki.issn.1671-1556.20210976

    YANG Kang, XUE Xicheng, LI Shibo. Geological hazard susceptibility assessment by incorporating information value into GA optimized SVM model [J]. Safety and Environmental Engineering, 2022, 29(3): 109-118. doi: 10.13578/j.cnki.issn.1671-1556.20210976

    [19]

    陈水满, 赵辉龙, 许震, 等. 基于人工神经网络模型的福建南平市滑坡危险性评价[J]. 中国地质灾害与防治学报, 2022, 33(2):133-140 doi: 10.16031/j.cnki.issn.1003-8035.2022.02-16

    CHEN Shuiman, ZHAO Huilong, XU Zhen, et al. Landslide risk assessment in Nanping City based on artificial neural networks model [J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 133-140. doi: 10.16031/j.cnki.issn.1003-8035.2022.02-16

    [20]

    董津城. 发震断裂的安全距离规定简介:《建筑抗震设计规范》修订简介(五)[J]. 工程抗震, 1999, 4(2):14-16

    DONG Jincheng. Brief introduction to the stipulations related safety distance from earthquake causative fault [J]. Earthquake Resistant Engineering, 1999, 4(2): 14-16.

    [21]

    Lv H, Bao D, Wang Z, et al. Identification and characterization of Karst Ancient Channel based on Seismic Multi-attribute[C]//Proceedings of the SPG/SEG Nanjing 2020 International Geophysical Conference. Nanjing: Editorial Department of Petroleum Geophysical Exploration, 2020: 836-839.

    [22]

    Kemp J, Pietsch T, Gontz A, et al. Lacustrine-fluvial interactions in Australia's Riverine Plains [J]. Quaternary Science Reviews, 2017, 166: 352-362. doi: 10.1016/j.quascirev.2017.02.015

    [23]

    Cserkész-Nagy Á, Thamó-Bozsó E, Tóth T, et al. Reconstruction of a Pleistocene meandering river in East Hungary by VHR seismic images, and its climatic implications [J]. Geomorphology, 2012, 153-154: 205-218. doi: 10.1016/j.geomorph.2012.02.025

    [24]

    Li G X, Liu Y, Yang Z G, et al. Ancient Changjiang channel system in the East China Sea continental shelf during the last glaciation [J]. Science in China Series D:Earth Sciences, 2005, 48(11): 1972-1978. doi: 10.1360/04yd0053

    [25]

    Mullins H T, Nagel D K. High-frequency seismic data detect shallow hydrocarbons [J]. World Oil, 1983, 197(6): 133-134,136,138.

    [26]

    Boillot G. Géologie de la Manche Occidentale: Fonds Rocheux, Dépôts Quaternaires, Sédiments Actuels[M]. Paris: Masson, 1964.

    [27]

    Ren J F, Cheng C, Xiong P F, et al. Sand-rich gas hydrate and shallow gas systems in the Qiongdongnan Basin, northern South China Sea [J]. Journal of Petroleum Science and Engineering, 2022, 215: 110630. doi: 10.1016/j.petrol.2022.110630

    [28]

    Lei Y N, Sun J, Wang G J. Simulation of shallow gas invasion process during deepwater drilling and its control measures [J]. Journal of Ocean University of China, 2022, 21(3): 707-718. doi: 10.1007/s11802-022-4855-z

    [29]

    Marcon L, Sotiri K, Bleninger T, et al. Acoustic mapping of gas stored in sediments of shallow aquatic systems linked to methane production and ebullition patterns [J]. Frontiers in Environmental Science, 2022, 10: 876540. doi: 10.3389/fenvs.2022.876540

    [30]

    王忆非. 辽东湾北部工程地质条件评价[D]. 国家海洋局第一海洋研究所硕士学位论文, 2014

    WANG Yifei. Assessment on engineering geological suitability in northern Liaodong Bay[D]. Master Dissertation of The First Institute of Oceanography, SOA, 2014.

  • 加载中

(11)

(6)

计量
  • 文章访问数:  870
  • PDF下载数:  9
  • 施引文献:  0
出版历程
收稿日期:  2022-07-21
修回日期:  2022-08-22
刊出日期:  2023-04-28

目录