The vertical changes of suspended sediment in the turbidity maximum zone along the South Passage of the Changjiang River Estuary
-
摘要:
最大浑浊带水体悬沙时空变化过程是河口沉积动力学研究的核心内容之一。利用2013年6月16—24日在长江口南槽最大浑浊带自小潮至大潮连续9天的逐时定点水文及悬沙观测资料,分析南槽最大浑浊带悬沙垂向变化特征及影响机制,由此加深对长江口最大浑浊带形成及变化的理解。主要结果包括:(1) 南槽最大浑浊带悬沙平均粒径为3.52~18.84 μm。从小潮到大潮、从表层水体到底层水体,悬沙粒径逐渐增大,水体含沙量逐渐增大,含沙量为0.12~2.29 g/L。(2)水体流速呈现自下而上、自小潮到大潮逐渐增大的态势,与悬沙粒径的关联度较好;而水体盐度呈现自上而下、自小潮到大潮逐渐增大的态势,与悬沙含量的关联度较好。(3)南槽最大浑浊带水体悬沙垂向变化涵括两种控制机制:涨落潮作用引起的底沙再悬浮控制水体悬沙约7 h的周期性变化;涨潮流挟带的口外泥沙絮凝形成的絮团在涨潮流和重力作用的影响下引起水体悬沙出现约14 h的周期性变化特征。
Abstract:Temporal and spatial variation processes of suspended sediment in the estuary turbidity maximum zone (TMZ) is one of the crucial issues of estuarine sedimentation dynamics. Based on hourly hydrological data and suspended sediment samples collected on June 16—24, 2013 covering a complete neap-spring tide cycle, the vertical changing characteristics and related dominant mechanism of suspended sediments in the TMZ in the South Passage (SP) were analyzed to deepen the understanding of TMZ formation and evolution in the Changjiang River estuary. Results show that: (1) the average grain size of the suspended sediment ranged 3.52~18.84 μm while the suspended sediment concentration (SSC) fluctuated between 0.12 ~2.29 g/L. The SSC was increased from neap tide to spring tide in temporal scale, and from surface to bottom in spatial scale. (2) The current velocity increased from bottom to surface and from neap tide to spring tide, and correlated closely with the average grain size of suspended sediment. The salinity decreased from bottom to surface and from spring tide to neap tide and correlated closely with the SSC. (3) The vertical changes of the suspended sediment exhibited two types of controlling mechanisms: the bed sediment resuspension under flood and ebb tidal forces, which generated a periodical change of 7 hours, and the sediment flocculation under the forces of flood tide and gravity, which generated a periodical change of 14 hours.
-
[1] 沈焕庭. 国外河口水文研究的动向[J]. 地理学报, 1988, 43(3): 274-280
SHEN Huanting. Tendency of studies on estuarine hydrology in foreign countries. Acta Geographica Sinica, 1998, 43(3): 274-280.
[2] 林伟波, 孔德雨, 罗锋, 等. 瓯江口细颗粒泥沙沉速计算方法研究[J]. 水力发电学报, 2013, 32(4):114-119
LIN Weibo, KONG Deyu, LUO Feng, et al. Study on determination method for settling velocity of fine sediment in Oujiang river estuary [J]. Journal of Hydroelectric Engineering, 2013, 32(4): 114-119.
[3] 黄李冰, 李义天, 孙昭华, 等. 长江口水流运动对悬沙分布的影响[J]. 水力发电学报, 2015, 34(1):55-62
HUANG Libing, LI Yitian, SUN Zhaohua, et al. Influence of water movement on the distribution of suspended sediment in the Yangtze estuary [J]. Journal of Hydroelectric Engineering, 2015, 34(1): 55-62.
[4] Burchard H, Schuttelaars H M, Ralston D K. Sediment Trapping in Estuaries [J]. Annual Review of Marine Science, 2018, 10(1): 371-395. doi: 10.1146/annurev-marine-010816-060535
[5] Yang Y P, Li Y T, Sun Z H, et al. Suspended sediment load in the turbidity maximum zone at the Yangtze River Estuary: The trends and causes [J]. Journal of Geographical Sciences, 2014, 24(1): 129-142. doi: 10.1007/s11442-014-1077-3
[6] Islam M R, Begum S F, Yamaguchi Y, et al. Distribution of suspended sediment in the coastal sea off the Ganges–Brahmaputra River mouth: observation from TM data [J]. Journal of Marine Systems, 2002, 32(4): 307-321. doi: 10.1016/S0924-7963(02)00045-3
[7] Lucotte M, D’Anglejan B. Seasonal control of the Saint-Lawrence maximum turbidity zone by tidal-flat sedimentation [J]. Estuaries., 1986, 9(1): 84-94.
[8] Serra T, Soler M, Barcelona A ,et al. Suspended sediment transport and deposition in sediment-replenished artificial floods in Mediterranean rivers[J], Journal of Hydrology, 2022, 609, 127756.
[9] Teng L Z, Cheng H Q, De Swart H E, et al. On the mechanism behind the shift of the turbidity maximum zone in response to reclamations in the Yangtze (Changjiang) Estuary, China[J]. Marine Geology, 2021, 440, 106569.
[10] Li Y, Wang Y P, Zhu Q G, et al. Roles of advection and sediment resuspension-settling in the turbidity maximum zone of the Changjiang Estuary, China[J], Continental Shelf Research, 2021, 229, 104599
[11] 严冬, 宋德海, 鲍献文. 珠江口洪季最大浑浊带的大小潮变化与机制分析[J]. 热带海洋学报, 2020, 39(1):20-35
YAN Dong, SONG Dehai, BAO Xianwen. Spring-neap tidal variation and mechanism analysis of the maximum turbidity in the Pearl River Estuary during flood season [J]. Journal of Tropical Oceanography, 2020, 39(1): 20-35.
[12] 程亦菲, 夏军强, 周美蓉, 等. 黄河下游不同河段分组悬沙输移对河床冲淤的影响[J]. 水科学进展, 2022, 33(3):506-517 doi: 10.14042/j.cnki.32.1309.2022.03.014
CHENG Yifei, XIA Junqiang, ZHOU Meirong ,et al. Effects of grouped suspended sediment transport on channel evolution in the Lower Yellow River [J]. Advances in Water Science, 2022, 33(3): 506-517. doi: 10.14042/j.cnki.32.1309.2022.03.014
[13] 杨云平, 李义天, 孙昭华, 等. 长江口最大浑浊带悬沙浓度变化趋势及成因[J]. 地理学报, 2013, 68(9):1240-1250 doi: 10.11821/dlxb201309007
YANG Yunping, LI Yitian, SUN Zhaohua, et al. Trends and causes of suspended sediment concentration variation in the turbidity maxi- mum zone at the Yangtze River Estuary [J]. Acta Oceanologica Sinica, 2013, 68(9): 1240-1250. doi: 10.11821/dlxb201309007
[14] Liu G P, Cai S Q. Modeling of suspended sediment by coupled wave-current model in the Zhujiang (Pearl) River Estuary [J]. Acta Oceanol Sinica., 2019, 38(7): 22-35. doi: 10.1007/s13131-019-1455-3
[15] 李为华, 李九发, 时连强, 等. 黄河口泥沙特性和输移研究综述[J]. 泥沙研究, 2005(3):76-81 doi: 10.3321/j.issn:0468-155X.2005.03.013
LI Weihua, LI Jiufa, SHI Lianqiang, et al. Review on the research of sediment properties and transportation rules of the Huanghe estuary, China [J]. Journal of Sediment Research, 2005(3): 76-81. doi: 10.3321/j.issn:0468-155X.2005.03.013
[16] 赵季伟, 李占海, 徐圣, 等. 长江口北港上段河道枯季悬沙浓度垂向分布特征研究[J]. 长江流域资源与环境, 2019, 28(9):2207-2218
ZHAO Jiwei, LI Zhanhai, XU Sheng, et al. Vertical profile of suspended sediment concentration in the upper reach of north channel in theChangjiang Estuary during the dry season [J]. Resources and Environment in the Yangtze Basin, 2019, 28(9): 2207-2218.
[17] Zhou X Y, Dai Z J, Mei X F. The multi-decadal morphodynamic changes of the mouth bar in a mixed fluvial-tidal estuarine channel [J]. Marine Geology, 2020, 429: 106311. doi: 10.1016/j.margeo.2020.106311
[18] 沈焕庭, 朱慧芳, 茅志昌. 长江河口环流及其对悬浮泥沙输移的影响[J]. 海洋与湖沼, 1986, 17(1):26-35
SHEN Huantin, ZHU Huifang, MAO Zhichang. Circulation of the Changjiang river estuary and its effect on the transport of suspended sediment [J]. Oceanologia et Limnologia Sinica, 1986, 17(1): 26-35.
[19] 施韩臻, 李占海, 汪亚平, 等. 枯季长江口南槽悬沙输运过程和机制研究[J]. 海洋通报, 2021, 40(6):664-674
SHI Hanzhen, LI Zhanhai, WANG Yaping, et al. Suspended sediment transports and mechanism in the South Passage of the Changjiang Estuary during the dry season [J]. Marine Science Bulletin, 2021, 40(6): 664-674.
[20] 李一鸣, 张国安, 游博文, 等. 长江河口河槽近期沉积特征及影响因子分析[J]. 地理学报, 2019, 74(1):178-190 doi: 10.11821/dlxb201901013
LIYiming, ZHANG Guoan, YOU Bowen, et al. Recent sediment characteristics and their impact factors in the Yangtze Estuary riverbed [J]. Acta Georaphica Sinica, 2019, 74(1): 178-190. doi: 10.11821/dlxb201901013
[21] 戴志军, 韩震, 恽才兴. 长江口南槽沉积物特征和运移趋势[J]. 海洋湖沼通报, 2005, 7(2):72-78 doi: 10.3969/j.issn.1003-6482.2005.02.013
DAI Zhijun, HAN Zhen, YUN Caixing. The Yangtze River estuary sediment characteristics and transport tendency [J]. Transactions of Oceanology and Limnology, 2005, 7(2): 72-78. doi: 10.3969/j.issn.1003-6482.2005.02.013
[22] 张钊, 李占海, 张国安,等. 长江口南槽中段枯季水沙输运特征研究[J]. 长江流域资源与环境, 2016, 25(12):1832-1841 doi: 10.11870/cjlyzyyhj201612006
ZHANG Zhao, LI Zhanhai, ZHANG Guoan, et al. Water and suspended sediment transports in the middle reach of the south passage in the Chengjiang estuary during the dry season [J]. Resources and Environment in the Yangtze Basin, 2016, 25(12): 1832-1841. doi: 10.11870/cjlyzyyhj201612006
[23] 李远, 李占海, 张钊, 等. 长江口北槽下游河道悬沙浓度垂向分布特征研究[J]. 华东师范大学学报:自然科学版, 2017, 60(6):114-125
LI Yuan, LI Zhanhai, ZHANG Zhao, et al. Vertical distribution patterns of suspended sediment concentration in the North Passage of the Changjiang Estuary [J]. Journal of East China Normal University(Natural Science), 2017, 60(6): 114-125.
[24] 刘耀彬, 李仁东, 宋学锋. 中国区域城市化与生态环境耦合的关联分析[J]. 地理学报, 2005, 60(2):237-247 doi: 10.3321/j.issn:0375-5444.2005.02.007
LIU Yaobin, LI Rendon, SONG Xuefeng. Grey associative analysis of regional urbanization and eco-environment coupling in China [J]. Acta Geographica Sinica, 2005, 60(2): 237-247. doi: 10.3321/j.issn:0375-5444.2005.02.007
[25] 吴增斌, 郭磊城, 吴雪枫, 等. 2020年特大洪水作用下长江口南槽水沙输移特征[J]. 海洋与湖沼, 2022, 53(2):295-304 doi: 10.11693/hyhz20210800194
WU ZengBin, GUO LeiCheng, WU XueFeng, et al. A Field Study of Hydrodnamics and Sediment Transport in the South Passage of the Changjiang Estuary During Big River Flood in July 2020 [J]. Oceanologia et Limnologia Sinica, 2022, 53(2): 295-304. doi: 10.11693/hyhz20210800194
[26] 谢丽莉, 刘霞, 杨清书, 等. 人类活动驱动下伶仃洋洪季大潮水沙异变[J]. 泥沙研究, 2015, 60(3): 56-62
XIE Lili, LIU Xia, YANG Qingshu, et al.Variations of current and sediment transport in Lingding Bay during spring tide in flood season driven by human activities[J]. Journal of Sediment Research, 2015, 60(3): 56-62.
[27] 李九发, 戴志军, 刘启贞, 等. 长江河口絮凝泥沙颗粒粒径与浮泥形成现场观测[J]. 泥沙研究, 2008, 53(3):26-32 doi: 10.16239/j.cnki.0468-155x.2008.03.003
LI Jiufa, DAI Zhijun, LIU Qizhen, et al. Field observation of floc particle size and floating mud in the Changjiang Estuary [J]. Journal of Sediment Research, 2008, 53(3): 26-32. doi: 10.16239/j.cnki.0468-155x.2008.03.003
[28] 田枫, 欧素英, 杨昊, 等. 伶仃洋河口泥沙絮凝特征及影响因素研究[J]. 海洋学报, 2017, 39(3):55-67
TIAN Feng, OU Suying, YANG Hao, et al. Study on the flocs characteristic and dynamics effects in the Lingdingyang Estuary [J]. Acta Oceanologica Sinica, 2017, 39(3): 55-67.
[29] 陆子骞, 张国安, 张卫国, 等. 泥沙来源减少后长江口最大浑浊带变化研究[J]. 泥沙研究, 2022, 47(3):67-72
LU Ziqian, ZHANG Guoan, ZHANG Weiguo, et al. Processes of the maximum turbidity zone of the Yangtze Estuary under the background of reduced sediment sources [J]. Journal of Sediment Research, 2022, 47(3): 67-72.