海底冷泉区沉积物-水界面甲烷通量原位观测研究进展

吕泰衡, 孙治雷, 耿威, 曹红, 张喜林, 张现荣, 徐翠玲, 徐昊, 翟滨, 张栋, 周渝程, 曹又文, 李鑫海. 海底冷泉区沉积物-水界面甲烷通量原位观测研究进展[J]. 海洋地质与第四纪地质, 2023, 43(4): 167-180. doi: 10.16562/j.cnki.0256-1492.2022081901
引用本文: 吕泰衡, 孙治雷, 耿威, 曹红, 张喜林, 张现荣, 徐翠玲, 徐昊, 翟滨, 张栋, 周渝程, 曹又文, 李鑫海. 海底冷泉区沉积物-水界面甲烷通量原位观测研究进展[J]. 海洋地质与第四纪地质, 2023, 43(4): 167-180. doi: 10.16562/j.cnki.0256-1492.2022081901
LV Taiheng, SUN Zhilei, GENG Wei, CAO Hong, ZHANG Xilin, ZHANG Xianrong, XU Cuiling, XU Hao, ZHAI Bin, ZHANG Dong, ZHOU Yucheng, CAO Youwen, LI Xinhai. Progress in in-situ observation of methane flux at sediment-water interface in cold seep[J]. Marine Geology & Quaternary Geology, 2023, 43(4): 167-180. doi: 10.16562/j.cnki.0256-1492.2022081901
Citation: LV Taiheng, SUN Zhilei, GENG Wei, CAO Hong, ZHANG Xilin, ZHANG Xianrong, XU Cuiling, XU Hao, ZHAI Bin, ZHANG Dong, ZHOU Yucheng, CAO Youwen, LI Xinhai. Progress in in-situ observation of methane flux at sediment-water interface in cold seep[J]. Marine Geology & Quaternary Geology, 2023, 43(4): 167-180. doi: 10.16562/j.cnki.0256-1492.2022081901

海底冷泉区沉积物-水界面甲烷通量原位观测研究进展

  • 基金项目: 崂山实验室科技创新项目“适于海底水合物资源探测的爬行车作业平台研制”(LSKJ202203504);国家自然科学基金“海洋甲烷拦截带对冷泉流体的消耗研究:来自南海东沙海域的观测与研究”(42176057);青岛海洋科学与技术试点国家实验室山东省专项经费(2021QNLM020002);山东省自然科学基金“冲绳海槽冷泉-热液流体溶解碳源/汇效应及对深海碳循环的影响”(ZR2021MD049);中国地质调查局海洋地质调查二级项目(DD20221707)
详细信息
    作者简介: 吕泰衡(1998—),男,硕士研究生,主要从事海洋地质研究,E-mail:LVTaiheng@cug.edu.cn
    通讯作者: 孙治雷(1975—),男,博士,研究员,主要从事深海矿产资源调查评价和成矿机理研究,E-mail:zhileisun@yeah.net
  • 中图分类号: P736

Progress in in-situ observation of methane flux at sediment-water interface in cold seep

More Information
  • 海底沉积物-水界面作为冷泉跨圈层活动最关键的界面,近年来已成为冷泉区碳循环研究调查的重点目标。为准确获取海洋沉积物-水界面的流体通量,客观重建界面环境过程,评估环境效应,必须发展一整套精确、高效、科学的水下原位甲烷通量测量技术。综述了当前海洋冷泉区沉积物-水界面甲烷通量研究的意义与价值,详细介绍了多种较为成熟的海洋沉积物-水界面甲烷原位通量测试技术工作原理、使用方法和优缺点等,如测试游离气泡态甲烷通量的渗漏帐篷、声学反射、时序影像等技术方法,原位溶解态甲烷膜脱气技术的甲烷传感器、激光拉曼光谱测量方法等,同时对全球该领域已经调查的地区、研究现状和进展进行了详细的介绍。最后从技术层面对这一研究领域未来的发展方向和趋势进行展望,以期为未来国内海洋冷泉区沉积物-水界面甲烷通量原位观测研究提供思路与方向借鉴。

  • 加载中
  • 图 1  海洋甲烷泄漏过程示意图[9]

    Figure 1. 

    图 2  沉积物孔隙水中溶解气体浓度随时间变化剖面[26]

    Figure 2. 

    图 3  “发现”号ROV上所搭载的激光拉曼探针(a)与不同界面上的化学参数变化特征(b)[40]

    Figure 3. 

    图 4  GFM装置结构示意图[54]

    Figure 4. 

    图 5  涡轮渗漏帐篷(a)及BCD(b)装置结构示意图[17, 53]

    Figure 5. 

    图 6  半自动气泡计数法处理流程示意图[57]

    Figure 6. 

    图 7  Birthday Candles与Mega Plume处的甲烷输入与输出模式图[63]

    Figure 7. 

    图 8  甲烷及其他化学参数随时间变化特征[64]

    Figure 8. 

    表 1  溶解态甲烷检测仪器比较

    Table 1.  Comparison of instruments for soluble methane detection

    仪器名称工作原理测量范围工作区间/m响应时间检出限参考文献
    METS
    -CAPSUM
    膜脱气技术
    半导体气敏技术
    10~150 mM0~3 5001~30 min10 nM[20-21]
    Hydro CTM/CH4膜脱气技术
    红外吸收光谱
    30~500 μM0~6 00017~30 s<6 nM[22]
    TETHYS膜脱气技术
    质谱仪
    0~5 0005 s<1 nM[24]
    NEREUS膜脱气技术
    质谱仪
    0~30015 s<1 nM[25]
    DORISSLRS0~4 0005~20 s4×106[27]
    RiPLRS0~6 000106[37]
    下载: 导出CSV

    表 2  圣塔芭芭拉海峡COP重要渗漏点沉积物-水界面气体通量[53]

    Table 2.  Gas fluxes at water-sediment interface from SantaBarbara marine seeps[53]

    渗漏点调查区域
    面积/km2
    渗漏活跃区
    面积/km2
    Qmax
    /(m−3·m−2·d−1)
    Qtotal
    /(m−3·d−1)
    Platform Holly0.3670.0340.751 490
    Seep Tent0.3380.0510.19990
    La Goleta0.3750.2150.575 350
    Patch0.3660.2030.134 220
    Trilogy0.7470.1872.68 980
    下载: 导出CSV

    表 3  墨西哥湾AC601站位海底盐池的主要化学组分[59]

    Table 3.  Main chemical components of submarine salt pools at the AC601 Station in the Gulf of Mexico[59]

    深度
    /cm
    pH值盐度
    /‰
    溶解氧
    /μM
    浓度/μM
    DICH2SSO42−ClCH4
    514.35
    206.2982<211.20.0020136620.29
    8033.29
    1006.2592<212.80.2516153338.40
    下载: 导出CSV
  • [1]

    王亚, 周卫健, 程鹏. 碳同位素方法在水体溶解有机碳来源解析中的应用[J]. 地球环境学报, 2020, 11(4):435-446 doi: 10.7515/JEE192050

    WANG Ya, ZHOU Weijian, CHENG Peng. Sources analysis of dissolved organic carbon in water using carbon isotope method [J]. Journal of Earth Environment, 2020, 11(4): 435-446. doi: 10.7515/JEE192050

    [2]

    Levin L A. Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes[M]//Gibson R N, Atkinson R J A, Gordon J D M. Oceanography and Marine Biology: An Annual Review. Boca Raton: CRC Press, 2005, 43: 1-46.

    [3]

    Levin L A, Baco A R, Bowden D A, et al. Hydrothermal vents and methane seeps: rethinking the sphere of influence [J]. Frontiers in Marine Science, 2016, 3: 72.

    [4]

    陈多福, 陈先沛, 陈光谦. 冷泉流体沉积碳酸盐岩的地质地球化学特征[J]. 沉积学报, 2002, 20(1):34-40 doi: 10.3969/j.issn.1000-0550.2002.01.007

    CHEN Duofu, CHEN Xianpei, CHEN Guangqian. Geology and geochemistry of cold seepage and venting-related carbonates [J]. Acta Sedimentologica Sinica, 2002, 20(1): 34-40. doi: 10.3969/j.issn.1000-0550.2002.01.007

    [5]

    张艳平. 南海几个典型冷泉区浅层沉积物中有机质、甲烷和溶解无机碳循环估算及甲烷渗漏模式[D]. 中国科学院大学(中国科学院广州地球化学研究所)博士学位论文, 2020

    ZHANG Yanping. An assessment of subseafloor organic matter, methane, and dissolved inorganic carbon cycling in several typical cold seeps, South China Sea and methane seepage pattern[D]. Doctor Dissertation of Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2020.

    [6]

    孙治雷, 魏合龙, 王利波, 等. 海底冷泉系统的碳循环问题及探测[J]. 应用海洋学学报, 2016, 35(3):442-450

    SUN Zhilei, WEI Helong, WANG Libo, et al. Focus issues of carbon cycle and detecting technologies in seafloor cold seepages [J]. Journal of Applied Oceanography, 2016, 35(3): 442-450.

    [7]

    李学刚, 宋金明. 海洋沉积物中碳的来源、迁移和转化[J]. 海洋科学集刊, 2004(46): 106-117

    LI Xuegang, SONG Jinming. Sources, removal and transformation of carbon in marine sediments[J]. Studia Marina Sinica, 2004(46): 106-117. ]

    [8]

    Paull C K, Ussler Iii W. History and Significance of Gas Sampling During DSDP and ODP Drilling Associated with Gas Hydrates[M]. 2001, 53-65.

    [9]

    Xu S N, Sun Z L, Geng W, et al. Advance in numerical simulation research of marine methane processes [J]. Frontiers in Earth Science, 2022, 10: 891393. doi: 10.3389/feart.2022.891393

    [10]

    Reeburgh W S. Oceanic methane biogeochemistry [J]. Chemical Reviews, 2007, 107(2): 486-513. doi: 10.1021/cr050362v

    [11]

    Tryon M, Brown K, Dorman L, et al. A new benthic aqueous flux meter for very low to moderate discharge rates [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2001, 48(9): 2121-2146. doi: 10.1016/S0967-0637(01)00002-4

    [12]

    Sommer S, Türk M, Kriwanek S, et al. Gas exchange system for extended in situ benthic chamber flux measurements under controlled oxygen conditions: first application - Sea bed methane emission measurements at Captain Arutyunov mud volcano [J]. Limnology and Oceanography:Methods, 2008, 6(1): 23-33. doi: 10.4319/lom.2008.6.23

    [13]

    Linke P, Sommer S, Rovelli L, et al. Physical limitations of dissolved methane fluxes: the role of bottom-boundary layer processes [J]. Marine Geology, 2010, 272(1-4): 209-222. doi: 10.1016/j.margeo.2009.03.020

    [14]

    Boetius A, Wenzhöfer F. Seafloor oxygen consumption fuelled by methane from cold seeps [J]. Nature Geoscience, 2013, 6(9): 725-734. doi: 10.1038/ngeo1926

    [15]

    Alperin M, Hoehler T. The ongoing mystery of sea-floor methane [J]. Science, 2010, 329(5989): 288-289. doi: 10.1126/science.1189966

    [16]

    赵广涛, 徐翠玲, 张晓东, 等. 海底沉积物-水界面溶解甲烷渗漏通量原位观测研究进展[J]. 中国海洋大学学报, 2014, 44(12):73-81

    ZHAO Guangtao, XU Cuiling, ZHANG Xiaodong, et al. Research progress in in-situ observations of dissolved methane seepage fluxed across the water-sediment interface [J]. Periodical of Ocean University of China, 2014, 44(12): 73-81.

    [17]

    Leifer I, Boles J. Turbine tent measurements of marine hydrocarbon seeps on subhourly timescales [J]. Journal of Geophysical Research:Oceans, 2005, 110(C1): C01006.

    [18]

    邸鹏飞, 冯东, 高立宝, 等. 海底冷泉流体渗漏的原位观测技术及冷泉活动特征[J]. 地球物理学进展, 2008, 23(5):1592-1602

    DI Pengfei, FENG Dong, GAO Libao, et al. In situ measurement of fluid flow and signatures of seep activity at marine seep sites [J]. Progress in Geophysics, 2008, 23(5): 1592-1602.

    [19]

    于新生, 李丽娜, 胡亚丽, 等. 海洋中溶解甲烷的原位检测技术研究进展[J]. 地球科学进展, 2011, 26(10):1030-1037

    YU Xinsheng, LI Lina, HU Yali, et al. The development of in situ sensors for dissolved methane measurement in the sea [J]. Advances in Earth Science, 2011, 26(10): 1030-1037.

    [20]

    Aleksanyan M S. Methane sensor based on SnO2/In2O3/TiO2 nanostructure [J]. Journal of Contemporary Physics (Armenian Academy of Sciences), 2010, 45(2): 77-80. doi: 10.3103/S1068337210020052

    [21]

    Garcia M L, Masson M. Environmental and geologic application of solid-state methane sensors [J]. Environmental Geology, 2004, 46(8): 1059-1063. doi: 10.1007/s00254-004-1093-1

    [22]

    Boulart C, Connelly D P, Mowlem M C. Sensors and technologies for in situ dissolved methane measurements and their evaluation using Technology Readiness Levels [J]. TrAC Trends in Analytical Chemistry, 2010, 29(2): 186-195. doi: 10.1016/j.trac.2009.12.001

    [23]

    Camilli R, Duryea A N. Characterizing spatial and temporal variability of dissolved gases in aquatic environments with in situ mass spectrometry [J]. Environmental Science & Technology, 2009, 43(13): 5014-5021.

    [24]

    Camilli R, Duryea A. Characterizing marine hydrocarbons with in-situ mass spectrometry[C]//Proceedings of the OCEANS 2007. Vancouver, Canada: IEEE, 2007: 1-7.

    [25]

    Camilli R, Hemond H F. NEREUS/Kemonaut, a mobile autonomous underwater mass spectrometer [J]. TrAC Trends in Analytical Chemistry, 2004, 23(4): 307-313. doi: 10.1016/S0165-9936(04)00408-X

    [26]

    Bell R J, Savidge W B, Toler S K, et al. In situ determination of porewater gases by underwater flow-through membrane inlet mass spectrometry [J]. Limnology and Oceanography:Methods, 2012, 10(3): 117-128.

    [27]

    Brewer P G, Malby G, Pasteris J D, et al. Development of a laser Raman spectrometer for deep-ocean science [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2004, 51(5): 739-753. doi: 10.1016/j.dsr.2003.11.005

    [28]

    Du Z F, Li Y, Chen J, et al. Feasibility investigation on deep ocean compact autonomous Raman spectrometer developed for in-situ detection of acid radical ions [J]. Chinese Journal of Oceanology and Limnology, 2015, 33(2): 545-550. doi: 10.1007/s00343-015-4096-8

    [29]

    Thornton B, Takahashi T, Sato T, et al. Development of a deep-sea laser-induced breakdown spectrometer for in situ multi-element chemical analysis [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2015, 95: 20-36. doi: 10.1016/j.dsr.2014.10.006

    [30]

    Zhang X, Du Z F, Luan Z D, et al. In situ Raman detection of gas hydrates exposed on the seafloor of the South China Sea [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(10): 3700-3713. doi: 10.1002/2017GC006987

    [31]

    Chou I M, Wang A L. Application of laser Raman micro-analyses to Earth and planetary materials [J]. Journal of Asian Earth Sciences, 2017, 145: 309-333. doi: 10.1016/j.jseaes.2017.06.032

    [32]

    Long D A. Raman Spectroscopy[M]. Maidenhead: McGraw-Hill, 1977.

    [33]

    McMillan P F, Hofmeister A M. Chapter 4. Infrared and Raman spectroscopy[M]//Hawthorne F C. Spectroscopic Methods in Mineralogy and Geology. Washington: Mineralogical Society of America, 1988: 99-160.

    [34]

    Rull F. The Raman effect and the vibrational dynamics of molecules and crystalline solids[M]//Dubessy J, Caumon M C, Rull F. Raman Spectroscopy Applied to Earth Sciences and Cultural Heritage. EMU, 2012, 12: 1-60.

    [35]

    Schmidt C, Seward T M. Raman spectroscopic quantification of sulfur species in aqueous fluids: ratios of relative molar scattering factors of Raman bands of H2S, HS-, SO2, HSO4-, SO42-, S2O32-, S3- and H2O at ambient conditions and information on changes with pressure and temperature [J]. Chemical Geology, 2017, 467: 64-75. doi: 10.1016/j.chemgeo.2017.07.022

    [36]

    Qiu Y, Wang X L, Liu X, et al. In situ Raman spectroscopic quantification of CH4-CO2 mixture: application to fluid inclusions hosted in quartz veins from the Longmaxi Formation shales in Sichuan Basin, southwestern China [J]. Petroleum Science, 2020, 17(1): 23-35. doi: 10.1007/s12182-019-00395-z

    [37]

    Zhang X, Walz P M, Kirkwood W J, et al. Development and deployment of a deep-sea Raman probe for measurement of pore water geochemistry [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2010, 57(2): 297-306. doi: 10.1016/j.dsr.2009.11.004

    [38]

    Zhang X, Du Z F, Zheng R E, et al. Development of a new deep-sea hybrid Raman insertion probe and its application to the geochemistry of hydrothermal vent and cold seep fluids [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2017, 123: 1-12. doi: 10.1016/j.dsr.2017.02.005

    [39]

    Zhang X, Hester K C, Ussler W, et al. In situ Raman-based measurements of high dissolved methane concentrations in hydrate-rich ocean sediments [J]. Geophysical Research Letters, 2011, 38(8): L08605.

    [40]

    Du Z F, Zhang X, Luan Z D, et al. In situ Raman quantitative detection of the cold seep vents and fluids in the chemosynthetic communities in the South China Sea [J]. Geochemistry, Geophysics, Geosystems, 2018, 19(7): 2049-2061. doi: 10.1029/2018GC007496

    [41]

    Nikolovska A, Sahling H, Bohrmann G. Hydroacoustic methodology for detection, localization, and quantification of gas bubbles rising from the seafloor at gas seeps from the eastern Black Sea [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(10): Q10010.

    [42]

    Weber T C, De Robertis A, Greenaway S F, et al. Estimating oil concentration and flow rate with calibrated vessel-mounted acoustic echo sounders [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(50): 20240-20245. doi: 10.1073/pnas.1108771108

    [43]

    Weber T C, Mayer L, Jerram K, et al. Acoustic estimates of methane gas flux from the seabed in a 6000 km2 region in the Northern Gulf of Mexico [J]. Geochemistry, Geophysics, Geosystems, 2014, 15(5): 1911-1925. doi: 10.1002/2014GC005271

    [44]

    Loranger S, Bassett C, Cole J P, et al. Acoustically relevant properties of four crude oils at oceanographic temperatures and pressures [J]. The Journal of the Acoustical Society of America, 2018, 144(5): 2926-2936. doi: 10.1121/1.5078606

    [45]

    Medwin H, Breitz N D. Ambient and transient bubble spectral densities in quiescent seas and under spilling breakers [J]. Journal of Geophysical Research:Oceans, 1989, 94(C9): 12751-12759. doi: 10.1029/JC094iC09p12751

    [46]

    Vagle S, Farmer D M. The measurement of bubble-size distributions by acoustical backscatter [J]. Journal of Atmospheric and Oceanic Technology, 1992, 9(5): 630-644. doi: 10.1175/1520-0426(1992)009<0630:TMOBSD>2.0.CO;2

    [47]

    Greinert J, McGinnis D F, Naudts L, et al. Atmospheric methane flux from bubbling seeps: spatially extrapolated quantification from a Black Sea shelf area [J]. Journal of Geophysical Research:Oceans, 2010, 115(C1): C01002.

    [48]

    Römer M, Sahling H, Pape T, et al. Geological control and magnitude of methane ebullition from a high-flux seep area in the Black Sea-the Kerch seep area [J]. Marine Geology, 2012, 319-322: 57-74. doi: 10.1016/j.margeo.2012.07.005

    [49]

    Römer M, Sahling H, Pape T, et al. Quantification of gas bubble emissions from submarine hydrocarbon seeps at the Makran continental margin (offshore Pakistan) [J]. Journal of Geophysical Research: Oceans, 2012, 117(C10): C10015.

    [50]

    Wang B B, Socolofsky S A, Breier J A, et al. Observations of bubbles in natural seep flares at MC 118 and GC 600 using in situ quantitative imaging [J]. Journal of Geophysical Research:Oceans, 2016, 121(4): 2203-2230. doi: 10.1002/2015JC011452

    [51]

    Hornafius J S, Quigley D, Luyendyk B P. The world's most spectacular marine hydrocarbon seeps (Coal Oil Point, Santa Barbara Channel, California): quantification of emissions [J]. Journal of Geophysical Research:Oceans, 1999, 104(C9): 20703-20711. doi: 10.1029/1999JC900148

    [52]

    Quigley D C, Hornafius J S, Luyendyk B P, et al. Decrease in natural marine hydrocarbon seepage near Coal Oil Point, California, associated with offshore oil production [J]. Geology, 1999, 27(11): 1047-1050. doi: 10.1130/0091-7613(1999)027<1047:DINMHS>2.3.CO;2

    [53]

    Padilla A M, Loranger S, Kinnaman F S, et al. Modern assessment of natural hydrocarbon gas flux at the coal oil point seep field, Santa Barbara, California [J]. Journal of Geophysical Research:Oceans, 2019, 124(4): 2472-2484. doi: 10.1029/2018JC014573

    [54]

    Di P F, Chen Q H, Chen D F. Quantification of methane fluxes from hydrocarbon seeps to the ocean and atmosphere: development of an in situ and online gas flux measuring system [J]. Journal of Ocean University of China, 2017, 16(3): 447-454. doi: 10.1007/s11802-017-3061-x

    [55]

    Di P F, Feng D, Chen D F. In-situ and on-line measurement of gas flux at a hydrocarbon seep from the northern South China Sea [J]. Continental Shelf Research, 2014, 81: 80-87. doi: 10.1016/j.csr.2014.04.001

    [56]

    Johansen C, Todd A C, MacDonald I R. Time series video analysis of bubble release processes at natural hydrocarbon seeps in the Northern Gulf of Mexico [J]. Marine and Petroleum Geology, 2017, 82: 21-34. doi: 10.1016/j.marpetgeo.2017.01.014

    [57]

    Di P F, Feng D, Tao J, et al. Using time-series videos to quantify methane bubbles flux from natural cold seeps in the South China Sea [J]. Minerals, 2020, 10(3): 216. doi: 10.3390/min10030216

    [58]

    Kennicutt II M C, Brooks J M, Bidigare R R, et al. Gulf of Mexico hydrocarbon seep communities-I. Regional distribution of hydrocarbon seepage and associated fauna [J]. Deep Sea Research Part A. Oceanographic Research Papers, 1988, 35(9): 1639-1651. doi: 10.1016/0198-0149(88)90107-0

    [59]

    Wankel S D, Joye S B, Samarkin V A, et al. New constraints on methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico brine pool via in situ mass spectrometry [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2010, 57(21-23): 2022-2029. doi: 10.1016/j.dsr2.2010.05.009

    [60]

    Lapham L L, Alperin M, Chanton J, et al. Upward advection rates and methane fluxes, oxidation, and sources at two Gulf of Mexico brine seeps [J]. Marine Chemistry, 2008, 112(1-2): 65-71. doi: 10.1016/j.marchem.2008.06.001

    [61]

    Solomon E A, Kastner M, Jannasch H, et al. Dynamic fluid flow and chemical fluxes associated with a seafloor gas hydrate deposit on the northern Gulf of Mexico slope [J]. Earth and Planetary Science Letters, 2008, 270(1-2): 95-105. doi: 10.1016/j.jpgl.2008.03.024

    [62]

    Martens C S, Mendlovitz H P, Seim H, et al. Sustained in situ measurements of dissolved oxygen, methane and water transport processes in the benthic boundary layer at MC118, northern Gulf of Mexico [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2016, 129: 41-52. doi: 10.1016/j.dsr2.2015.11.012

    [63]

    Johansen C, Macelloni L, Natter M, et al. Hydrocarbon migration pathway and methane budget for a Gulf of Mexico natural seep site: green Canyon 600 [J]. Earth and Planetary Science Letters, 2020, 545: 116411. doi: 10.1016/j.jpgl.2020.116411

    [64]

    Lapham L, Wilson R, Riedel M, et al. Temporal variability of in situ methane concentrations in gas hydrate-bearing sediments near Bullseye Vent, Northern Cascadia Margin [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(7): 2445-2459. doi: 10.1002/ggge.20167

    [65]

    Thomsen L, Barnes C, Best M, et al. Ocean circulation promotes methane release from gas hydrate outcrops at the NEPTUNE Canada Barkley Canyon node [J]. Geophysical Research Letters, 2012, 39(16): L16605.

    [66]

    Marcon Y, Römer M, Scherwath M, et al. Variability of marine methane bubble emissions on the Clayoquot slope, offshore Vancouver Island, between 2017 and 2021 [J]. Frontiers in Earth Science, 2022, 10: 864809. doi: 10.3389/feart.2022.864809

  • 加载中

(8)

(3)

计量
  • 文章访问数:  1220
  • PDF下载数:  29
  • 施引文献:  0
出版历程
收稿日期:  2022-08-19
修回日期:  2022-12-06
刊出日期:  2023-08-28

目录