-
摘要:
西北地区的黄土-泥岩滑坡灾害逐渐受到关注,其失稳机理和力学模型成为岩土工程方向的研究热点。以滑动变形为指标来研究黄土-泥岩滑坡的渐进失稳模型,能更好地服务于黄土-泥岩滑坡的监测预警工作。采用土-岩滑动界面处直接渗水的方法,模拟降雨入渗作用下黄土-泥岩滑坡渐进滑动失稳的特征;采用在滑动界面处布置微型孔隙水压力和土压力传感器、在滑坡侧面和表面布置宏观变形观测点的方案,研究黄土-泥岩滑坡的渐进滑动失稳特征。结果显示,黄土-泥岩滑坡在顶部或中部某个位置优先形成拉张式裂缝,随后裂缝逐渐贯通并分割滑坡体,形成“滑移-拉裂-推挤”三段式的失稳模型。黄土-泥岩滑坡渐进滑动失稳模型的建立,对其监测预警和工程防御等方面具有重要科学价值。
Abstract:Loess landslide hazards in Northwest China is gradually gaining attention, especially loess-mudstone landslides, their destabilization mechanism and mechanical model have become a hot spot for research in the direction of geotechnical engineering. Using sliding deformation as an indicator, we studied the progressive instability model of loess-mudstone landslides, which can better serve the monitoring and early warning of loess-mudstone landslides. Direct water infiltration at the sliding interface was used to simulate the characteristics of progressive sliding instability of loess-mudstone landslides under the action of rainfall infiltration. Miniature pore water pressure and soil pressure sensors were arranged at the sliding interface and macroscopic deformation observation points were arranged at the sides and surface of landslide, to reveal the progressive sliding instability characteristics of the loess-mudstone landslide. The results show that the loess-mudstone landslide forms tension cracks at the top or middle of the landslide, and then the cracks gradually expand and divide the landslide, forming a three-stage instability model of "sliding - pulling - pushing". The modelling for progressive sliding instability of loess-mudstone landslides provided important scientific value for its monitoring, early warning, and engineering defense.
-
[1] 张龙飞, 吴益平, 苗发盛, 等. 推移式缓倾浅层滑坡渐进破坏力学模型与稳定性分析[J]. 岩土力学, 2019, 40(12):4767-4776 doi: 10.16285/j.rsm.2018.1885
ZHANG Longfei, WU Yiping, MIAO Fasheng, et al. Mechanical model and stability analysis of progressive failure for thrust-type gently inclined shallow landslide [J]. Rock and Soil Mechanics, 2019, 40(12): 4767-4776. doi: 10.16285/j.rsm.2018.1885
[2] 苗发盛, 吴益平, 谢媛华, 等. 水位升降条件下牵引式滑坡离心模型试验[J]. 岩土力学, 2018, 39(2):605-613 doi: 10.16285/j.rsm.2016.2518
MIAO Fasheng, WU Yiping, XIE Yuanhua, et al. Centrifugal test on retrogressive landslide influenced by rising and falling reservoir water level [J]. Rock and Soil Mechanics, 2018, 39(2): 605-613. doi: 10.16285/j.rsm.2016.2518
[3] 吴玮江, 宿星, 刘伟, 等. 黄土-泥岩接触面滑坡的特征与成因[J]. 冰川冻土, 2014, 36(5):1167-1175
WU Weijiang, SU Xing, LIU Wei, et al. Loess-mudstone interface landslides: Characteristics and causes [J]. Journal of Glaciology and Geocryology, 2014, 36(5): 1167-1175.
[4] Wen B P, Wang S J, Wang E Z, et al. Deformation characteristics of loess landslide along the contact between loess and neocene red mudstone [J]. Acta Geologica Sinica, 2005, 79(1): 139-151. doi: 10.1111/j.1755-6724.2005.tb00875.x
[5] Zhang Z L, Wang T, Wu S R, et al. Seismic performance of loess-mudstone slope in Tianshui - Centrifuge model tests and numerical analysis [J]. Engineering Geology, 2017, 222: 225-235. doi: 10.1016/j.enggeo.2017.04.006
[6] Chen J C, Wang L M, Wang P, et al. Failure mechanism investigation on loess-mudstone landslides based on the Hilbert–Huang transform method using a large-scale shaking table test [J]. Engineering Geology, 2022, 302: 106630. doi: 10.1016/j.enggeo.2022.106630
[7] Wang H J, Sun P, Zhang S, et al. Rainfall-induced landslide in loess area, Northwest China: a case study of the Changhe landslide on September 14, 2019, in Gansu Province [J]. Landslides, 2020, 17(9): 2145-2160. doi: 10.1007/s10346-020-01460-0
[8] 辛鹏. 陕西宝鸡市渭河北岸大型黄土滑坡形成机理与危险性评估研究[D]. 北京: 中国地质科学院, 2013
XIN Peng. Research on the formation mechanism and hazards assessment of large loess landslide on the north bank of Weihe River Baoji city, Shaanxi province[D]. Beijing: Chinese Academy of Geological Sciences, 2013.
[9] 李媛, 吴奇. 孟家山黄土-红层接触面滑坡破坏机理研究[J]. 水文地质工程地质, 2001, 28(1):52-54 doi: 10.3969/j.issn.1000-3665.2001.01.015
LI Yuan, WU Qi. The study of deformation mechanism on loess-red mudstone sliding surface in Mengjiashan landslide [J]. Hydrogeology & Engineering Geology, 2001, 28(1): 52-54. doi: 10.3969/j.issn.1000-3665.2001.01.015
[10] 封凯强. 黄土-泥岩切层滑坡滑带泥岩强度特性及滑坡变形破坏机理研究: 以兰州市某滑坡为例[D]. 西安: 西北大学, 2019
FENG Kaiqiang. Study on shear strength characteristics of mudstone of slip zone and deformation failure mechanism of loess-mudstone cutting layer landslide: A case study of landslide in Lanzhou[D]. Xi’an: Northwest University, 2019.
[11] 杨晨. 黄土-基岩接触面特性的环剪试验研究[D]. 杨凌: 西北农林科技大学, 2019
YANG Chen. Ring shear test study on characteristics of loess-bedrock interface[D]. Yangling: Northwest A&F University, 2019.
[12] Li S H, Li C, Yao D, et al. Multiscale nonlinear analysis of failure mechanism of loess-mudstone landslide [J]. Catena, 2022, 213: 106188. doi: 10.1016/j.catena.2022.106188
[13] Li S H, Li C, Yao D, et al. Interdisciplinary asperity theory to analyze nonlinear motion of loess landslides with weak sliding interface [J]. Landslides, 2020, 17(12): 2957-2965. doi: 10.1007/s10346-020-01479-3
[14] Wang X G, Wang J D, Zhan H B, et al. Moisture content effect on the creep behavior of loess for the catastrophic Baqiao landslide [J]. Catena, 2020, 187: 104371. doi: 10.1016/j.catena.2019.104371
[15] 周琪, 许强, 周书, 等. 基于数值模拟的突发型黄土滑坡运动过程研究: 以黑方台陈家8#滑坡为例[J]. 山地学报, 2019, 37(4):528-537
ZHOU Qi, XU Qiang, ZHOU Shu, et al. Movement process of abrupt loess flowslide based on numerical simulation: a case study of Chenjia 8# on the Heifangtai terrace [J]. Mountain Research, 2019, 37(4): 528-537.
[16] Urciuoli G, Picarelli L, Leroueil S. Local soil failure before general slope failure [J]. Geotechnical and Geological Engineering, 2007, 25(1): 103-122. doi: 10.1007/s10706-006-0009-0
[17] Tang H M, Zou Z X, Xiong C R, et al. An evolution model of large consequent bedding rockslides, with particular reference to the Jiweishan rockslide in Southwest China [J]. Engineering Geology, 2015, 186: 17-27. doi: 10.1016/j.enggeo.2014.08.021
[18] 卢应发, 黄学斌, 刘德富. 推移式滑坡渐进破坏机制及稳定性分析[J]. 岩石力学与工程学报, 2016, 35(2):333-345 doi: 10.13722/j.cnki.jrme.2014.1117
LU Yingfa, HUANG Xuebin, LIU Defu. Mechanism and stability analyses of progressive failure of thrust-type landslides [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 333-345. doi: 10.13722/j.cnki.jrme.2014.1117
[19] 王振, 叶晓明, 刘永新. 考虑滑坡渐进破坏的改进简布条分法[J]. 岩土力学, 2018, 39(2):675-682 doi: 10.16285/j.rsm.2016.0474
WANG Zhen, YE Xiaoming, LIU Yongxin. Improved Janbu slices method considering progressive destruction in landslide [J]. Rock and Soil Mechanics, 2018, 39(2): 675-682. doi: 10.16285/j.rsm.2016.0474
[20] 杜毅, 晏鄂川, 蔡静森, 等. 直线型复合式滑坡渐进破坏力学模型及稳定性研究[J]. 岩石力学与工程学报, 2021, 40(3):490-502
DU Yi, YAN Echuan, CAI Jingsen, et al. A mechanical model of progressive failure of linear complex landslides [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(3): 490-502.
[21] 李凯. 基于应变软化的滑坡三维稳定性分析与三维可视化建模[D]. 重庆: 重庆大学, 2016
LI Kai. Three-dimensional landslide stability analysis based on strain softening and three-dimensional visual modeling[D]. Chongqing: Chongqing University, 2016.
[22] 杨丽平. 一种黄土滑坡渐进破坏过程分析[J]. 岩土力学, 2018, 39(7):2591-2598 doi: 10.16285/j.rsm.2016.2233
YANG Liping. Analysis of progressive failure of a loess landslide [J]. Rock and Soil Mechanics, 2018, 39(7): 2591-2598. doi: 10.16285/j.rsm.2016.2233
[23] 朱建东, 鄢好, 李绍红, 等. 黄土-泥岩接触面滑坡的两种雨型模型试验[J]. 工程地质学报, 2019, 27(3):623-631 doi: 10.13544/j.cnki.jeg.2018-139
ZHU Jiandong, YAN Hao, LI Shaohong, et al. Laboratory model experiment of landslides along loess-mudstone interface induced by rainfall patterns [J]. Journal of Engineering Geology, 2019, 27(3): 623-631. doi: 10.13544/j.cnki.jeg.2018-139
[24] 白玉锋. 黄土试样开裂机理试验研究[D]. 西安: 长安大学, 2014
[BAI Yufeng. Experiment study on the cracking mechanism about loess ground under the environment of the cave[D]. Xi'an: Chang'an University, 2014.
[25] Li C, Yao D, Wang Z, et al. Model test on rainfall-induced loess–mudstone interfacial landslides in Qingshuihe, China [J]. Environmental Earth Sciences, 2016, 75(9): 835. doi: 10.1007/s12665-016-5658-6
[26] 王新刚, 刘凯, 连宝琴, 等. 黄土-泥岩滑坡诱发因素及形成机理研究进展[J]. 西北大学学报:自然科学版, 2021, 51(3):404-413
WANG Xingang, LIU Kai, LIAN Baoqin, et al. Recent advance in understanding inducing factors and formation mechanism of loess-mudstone landslides [J]. Journal of Northwest University:Natural Science Edition, 2021, 51(3): 404-413.