黄土-泥岩滑坡渐进滑动失稳的模型试验研究

李拴虎, 亓越, 王晓荣, 高瑜, 邢渊浩. 黄土-泥岩滑坡渐进滑动失稳的模型试验研究[J]. 海洋地质与第四纪地质, 2023, 43(2): 200-207. doi: 10.16562/j.cnki.0256-1492.2022082501
引用本文: 李拴虎, 亓越, 王晓荣, 高瑜, 邢渊浩. 黄土-泥岩滑坡渐进滑动失稳的模型试验研究[J]. 海洋地质与第四纪地质, 2023, 43(2): 200-207. doi: 10.16562/j.cnki.0256-1492.2022082501
LI Shuanhu, QI Yue, WANG Xiaorong, GAO Yu, XING Yuanhao. Physical modelling of progressive sliding instability of loess-mudstone landslide[J]. Marine Geology & Quaternary Geology, 2023, 43(2): 200-207. doi: 10.16562/j.cnki.0256-1492.2022082501
Citation: LI Shuanhu, QI Yue, WANG Xiaorong, GAO Yu, XING Yuanhao. Physical modelling of progressive sliding instability of loess-mudstone landslide[J]. Marine Geology & Quaternary Geology, 2023, 43(2): 200-207. doi: 10.16562/j.cnki.0256-1492.2022082501

黄土-泥岩滑坡渐进滑动失稳的模型试验研究

  • 基金项目: 内蒙古工业大学科研项目“土体滑坡灾变力学机理研究及其工程预警”(DC2200000913);内蒙古自治区科技计划项目“呼包鄂经济区黄土-泥岩型滑坡变形指标的动态追踪技术及其风险防控方案的靶向设计”(2022YFSH0047)
详细信息
    作者简介: 李拴虎(1985—),男,博士,讲师,主要从事工程地质灾害研究,E-mail:lishuanhu@imut.edu.cn
    通讯作者: 王晓荣(1983—),女,博士,副教授,主要从事岩土工程方向的研究,E-mail:wangxiaorong@imut.edu.cn
  • 中图分类号: P55;TU444

Physical modelling of progressive sliding instability of loess-mudstone landslide

More Information
  • 西北地区的黄土-泥岩滑坡灾害逐渐受到关注,其失稳机理和力学模型成为岩土工程方向的研究热点。以滑动变形为指标来研究黄土-泥岩滑坡的渐进失稳模型,能更好地服务于黄土-泥岩滑坡的监测预警工作。采用土-岩滑动界面处直接渗水的方法,模拟降雨入渗作用下黄土-泥岩滑坡渐进滑动失稳的特征;采用在滑动界面处布置微型孔隙水压力和土压力传感器、在滑坡侧面和表面布置宏观变形观测点的方案,研究黄土-泥岩滑坡的渐进滑动失稳特征。结果显示,黄土-泥岩滑坡在顶部或中部某个位置优先形成拉张式裂缝,随后裂缝逐渐贯通并分割滑坡体,形成“滑移-拉裂-推挤”三段式的失稳模型。黄土-泥岩滑坡渐进滑动失稳模型的建立,对其监测预警和工程防御等方面具有重要科学价值。

  • 加载中
  • 图 1  雨水作用下的黄土-泥岩滑坡渐进滑动失稳模型

    Figure 1. 

    图 2  黄土-泥岩滑坡物理模型试验的主体结构及其几何尺寸

    Figure 2. 

    图 3  黄土-泥岩滑坡模型滑动带的供水系统

    Figure 3. 

    图 4  黄土-泥岩滑坡模型的监测传感器布设方案

    Figure 4. 

    图 5  黄土-泥岩滑坡模型变形标记点设置

    Figure 5. 

    图 6  土压力和孔隙水压力数据的相对变化曲线

    Figure 6. 

    图 7  界面型黄土滑坡的模型试验的失稳模式

    Figure 7. 

  • [1]

    张龙飞, 吴益平, 苗发盛, 等. 推移式缓倾浅层滑坡渐进破坏力学模型与稳定性分析[J]. 岩土力学, 2019, 40(12):4767-4776 doi: 10.16285/j.rsm.2018.1885

    ZHANG Longfei, WU Yiping, MIAO Fasheng, et al. Mechanical model and stability analysis of progressive failure for thrust-type gently inclined shallow landslide [J]. Rock and Soil Mechanics, 2019, 40(12): 4767-4776. doi: 10.16285/j.rsm.2018.1885

    [2]

    苗发盛, 吴益平, 谢媛华, 等. 水位升降条件下牵引式滑坡离心模型试验[J]. 岩土力学, 2018, 39(2):605-613 doi: 10.16285/j.rsm.2016.2518

    MIAO Fasheng, WU Yiping, XIE Yuanhua, et al. Centrifugal test on retrogressive landslide influenced by rising and falling reservoir water level [J]. Rock and Soil Mechanics, 2018, 39(2): 605-613. doi: 10.16285/j.rsm.2016.2518

    [3]

    吴玮江, 宿星, 刘伟, 等. 黄土-泥岩接触面滑坡的特征与成因[J]. 冰川冻土, 2014, 36(5):1167-1175

    WU Weijiang, SU Xing, LIU Wei, et al. Loess-mudstone interface landslides: Characteristics and causes [J]. Journal of Glaciology and Geocryology, 2014, 36(5): 1167-1175.

    [4]

    Wen B P, Wang S J, Wang E Z, et al. Deformation characteristics of loess landslide along the contact between loess and neocene red mudstone [J]. Acta Geologica Sinica, 2005, 79(1): 139-151. doi: 10.1111/j.1755-6724.2005.tb00875.x

    [5]

    Zhang Z L, Wang T, Wu S R, et al. Seismic performance of loess-mudstone slope in Tianshui - Centrifuge model tests and numerical analysis [J]. Engineering Geology, 2017, 222: 225-235. doi: 10.1016/j.enggeo.2017.04.006

    [6]

    Chen J C, Wang L M, Wang P, et al. Failure mechanism investigation on loess-mudstone landslides based on the Hilbert–Huang transform method using a large-scale shaking table test [J]. Engineering Geology, 2022, 302: 106630. doi: 10.1016/j.enggeo.2022.106630

    [7]

    Wang H J, Sun P, Zhang S, et al. Rainfall-induced landslide in loess area, Northwest China: a case study of the Changhe landslide on September 14, 2019, in Gansu Province [J]. Landslides, 2020, 17(9): 2145-2160. doi: 10.1007/s10346-020-01460-0

    [8]

    辛鹏. 陕西宝鸡市渭河北岸大型黄土滑坡形成机理与危险性评估研究[D]. 北京: 中国地质科学院, 2013

    XIN Peng. Research on the formation mechanism and hazards assessment of large loess landslide on the north bank of Weihe River Baoji city, Shaanxi province[D]. Beijing: Chinese Academy of Geological Sciences, 2013.

    [9]

    李媛, 吴奇. 孟家山黄土-红层接触面滑坡破坏机理研究[J]. 水文地质工程地质, 2001, 28(1):52-54 doi: 10.3969/j.issn.1000-3665.2001.01.015

    LI Yuan, WU Qi. The study of deformation mechanism on loess-red mudstone sliding surface in Mengjiashan landslide [J]. Hydrogeology & Engineering Geology, 2001, 28(1): 52-54. doi: 10.3969/j.issn.1000-3665.2001.01.015

    [10]

    封凯强. 黄土-泥岩切层滑坡滑带泥岩强度特性及滑坡变形破坏机理研究: 以兰州市某滑坡为例[D]. 西安: 西北大学, 2019

    FENG Kaiqiang. Study on shear strength characteristics of mudstone of slip zone and deformation failure mechanism of loess-mudstone cutting layer landslide: A case study of landslide in Lanzhou[D]. Xi’an: Northwest University, 2019.

    [11]

    杨晨. 黄土-基岩接触面特性的环剪试验研究[D]. 杨凌: 西北农林科技大学, 2019

    YANG Chen. Ring shear test study on characteristics of loess-bedrock interface[D]. Yangling: Northwest A&F University, 2019.

    [12]

    Li S H, Li C, Yao D, et al. Multiscale nonlinear analysis of failure mechanism of loess-mudstone landslide [J]. Catena, 2022, 213: 106188. doi: 10.1016/j.catena.2022.106188

    [13]

    Li S H, Li C, Yao D, et al. Interdisciplinary asperity theory to analyze nonlinear motion of loess landslides with weak sliding interface [J]. Landslides, 2020, 17(12): 2957-2965. doi: 10.1007/s10346-020-01479-3

    [14]

    Wang X G, Wang J D, Zhan H B, et al. Moisture content effect on the creep behavior of loess for the catastrophic Baqiao landslide [J]. Catena, 2020, 187: 104371. doi: 10.1016/j.catena.2019.104371

    [15]

    周琪, 许强, 周书, 等. 基于数值模拟的突发型黄土滑坡运动过程研究: 以黑方台陈家8#滑坡为例[J]. 山地学报, 2019, 37(4):528-537

    ZHOU Qi, XU Qiang, ZHOU Shu, et al. Movement process of abrupt loess flowslide based on numerical simulation: a case study of Chenjia 8# on the Heifangtai terrace [J]. Mountain Research, 2019, 37(4): 528-537.

    [16]

    Urciuoli G, Picarelli L, Leroueil S. Local soil failure before general slope failure [J]. Geotechnical and Geological Engineering, 2007, 25(1): 103-122. doi: 10.1007/s10706-006-0009-0

    [17]

    Tang H M, Zou Z X, Xiong C R, et al. An evolution model of large consequent bedding rockslides, with particular reference to the Jiweishan rockslide in Southwest China [J]. Engineering Geology, 2015, 186: 17-27. doi: 10.1016/j.enggeo.2014.08.021

    [18]

    卢应发, 黄学斌, 刘德富. 推移式滑坡渐进破坏机制及稳定性分析[J]. 岩石力学与工程学报, 2016, 35(2):333-345 doi: 10.13722/j.cnki.jrme.2014.1117

    LU Yingfa, HUANG Xuebin, LIU Defu. Mechanism and stability analyses of progressive failure of thrust-type landslides [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 333-345. doi: 10.13722/j.cnki.jrme.2014.1117

    [19]

    王振, 叶晓明, 刘永新. 考虑滑坡渐进破坏的改进简布条分法[J]. 岩土力学, 2018, 39(2):675-682 doi: 10.16285/j.rsm.2016.0474

    WANG Zhen, YE Xiaoming, LIU Yongxin. Improved Janbu slices method considering progressive destruction in landslide [J]. Rock and Soil Mechanics, 2018, 39(2): 675-682. doi: 10.16285/j.rsm.2016.0474

    [20]

    杜毅, 晏鄂川, 蔡静森, 等. 直线型复合式滑坡渐进破坏力学模型及稳定性研究[J]. 岩石力学与工程学报, 2021, 40(3):490-502

    DU Yi, YAN Echuan, CAI Jingsen, et al. A mechanical model of progressive failure of linear complex landslides [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(3): 490-502.

    [21]

    李凯. 基于应变软化的滑坡三维稳定性分析与三维可视化建模[D]. 重庆: 重庆大学, 2016

    LI Kai. Three-dimensional landslide stability analysis based on strain softening and three-dimensional visual modeling[D]. Chongqing: Chongqing University, 2016.

    [22]

    杨丽平. 一种黄土滑坡渐进破坏过程分析[J]. 岩土力学, 2018, 39(7):2591-2598 doi: 10.16285/j.rsm.2016.2233

    YANG Liping. Analysis of progressive failure of a loess landslide [J]. Rock and Soil Mechanics, 2018, 39(7): 2591-2598. doi: 10.16285/j.rsm.2016.2233

    [23]

    朱建东, 鄢好, 李绍红, 等. 黄土-泥岩接触面滑坡的两种雨型模型试验[J]. 工程地质学报, 2019, 27(3):623-631 doi: 10.13544/j.cnki.jeg.2018-139

    ZHU Jiandong, YAN Hao, LI Shaohong, et al. Laboratory model experiment of landslides along loess-mudstone interface induced by rainfall patterns [J]. Journal of Engineering Geology, 2019, 27(3): 623-631. doi: 10.13544/j.cnki.jeg.2018-139

    [24]

    白玉锋. 黄土试样开裂机理试验研究[D]. 西安: 长安大学, 2014

    [BAI Yufeng. Experiment study on the cracking mechanism about loess ground under the environment of the cave[D]. Xi'an: Chang'an University, 2014.

    [25]

    Li C, Yao D, Wang Z, et al. Model test on rainfall-induced loess–mudstone interfacial landslides in Qingshuihe, China [J]. Environmental Earth Sciences, 2016, 75(9): 835. doi: 10.1007/s12665-016-5658-6

    [26]

    王新刚, 刘凯, 连宝琴, 等. 黄土-泥岩滑坡诱发因素及形成机理研究进展[J]. 西北大学学报:自然科学版, 2021, 51(3):404-413

    WANG Xingang, LIU Kai, LIAN Baoqin, et al. Recent advance in understanding inducing factors and formation mechanism of loess-mudstone landslides [J]. Journal of Northwest University:Natural Science Edition, 2021, 51(3): 404-413.

  • 加载中

(7)

计量
  • 文章访问数:  1471
  • PDF下载数:  10
  • 施引文献:  0
出版历程
收稿日期:  2022-08-25
修回日期:  2022-11-25
刊出日期:  2023-04-28

目录