基于常规测井的变质岩裂缝识别方法研究

廖海博, 刘红岐, 崔云江, 汪瑞宏, 李枝林, 陈东, 刘伟. 基于常规测井的变质岩裂缝识别方法研究[J]. 海洋地质与第四纪地质, 2023, 43(4): 189-198. doi: 10.16562/j.cnki.0256-1492.2023021601
引用本文: 廖海博, 刘红岐, 崔云江, 汪瑞宏, 李枝林, 陈东, 刘伟. 基于常规测井的变质岩裂缝识别方法研究[J]. 海洋地质与第四纪地质, 2023, 43(4): 189-198. doi: 10.16562/j.cnki.0256-1492.2023021601
LIAO Haibo, LIU Hongqi, CUI Yunjiang, WANG Ruihong, LI Zhilin, CHEN Dong, LIU Wei. Research on fractures identification method of metamorphic rock based on conventional logging[J]. Marine Geology & Quaternary Geology, 2023, 43(4): 189-198. doi: 10.16562/j.cnki.0256-1492.2023021601
Citation: LIAO Haibo, LIU Hongqi, CUI Yunjiang, WANG Ruihong, LI Zhilin, CHEN Dong, LIU Wei. Research on fractures identification method of metamorphic rock based on conventional logging[J]. Marine Geology & Quaternary Geology, 2023, 43(4): 189-198. doi: 10.16562/j.cnki.0256-1492.2023021601

基于常规测井的变质岩裂缝识别方法研究

  • 基金项目: 中石油创新联合体项目“长水平段薄箱体页岩储层地质导向钻井技术”(2020CX040203)
详细信息
    作者简介: 廖海博(1998—),男,硕士研究生,主要从事测井资料处理解释与储层评价、油藏描述研究,E-mail:1075129119@qq.com
  • 中图分类号: P744

Research on fractures identification method of metamorphic rock based on conventional logging

  • BZ19-6气田变质岩潜山储层结构复杂、多样,裂缝发育且非均质性强。在储层评价中,识别有效的裂缝是一个紧迫的难题,而这对于该气田的勘探开发具有重要的意义。以岩性主要为花岗片麻岩、夹少量侵入岩的太古界为研究层位,通过对常规测井曲线进行重极标差(R/S)分析,以识别研究层位的裂缝发育程度,并通过计算Lg(R/S)的牛顿二阶差分值预测裂缝的发育位置。进一步将R/S分析结果与岩芯薄片裂缝观察统计和电成像图解释结果进行对比,建立了利用赫尔特指数识别花岗片麻岩储层裂缝发育程度分类标准。研究表明:① 将R/S分析和牛顿差分法相结合改进的裂缝识别方法,在变质岩储层裂缝评价中具有可行性,可识别宽度>0.005 mm的裂缝;② Lg(R/S)曲线二阶差分值能够准确地识别天然裂缝的发育位置,并且K-Rxo与裂缝线密度呈正相关,相关性高;③ 岩性各向异性和裂缝充填情况对常规测井曲线R/S分析方法识别裂缝精度有影响。

  • 加载中
  • 图 1  研究区位置图

    Figure 1. 

    图 2  太古界潜山气藏构造剖面图

    Figure 2. 

    图 3  太古界天然裂缝岩芯图片

    Figure 3. 

    图 4  太古界岩石薄片

    Figure 4. 

    图 5  Microscope电成像图裂缝特征

    Figure 5. 

    图 6  R/S分析曲线

    Figure 6. 

    图 7  赫尔特指数三维散点图

    Figure 7. 

    图 8  Lg(R/S)曲线的K值和凹区间对比

    Figure 8. 

    图 9  裂缝线密度与K-Rxo散点图

    Figure 9. 

    图 10  BZ19-6气田裂缝发育预测

    Figure 10. 

    图 11  非花岗片麻岩裂缝发育特征

    Figure 11. 

    表 1  花岗片麻岩储层裂缝发育程度分类识别标准

    Table 1.  Classification and identification standard of fracture development degree of granite gneiss reservoir

    裂缝发育情况HCALHRxoHDT
    不发育>0.95>1.0>1.0
    较发育0.75<HCAL<0.950.7<HRxo<1.00.75<HDT<1.0
    发育<0.75<0.7<0.75
    下载: 导出CSV

    表 2  牛顿二阶差分K值与Microscope-HD电成像图对比

    Table 2.  Comparison of Newton ' s second-order difference K value and Microscope-HD electrical imaging map

    类别测井曲线特征参数特征
    井壁崩落区K-CAL>0.00003
    K-DT<0.00001
    K-Rxo<0.00001
    裂缝发育区K-CAL<0.00003
    K-DT>0.00001
    K-Rxo<0.00001
    基岩区K-CAL<0.00003
    K-DT>0.00001
    K-Rxo>0.00001
    下载: 导出CSV
  • [1]

    薛永安, 王德英. 渤海湾油型湖盆大型天然气藏形成条件与勘探方向[J]. 石油勘探与开发, 2020, 47(2):260-271

    XUE Yong’an, WANG Deying. Formation conditions and exploration direction of large natural gas reservoirs in the oil-prone Bohai Bay Basin, East China [J]. Petroleum Exploration and Development, 2020, 47(2): 260-271.

    [2]

    李欣, 李建忠, 杨涛, 等. 渤海湾盆地油气勘探现状与勘探方向[J]. 新疆石油地质, 2013, 34(2):140-144

    LI Xin, LI Jianzhong, YANG Tao, et al. Oil-gas exploration status and future targets in Bohai Bay Basin [J]. Xinjiang Petroleum Geology, 2013, 34(2): 140-144.

    [3]

    薛永安, 李慧勇. 渤海海域深层太古界变质岩潜山大型凝析气田的发现及其地质意义[J]. 中国海上油气, 2018, 30(3):1-9

    XUE Yong'an, LI Huiyong. Large condensate gas field in deep Archean metamorphic buried hill in Bohai sea: discovery and geological significance [J]. China Offshore Oil and Gas, 2018, 30(3): 1-9.

    [4]

    侯明才, 曹海洋, 李慧勇, 等. 渤海海域渤中19-6构造带深层潜山储层特征及其控制因素[J]. 天然气工业, 2019, 39(1):33-44

    HOU Mingcai, CAO Haiyang, LI Huiyong, et al. Characteristics and controlling factors of deep buried-hill reservoirs in the BZ19-6 structural belt, Bohai Sea area [J]. Natural Gas Industry, 2019, 39(1): 33-44.

    [5]

    徐长贵, 于海波, 王军, 等. 渤海海域渤中19-6大型凝析气田形成条件与成藏特征[J]. 石油勘探与开发, 2019, 46(1):25-38

    XU Changgui, YU Haibo, WANG Jun, et al. Formation conditions and accumulation characteristics of Bozhong 19-6 large condensate gas field in offshore Bohai Bay Basin [J]. Petroleum Exploration and Development, 2019, 46(1): 25-38.

    [6]

    肖述光, 吕丁友, 侯明才, 等. 渤海海域西南部中生代构造演化过程与潜山形成机制[J]. 天然气工业, 2019, 39(5):34-44

    XIAO Shuguang, LÜ Dingyou, HOU Mingcai, et al. Mesozoic tectonic evolution and buried hill formation mechanism in the southwestern Bohai Sea [J]. Natural Gas Industry, 2019, 39(5): 34-44.

    [7]

    韩磊, 刘俊州, 刘振峰, 等. 裂缝型储层测井评价方法及应用研究[J]. 国外测井技术, 2017, 38(4):8-13

    HAN Lei, LIU Junzhou, LIU Zhenfeng, et al. Method of well logging interpretation for fracture reservoirs and its application [J]. World Well Logging Technology, 2017, 38(4): 8-13.

    [8]

    Xiao Z K, Ding W L, Liu J S, et al. A fracture identification method for low-permeability sandstone based on R/S analysis and the finite difference method: a case study from the Chang 6 reservoir in Huaqing oilfield, Ordos Basin [J]. Journal of Petroleum Science and Engineering, 2019, 174: 1169-1178. doi: 10.1016/j.petrol.2018.12.017

    [9]

    陈义国, 张丽霞, 赵谦平, 等. 三介质模型常规测井变尺度极差分析裂缝预测技术[J]. 断块油气田, 2012, 19(1):84-87

    CHEN Yiguo, ZHANG Lixia, ZHAO Qianping, et al. Fracture prediction using rescaled range analysis and based on conventional logging data of triple media model [J]. Fault-Block Oil and Gas Field, 2012, 19(1): 84-87.

    [10]

    Li A, Ding W L, Luo K P, et al. Application of R/S analysis in fracture identification of shale reservoir of the Lower Cambrian Niutitang Formation in northern Guizhou Province, South China [J]. Geological Journal, 2020, 55(5): 4008-4020. doi: 10.1002/gj.3648

    [11]

    Zhang H, Ju W, Yin G Q, et al. Natural fracture prediction in Keshen 2 ultra-deep tight gas reservoir based on R/S analysis, Kuqa Depression, Tarim Basin [J]. Geosciences Journal, 2021, 25(4): 525-536. doi: 10.1007/s12303-020-0041-8

    [12]

    Xiao Z K, Ding W L, Hao S Y, et al. Quantitative analysis of tight sandstone reservoir heterogeneity based on rescaled range analysis and empirical mode decomposition: a case study of the Chang 7 reservoir in the Dingbian oilfield [J]. Journal of Petroleum Science and Engineering, 2019, 182: 106326. doi: 10.1016/j.petrol.2019.106326

    [13]

    Aghli G, Moussavi-Harami R, Tokhmechi B. Integration of sonic and resistivity conventional logs for identification of fracture parameters in the carbonate reservoirs (A case study, Carbonate Asmari Formation, Zagros Basin, SW Iran) [J]. Journal of Petroleum Science and Engineering, 2020, 186: 106728. doi: 10.1016/j.petrol.2019.106728

    [14]

    Ge X M, Fan Y R, Zhu X J, et al. A method to differentiate degree of volcanic reservoir fracture development using conventional well logging data—an application of kernel principal component analysis (KPCA) and multifractal detrended fluctuation analysis (MFDFA) [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(12): 4972-4978. doi: 10.1109/JSTARS.2014.2319392

    [15]

    倪金龙, 夏斌. 断块运动与潜山油气藏的形成: 以渤海湾盆地为例[J]. 天然气工业, 2006, 26(2):32-35

    NI Jinlong, XIA Bin. Fault block movement and formation of buried hill hydrocarbon reservoir: taking Bohai Bay Basin as an example [J]. Natural Gas Industry, 2006, 26(2): 32-35.

    [16]

    薛永安, 柴永波, 周园园. 近期渤海海域油气勘探的新突破[J]. 中国海上油气, 2015, 27(1):1-9

    XUE Yong’an, CHAI Yongbo, ZHOU Yuanyuan. Recent new breakthroughs in hydrocarbon exploration in Bohai sea [J]. China Offshore Oil and Gas, 2015, 27(1): 1-9.

    [17]

    龚再升. 中国近海含油气盆地新构造运动与油气成藏[J]. 地球科学-中国地质大学学报, 2004, 29(5):513-517

    GONG Zaisheng. Neotectonics and petroleum accumulation in offshore Chinese basins [J]. Earth Science-Journal of China University of Geosciences, 2004, 29(5): 513-517.

    [18]

    宋国民, 张艳, 李慧勇, 等. 渤中凹陷19-6区太古界潜山变质岩岩石类型及鉴别特征[J]. 世界地质, 2020, 39(2):344-352

    SONG Guomin, ZHANG Yan, LI Huiyong, et al. Types and identification characteristics of Archean metamorphic rocks of Buried Hill in 19-6 area of Bozhong sag [J]. Global Geology, 2020, 39(2): 344-352.

    [19]

    付晓飞, 宋宪强, 王海学, 等. 裂陷盆地断层圈闭含油气有效性综合评价: 以渤海湾盆地歧口凹陷为例[J]. 石油勘探与开发, 2021, 48(4):677-686

    FU Xiaofei, SONG Xianqiang, WANG Haixue, et al. Comprehensive evaluation on hydrocarbon-bearing availability of fault traps in a rift basin: a case study of the Qikou Sag in the Bohai Bay Basin, China [J]. Petroleum Exploration and Development, 2021, 48(4): 677-686.

    [20]

    施和生, 王清斌, 王军, 等. 渤中凹陷深层渤中19-6构造大型凝析气田的发现及勘探意义[J]. 中国石油勘探, 2019, 24(1):36-45

    SHI Hesheng, WANG Qingbin, WANG Jun, et al. Discovery and exploration significance of large condensate gas fields in BZ19-6 structure in deep Bozhong sag [J]. China Petroleum Exploration, 2019, 24(1): 36-45.

    [21]

    童凯军, 赵春明, 吕坐彬, 等. 渤海变质岩潜山油藏储集层综合评价与裂缝表征[J]. 石油勘探与开发, 2012, 39(1):56-63

    TONG Kaijun, ZHAO Chunming, LÜ Zuobin, et al. Reservoir evaluation and fracture characterization of the metamorphic buried hill reservoir in Bohai Bay [J]. Petroleum Exploration and Development, 2012, 39(1): 56-63.

    [22]

    Nelson R A. Geologic Analysis of Naturally Fractured Reservoirs[M]. 2nd ed. Amsterdam: Elsevier, 2001.

    [23]

    牛虎林, 胡欣, 徐志强, 等. 基岩油气藏裂缝性储层的成像测井评价及裂缝预测[J]. 石油学报, 2010, 31(2):264-269

    NIU Hulin, HU Xin, XU Zhiqiang, et al. Evaluation of imaging logging and fracture prediction in fractured basement reservoirs [J]. Acta Petrolei Sinica, 2010, 31(2): 264-269.

    [24]

    Hurst H E. Long-term storage capacity of reservoirs [J]. Transactions of the American Society of Civil Engineers, 1951, 116(1): 770-799. doi: 10.1061/TACEAT.0006518

    [25]

    Mandelbrot B B, Wallis J R. Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence [J]. Water Resources Research, 1969, 5(5): 967-988. doi: 10.1029/WR005i005p00967

    [26]

    Miranda J G V, Andrade R F S. Rescaled range analysis of pluviometric records in Northeast Brazil [J]. Theoretical and Applied Climatology, 1999, 63(1): 79-88.

    [27]

    Beretta A, Roman H E, Raicich F, et al. Long-time correlations of sea-level and local atmospheric pressure fluctuations at Trieste [J]. Physica A:Statistical Mechanics and its Applications, 2005, 347: 695-703. doi: 10.1016/j.physa.2004.08.027

    [28]

    Pang J, North C P. Fractals and their applicability in geological wireline log analysis [J]. Journal of Petroleum Geology, 1996, 19(3): 339-350. doi: 10.1111/j.1747-5457.1996.tb00438.x

  • 加载中

(11)

(2)

计量
  • 文章访问数:  1153
  • PDF下载数:  111
  • 施引文献:  0
出版历程
收稿日期:  2023-02-16
修回日期:  2023-04-02
刊出日期:  2023-08-28

目录