States of element occurrence of sediments in the southern Okinawa Trough and its hydrothermal activity
-
摘要:
为了解冲绳海槽南部沉积物的元素赋存状态以及热液活动对沉积物中元素组成的影响,对冲绳海槽南部沉积物岩芯HOBAB4-S2进行了全岩样及顺序提取分析,探讨了该沉积物岩芯中Al、Ti、K、Fe、Mn、Cu、Zn、Pb、Co、Ni及稀土元素的赋存状态,结果表明残留相与碳酸盐相是岩芯沉积物中元素的重要赋存形式,典型的碎屑组分Al、K、Ti在残留相中比例极高。铁锰氧化物相和有机结合相中各元素含量均相对较低,但在铁锰氧化物相中,与热液活动相关的金属元素在岩芯的萃取比例及含量上随着深度变化具有一致性,同时在4个层位出现了异常高值,表明在该层位对应的时期出现了热液活动对元素组成的显著影响,稀土元素总量变化上也可看出明显相同的变化趋势。沉积物的球粒陨石标准化稀土元素配分模式整体显示了轻稀土元素相对重稀土元素更富集的特征,具有极其轻微的Ce正异常和明显的Eu负异常,与南大西洋受热液活动影响较小的沉积物中铁锰氧化物相的配分模式类似,表明其受到热液流体的影响,是铁锰颗粒吸附海水与热液流体中稀土元素的结果。
Abstract:To understand the element occurrence states of sediments in the southern Okinawa Trough and the influence of hydrothermal activity on the elemental composition of the sediments, the whole-sample and sequential extraction of core HOBAB4-S2 from the southern Okinawa Trough were analyzed and the occurrence state of Al, Ti, K, Fe, Mn, Cu, Zn, Pb, Co, Ni, and rare earth elements in the sediment core. The results show that the residual phase and carbonate phase are the important forms of elements in the sediments, and the typical clastic components Al, K, and Ti have a high proportion in the residual phase. The contents of elements in Fe-Mn oxide and organic bound phases are relatively low, but in the Fe-Mn oxide phase, the extraction rates and contents of metallic elements associated with hydrothermal activity in the cores are consistent with depth, and anomalously high values appear in four layers, indicating that the significant influence of hydrothermal activity on elemental compositions occurred in the corresponding period of the layer. The same trend can be seen in the total amount of rare earth elements. The chondrite-normalized rare earth element distribution patterns of the sediments show evidence of light rare earth element enrichment relative to heavy rare earth elements, with very small positive Ce anomalies and obvious negative Eu anomalies. The case is similar to the distribution pattern of the Fe-Mn oxide phase of the sediments in the South Atlantic Ocean, showing that it was less affected by hydrothermal activity, but affected by hydrothermal fluids, which is the result of rare earth elements absorption by Fe-Mn particles in seawater and hydrothermal fluids.
-
Key words:
- sediments /
- sequential extraction /
- element occurrence states /
- hydrothermal activity /
- Okinawa Trough
-
表 1 HOBAB4-S2岩芯碳同位素测年结果
Table 1. Results of carbon isotope dating for HOBAB4-S2 cores
深度/cm 材料 AMS 14C
年龄/aBP校正年龄/aBP 数据来源 中间年龄 年龄范围/2σ 74 浮游有
孔虫290±30 35 0~70 文献[58] 125 560±30 159 260~47 283 690±30 304 424~230 387 730±30 346 432~268 477 1090±30 624 682~541 -
[1] Sibuet J C, Letouzey J, Barbier F, et al. Back arc extension in the Okinawa trough [J]. Journal of Geophysical Research:Solid Earth, 1987, 92(B13): 14041-14063. doi: 10.1029/JB092iB13p14041
[2] Shinjo R, Kato Y. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin [J]. Lithos, 2000, 54(3-4): 117-137. doi: 10.1016/S0024-4937(00)00034-7
[3] Lee C S, Shor Jr G G, Bibee L D, et al. Okinawa Trough: origin of a back-arc basin [J]. Marine Geology, 1980, 35(1-3): 219-241. doi: 10.1016/0025-3227(80)90032-8
[4] Kimura M. Back-arc rifting in the Okinawa Trough [J]. Marine and Petroleum Geology, 1985, 2(3): 222-240. doi: 10.1016/0264-8172(85)90012-1
[5] Letouzey J, Kimura M. The Okinawa Trough: genesis of a back-arc basin developing along a continental margin [J]. Tectonophysics, 1986, 125(1-3): 209-230. doi: 10.1016/0040-1951(86)90015-6
[6] 翟世奎, 陈丽蓉, 王镇, 等. 冲绳海槽浮岩岩浆活动模式浅析[J]. 海洋地质与第四纪地质, 1997, 17(1):59-66 doi: 10.16562/j.cnki.0256-1492.1997.01.010
ZHAI Shikui, CHEN Lirong, WANG Zhen, et al. Primary analysis on pumice magmatism model of the Okinawa Trough [J]. Marine Geology & Quaternary Geology, 1997, 17(1): 59-66. doi: 10.16562/j.cnki.0256-1492.1997.01.010
[7] 黄朋, 李安春, 蒋恒毅. 冲绳海槽北、中段火山岩地球化学特征及其地质意义[J]. 岩石学报, 2006, 22(6):1703-1712 doi: 10.3321/j.issn:1000-0569.2006.06.027
HUANG Peng, LI Anchun, JIANG Hengyi. Geochemical features and their geological implications of volcanic rocks from the northern and middle Okinawa Trough [J]. Acta Petrologica Sinica, 2006, 22(6): 1703-1712. doi: 10.3321/j.issn:1000-0569.2006.06.027
[8] Zhang Y J, Zhai S K. Magma evolution processes in the southern Okinawa trough: insights from melt inclusions [J]. Journal of Ocean University of China, 2021, 20(6): 1383-1397. doi: 10.1007/s11802-021-4567-9
[9] Chung Y, Chang W C. Pb-210 fluxes and sedimentation rates on the lower continental slope between Taiwan and the South Okinawa Trough [J]. Continental Shelf Research, 1995, 15(2-3): 149-164. doi: 10.1016/0278-4343(94)E0023-F
[10] Diekmann B, Hofmann J, Henrich R, et al. Detrital sediment supply in the southern Okinawa Trough and its relation to sea-level and Kuroshio dynamics during the late Quaternary [J]. Marine Geology, 2008, 255(1-2): 83-95. doi: 10.1016/j.margeo.2008.08.001
[11] Kimura M, Furukawa M, Izawa E, et al. Report on DELP 1988 Cruises in the Okinawa Trough. Part 7. Geologic investigation of the central rift in the middle to southern Okinawa Trough [J]. Bulletin of the Earthquake Research Institute, University of Tokyo, 1991, 66(1): 179-209.
[12] Halbach P, Pracejus B, Maerten A. Geology and mineralogy of massive sulfide ores from the central Okinawa Trough, Japan [J]. Economic Geology, 1993, 88(8): 2210-2225. doi: 10.2113/gsecongeo.88.8.2210
[13] Rusakov V Y. Possible reasons for correlations between the concentrations of major and trace metals in metalliferous sediments [J]. Geochemistry International, 2010, 48(3): 305-314. doi: 10.1134/S0016702910030080
[14] Mills R A. Hydrothermal deposits and metalliferous sediments from TAG, 26°N Mid-Atlantic Ridge[M]//Parson L M, Walker C L, Dixon D R. Hydrothermal Vents and Processes. London: Geological Society, 1995: 121-132.
[15] Dekov V M, Cuadros J, Kamenov G D, et al. Metalliferous sediments from the H. M. S. Challenger voyage (1872-1876) [J]. Geochimica et Cosmochimica Acta, 2010, 74(17): 5019-5038. doi: 10.1016/j.gca.2010.06.001
[16] Dymond J, Corliss J B, Heath G R, et al. Origin of metalliferous sediments from the Pacific Ocean [J]. GSA Bulletin, 1973, 84(10): 3355-3372. doi: 10.1130/0016-7606(1973)84<3355:OOMSFT>2.0.CO;2
[17] Mills R, Elderfield H, Thomson J. A dual origin for the hydrothermal component in a metalliferous sediment core from the Mid‐Atlantic Ridge [J]. Journal of Geophysical Research:Solid Earth, 1993, 98(B6): 9671-9681. doi: 10.1029/92JB01414
[18] Gurvich E G. Metalliferous Sediments of the World Ocean: Fundamental Theory of Deep-Sea Hydrothermal Sedimentation[M]. Berlin: Springer, 2006.
[19] Halbach P, Hansmann W, Köppel V, et al. Whole-rock and sulfide lead-isotope data from the hydrothermal JADE field in the Okinawa back-arc trough [J]. Mineralium Deposita, 1997, 32(1): 70-78. doi: 10.1007/s001260050073
[20] Sakai H, Gamo T, Kim E S, et al. Unique chemistry of the hydrothermal solution in the mid‐Okinawa Trough Backarc Basin [J]. Geophysical Research Letters, 1990, 17(12): 2133-2136. doi: 10.1029/GL017i012p02133
[21] Glasby G P, Notsu K. Submarine hydrothermal mineralization in the Okinawa Trough, SW of Japan: an overview [J]. Ore Geology Reviews, 2003, 23(3-4): 299-339. doi: 10.1016/j.oregeorev.2003.07.001
[22] Hongo Y, Obata H, Gamo T, et al. Rare earth elements in the hydrothermal system at Okinawa Trough back-arc basin [J]. Geochemical Journal, 2007, 41(1): 1-15. doi: 10.2343/geochemj.41.1
[23] Ishibashi J I, Ikegami F, Tsuji T, et al. Hydrothermal activity in the Okinawa Trough back-arc basin: geological background and hydrothermal mineralization[M]//Ishibashi J I, Okino K, Sunamura M. Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept. Tokyo: Springer, 2015: 337-359.
[24] Gena K, Chiba H, Kase K, et al. The tiger sulfide chimney, Yonaguni knoll IV hydrothermal field, southern Okinawa trough, Japan: the first reported occurrence of Pt–Cu–Fe‐bearing bismuthinite and Sn‐bearing chalcopyrite in an active seafloor hydrothermal system [J]. Resource Geology, 2013, 63(4): 360-370. doi: 10.1111/rge.12015
[25] Suzuki R, Ishibashi J I, Nakaseama M, et al. Diverse range of mineralization induced by phase separation of hydrothermal fluid: case study of the Yonaguni Knoll IV hydrothermal field in the Okinawa Trough Back‐Arc Basin [J]. Resource Geology, 2008, 58(3): 267-288. doi: 10.1111/j.1751-3928.2008.00061.x
[26] Yeats C J, Hollis S P, Halfpenny A, et al. Actively forming Kuroko-type volcanic-hosted massive sulfide (VHMS) mineralization at Iheya North, Okinawa Trough, Japan [J]. Ore Geology Reviews, 2017, 84: 20-41. doi: 10.1016/j.oregeorev.2016.12.014
[27] Xu Z K, Li T G, Chang F M, et al. Clay-sized sediment provenance change in the northern Okinawa Trough since 22 kyr BP and its paleoenvironmental implication [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 399: 236-245. doi: 10.1016/j.palaeo.2014.01.016
[28] Yan Q S, Shi X F. Petrologic perspectives on tectonic evolution of a nascent basin (Okinawa Trough) behind Ryukyu Arc: a review [J]. Acta Oceanologica Sinica, 2014, 33(4): 1-12. doi: 10.1007/s13131-014-0400-2
[29] Yang B J, Liu J H, Shi X F, et al. Mineralogy and sulfur isotope characteristics of metalliferous sediments from the Tangyin hydrothermal field in the southern Okinawa Trough [J]. Ore Geology Reviews, 2020, 120: 103464. doi: 10.1016/j.oregeorev.2020.103464
[30] Zeng Z G, Ma Y, Chen S, et al. Sulfur and lead isotopic compositions of massive sulfides from deep-sea hydrothermal systems: implications for ore genesis and fluid circulation [J]. Ore Geology Reviews, 2017, 87: 155-171. doi: 10.1016/j.oregeorev.2016.10.014
[31] Zeng Z G, Ma Y, Wang X Y, et al. Elemental compositions of crab and snail shells from the Kueishantao hydrothermal field in the southwestern Okinawa Trough [J]. Journal of Marine Systems, 2018, 180: 90-101. doi: 10.1016/j.jmarsys.2016.08.012
[32] Zeng Z G, Chen S, Ma Y, et al. Chemical compositions of mussels and clams from the Tangyin and Yonaguni Knoll IV hydrothermal fields in the southwestern Okinawa Trough [J]. Ore Geology Reviews, 2017, 87: 172-191. doi: 10.1016/j.oregeorev.2016.09.015
[33] Zhang X, Zhai S K, Yu Z H, et al. Mineralogy and geological significance of hydrothermal deposits from the Okinawa Trough [J]. Journal of Marine Systems, 2018, 180: 124-131. doi: 10.1016/j.jmarsys.2016.11.007
[34] Bayon G, German C R, Boella R M, et al. An improved method for extracting marine sediment fractions and its application to Sr and Nd isotopic analysis [J]. Chemical Geology, 2002, 187(3-4): 179-199. doi: 10.1016/S0009-2541(01)00416-8
[35] Bayon G, German C R, Burton K W, et al. Sedimentary Fe–Mn oxyhydroxides as paleoceanographic archives and the role of aeolian flux in regulating oceanic dissolved REE [J]. Earth and Planetary Science Letters, 2004, 224(3-4): 477-492. doi: 10.1016/j.jpgl.2004.05.033
[36] Chester R, Hughes M J. A chemical technique for the separation of ferro-manganese minerals, carbonate minerals and adsorbed trace elements from pelagic sediments [J]. Chemical Geology, 1967, 2: 249-262. doi: 10.1016/0009-2541(67)90025-3
[37] Gutjahr M, Frank M, Stirling C H, et al. Reliable extraction of a deepwater trace metal isotope signal from Fe–Mn oxyhydroxide coatings of marine sediments [J]. Chemical Geology, 2007, 242(3-4): 351-370. doi: 10.1016/j.chemgeo.2007.03.021
[38] Shinjo R, Chung S L, Kato Y, et al. Geochemical and Sr‐Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: Implications for the evolution of a young, intracontinental back arc basin [J]. Journal of Geophysical Research:Solid Earth, 1999, 104(B5): 10591-10608. doi: 10.1029/1999JB900040
[39] Li N S. On tectonic problems of the Okinawa Trough [J]. Chinese Journal of Oceanology and Limnology, 2001, 19(3): 255-264. doi: 10.1007/BF02850663
[40] Zeng Z G, Yu S X, Wang X Y, et al. Geochemical and isotopic characteristics of volcanic rocks from the northern East China Sea shelf margin and the Okinawa Trough [J]. Acta Oceanologica Sinica, 2010, 29(4): 48-61. doi: 10.1007/s13131-010-0050-y
[41] Lai Z Q, Zhao G T, Han Z Z, et al. Back‐arc magma processes in the Okinawa Trough: new insights from textural and compositional variations of plagioclase in basalts [J]. Geological Journal, 2016, 51(S1): 346-356.
[42] Sibuet J C, Deffontaines B, Hsu S K, et al. Okinawa trough Backarc basin: Early tectonic and magmatic evolution [J]. Journal of Geophysical Research:Solid Earth, 1998, 103(B12): 30245-30267. doi: 10.1029/98JB01823
[43] Arai R, Kodaira S, Yuka K, et al. Crustal structure of the southern Okinawa Trough: symmetrical rifting, submarine volcano, and potential mantle accretion in the continental back‐arc basin [J]. Journal of Geophysical Research:Solid Earth, 2017, 122(1): 622-641. doi: 10.1002/2016JB013448
[44] Liu B, Li S Z, Suo Y H, et al. The geological nature and geodynamics of the Okinawa Trough, Western Pacific [J]. Geological Journal, 2016, 51(S1): 416-428.
[45] Takai K, Mottl M J, Nielsen S H, et al. Proceedings of the integrated ocean drilling program[C]. Washington, DC: Integrated Ocean Drilling Program Management International, Inc, 2011.
[46] 胡思谊. 冲绳海槽南部S3岩心沉积物的矿物学和地球化学研究[D]. 中国科学院大学(中国科学院海洋研究所)博士学位论文, 2020
HU Siyi. Mineralogical and geochemical study of sediment core S3 from the southern Okinawa Trough[D]. Doctor Dissertation of University of Chinese Academy of Sciences (The Institute of Oceanology, Chinese Academy of Sciences), 2020.
[47] 于增慧, 高玉花, 翟世奎, 等. 冲绳海槽中部沉积物中热液源组分的顺序淋滤萃取研究[J]. 中国科学:地球科学, 2012, 55(3):665-674
YU Zenghui, GAO Yuhua, ZHAI Shikui, et al. Resolving the hydrothermal signature by sequential leaching studies of sediments from the middle of the Okinawa Trough [J]. Science China Earth Sciences, 2012, 55(3): 665-674.
[48] 李康, 曾志刚, 殷学博, 等. 东太平洋海隆13°N和赤道附近表层沉积物中的元素赋存状态[J]. 海洋地质与第四纪地质, 2009, 29(3):53-60
LI Kang, ZENG Zhigang, YIN Xuebo, et al. Mode of element occurrence in surface sediments from East Pacific Rise near 13°N and the equator [J]. Marine Geology & Quaternary Geology, 2009, 29(3): 53-60.
[49] 蒋富清, 李安春. 冲绳海槽南部表层沉积物地球化学特征及其物源和环境指示意义[J]. 沉积学报, 2002, 20(4):680-686 doi: 10.3969/j.issn.1000-0550.2002.04.024
JIANG Fuqing, LI Anchun. Geochemical characteristics and their implications to provenance and environment of surface sediments from the South Okinawa trough [J]. Acta Sedimentologica Sinica, 2002, 20(4): 680-686. doi: 10.3969/j.issn.1000-0550.2002.04.024
[50] Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals [J]. Analytical Chemistry, 1979, 51(7): 844-851. doi: 10.1021/ac50043a017
[51] Boynton W V. Cosmochemistry of the rare earth elements: meteorite studies [J]. Developments in Geochemistry, 1984, 2: 63-114.
[52] 张颖, 杨宝菊, 李传顺, 等. 南大西洋热液沉积物的不同相态提取方法与元素赋存状态[J]. 海洋学报, 2021, 43(3):90-104
ZHANG Ying, YANG Baoju, LI Chuanshun, et al. Sequential extraction procedure and element occurrence states of hydrothermal sediments from the South Atlantic Ridge [J]. Haiyang Xuebao, 2021, 43(3): 90-104.
[53] Chung Y C, Hung G W. Particulate fluxes and transports on the slope between the southern East China Sea and the South Okinawa trough [J]. Continental Shelf Research, 2000, 20(4-5): 571-597. doi: 10.1016/S0278-4343(99)00086-2
[54] German C R, Higgs N C, Thomson J, et al. A geochemical study of metalliferous sediment from the TAG Hydrothermal Mound, 26°08′N, Mid‐Atlantic Ridge [J]. Journal of Geophysical Research:Solid Earth, 1993, 98(B6): 9683-9692. doi: 10.1029/92JB01705
[55] Dias Á S, Mills R A, Taylor R N, et al. Geochemistry of a sediment push-core from the Lucky Strike hydrothermal field, Mid-Atlantic Ridge [J]. Chemical Geology, 2008, 247(3-4): 339-351. doi: 10.1016/j.chemgeo.2007.10.015
[56] Barrett T J, Taylor P N, Lugoqski J. Metalliferous sediments from DSDP Leg 92: the East Pacific Rise transect [J]. Geochimica et Cosmochimica Acta, 1987, 51(9): 2241-2253. doi: 10.1016/0016-7037(87)90278-X
[57] Yang Y M, Zeng Z G, Yin X B, et al. Mineralogy, geochemistry, and sulfur isotope characteristics of sediment-hosted hydrothermal sulfide minerals from the southern Okinawa Trough [J]. Acta Oceanologica Sinica, 2021, 40(10): 129-143. doi: 10.1007/s13131-021-1836-9
[58] 杨娅敏. 冲绳海槽南部浊流沉积层中的硫化物特征研究[D]. 中国科学院大学(中国科学院海洋研究所)博士学位论文, 2021
YANG Yamin. Study on the characteristics of turbidite sediments hosted sulfides deposit from the southern Okinawa Trough[D]. Doctor Dissertation of University of Chinese Academy of Sciences (The Institute of Oceanology, Chinese Academy of Sciences), 2021.
[59] Fujiwara T, Toyoda S, Uchida A, et al. ESR dating of barite in sea-floor hydrothermal sulfide deposits in the Okinawa Trough[M]//Ishibashi J I, Okino K, Sunamura M. Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept. Tokyo: Springer, 2015: 369-386.
[60] Hsu S C, Lin F J, Jeng W L, et al. Observed sediment fluxes in the southwesternmost Okinawa Trough enhanced by episodic events: flood runoff from Taiwan rivers and large earthquakes [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2004, 51(7): 979-997. doi: 10.1016/j.dsr.2004.01.009
[61] Ishibashi J I, Okino K, Sunamura M, et al. Subseafloor Biosphere Linked to Hydrothermal Systems: TAIGA Concept[M]. Tokyo: Springer, 2015.
[62] Ruhlin D E, Owen R M. The rare earth element geochemistry of hydrothermal sediments from the East Pacific Rise: examination of a seawater scavenging mechanism [J]. Geochimica et Cosmochimica Acta, 1986, 50(3): 393-400. doi: 10.1016/0016-7037(86)90192-4
[63] Olivarez A M, Owen R M. REE/Fe variations in hydrothermal sediments: implications for the REE content of seawater [J]. Geochimica et Cosmochimica Acta, 1989, 53(3): 757-762. doi: 10.1016/0016-7037(89)90019-7