Characteristics of biomarkers and the geological significance in highly to over-mature Permian source rocks in the South Yellow Sea Basin
-
摘要:
南黄海盆地二叠系烃源岩的生烃层系多、热演化程度高、沉积环境变化大,前人极少从生物标志化合物的角度探讨烃源岩的差异。本文通过对CSDP-2井二叠系16个成熟-过成熟烃源岩样品进行有机地球化学分析,剖析了四套烃源岩的饱和烃、芳香烃馏分中生物标志化合物的组成、演化规律及地质意义。结果表明,二叠系不同层系烃源岩的甾烷系列、三芳甾烷系列、烷基二苯并噻吩系列化合物和β-胡萝卜烷的相对丰度具有显著差异,据此可将其分为栖霞组下段和龙潭组-大隆组泥岩、栖霞组上段和孤峰组硅质岩、孤峰组硅质泥岩3类烃源岩。研究显示,栖霞组下段和龙潭组-大隆组泥岩烃源岩沉积于淡水氧化或微咸水贫氧环境,有机质来源于浮游生物和陆生高等植物;栖霞组上段-孤峰组烃源岩沉积于还原咸水或静水硫化环境,其中硅质岩烃源岩的有机质来源于浮游生物和硅藻,硅质泥岩烃源岩的有机质来源于浮游生物、硅藻和陆生高等植物。此外,甲基菲指数、烷基二苯并噻吩参数(4-MDBT/DBT、MDBI、4,6-/1,4-DMDBT)可作为上二叠统烃源岩的成熟度指标,但不能作为中—下二叠统烃源岩的成熟度指标。
Abstract:The Permian source rocks in the South Yellow Sea Basin (SYSB) are characterized by multi-sets of hydrocarbon-generating strata, high thermal evolution degrees, and dramatic changes in sedimentary environment. However, at present, little is known about the biomarker differences of the source rocks. Through organic geochemical analysis with 16 mature to over-mature source rock samples in the four sets of Permian source rocks of the CSDP-2 well in the SYSB, the compositions, evolution law, and geological significance of biomarkers in the alkane and aromatic hydrocarbon fractions are clarified. Biomarker parameters show that the relative abundance of the compounds in sterane series, triarylsterane series, alkyl dibenzothiophene series, and the β-carotene varied greatly in different sets of source rocks in the Permian of SYBS. Three types of source rocks could be classified, namely, mudstones in the Lower Qixia Formation and the Longtan to Dalong Formation, chert in the Upper Qixia to Gufeng Formation, and siliceous mudstones in the Gufeng Formation. The research proved that mudstones in the Lower Qixia Formation, the Longtan Formation, and the Dalong Formation are deposited in oxic fresh or dysoxic brackish water conditions, in which the organic matter mainly derived from plankton and terrestrial higher planters. Source rocks in the Upper Qixia Formation and the Gufeng Formation are deposited in anoxic saline or euxinic sulfidic environment, in which the organic matter in chert is derived from plankton and diatom, whereas that in siliceous mudstones is derived from plankton, diatom, and terrestrial higher planters. Besides that, we proposed that the methylphenanthrene indexes and the alkyl dibenzothiophene parameters (4-MDBT/DBT, MDBI, 4,6 -/1,4-DMDBT) could be used as maturity scale for the Upper Permian source rock, but cannot be used for the Middle and Lower Permian source rocks.
-
图 1 南黄海盆地构造单元划分及CSDP-2井二叠系地层柱状图 [37]
Figure 1.
表 1 南黄海盆地CSDP-2井二叠系烃源岩的基本地球化学数据
Table 1. Bulk geochemical data of the Permian source rocks in Well CSDP-2, South Yellow Sea Basin
样品号 深度/m 层位 岩性 TOC
/%S1/(mg/g) S2
/(mg/g)Tmax/℃ HI/(mg/g) Ro/% 干酪根δ13C/‰ 干酪根类型指数TI 干酪根类型 DL-1 920.6 大隆组 泥岩 0.19 0.02 0.02 453 1 0.70 −23.60 9.2 III LT-2 1285.48 龙潭组 泥岩 1.21 / 0.23 482 23 1.47 −23.08 −30.8 III LT-3 1488.58 龙潭组 泥岩 1.39 0.05 0.34 480 33 1.61 −24.79 1.42 III LT-4 1507.48 龙潭组 泥岩 0.94 0.03 0.28 487 23 1.74 −23.24 32.4 III LT-5 1574.18 龙潭组 泥岩 1.48 0.07 0.32 484 24 1.47 −26.39 49.3 II2 LT-6 1607.08 龙潭组 泥岩 1.13 0.01 0.03 462 4 1.80 −25.57 −25.1 III LT-7 1628.3 龙潭组 碳质泥岩 6.58 0.12 0.70 546 31 2.02 −26.47 12.1 II2 GF-8 1636.3 孤峰组 硅质泥岩 12.2 0.16 1.02 514.7 10.2 2.1 −27.60 II1 GF-9 1637.0 孤峰组 硅质岩 14 0.10 2.08 529.7 16 −27.54 II1 GF-10 1637.8 孤峰组 硅质泥岩 11.2 0.17 2.28 553 32 2.10 −26.64 31.64 II2 GF-11 1638.9 孤峰组 硅质岩 11.4 0.15 1.80 535 17.6 −27.56 II1 GF-12 1641.2 孤峰组 硅质泥岩 9.08 0.19 1.97 529.6 24.4 −26.84 II2 GF-13 1643.7 孤峰组 硅质岩 − 0.01 0.08 434.1 40 1.41 −28.37 II1 GF-14 1645.7 孤峰组 硅质岩 16.3 0.20 1.83 533.8 12.9 −27.04 59 II2 QX-15 1668 栖霞组 钙硅质泥岩 1.38 0.12 0.32 491.2 36.8 1.53 QX-16 1673.48 栖霞组 泥岩 14.2 0.18 3.54 497 44 2.07 −25.97 54.7 III 表 2 南黄海盆地CSDP-2井二叠系烃源岩饱和烃组分的生物标志化合物参数
Table 2. The biomarker parameters of the saturated fractions in the Permian source rocks of Well CSDP-2, South Yellow Sea Basin
样品号 A B C D E F G H I J K L M N O P Q R S T U DL-1 0.39 1.46 0.88 nC22 1.06 1.15 0.68 0.15 0.64 0.97 0.41 0.51 0.55 0.49 1.19 0.73 0.41 0.27 0.57 0.24 0.05 LT-2 0.50 0.63 0.89 nC25 1.14 1.12 0.23 0.18 0.67 0.97 0.41 0.53 0.71 0.49 1.09 0.71 0.56 0.26 0.75 0.18 0.03 LT-3 0.18 0.48 0.53 nC21 1.03 1.01 0.63 0.26 0.59 1.11 0.45 0.45 0.24 0.49 1.04 0.80 0.27 0.22 0.39 0.28 0.09 LT-4 0.35 0.38 0.44 nC20 1.01 1.10 0.71 0.14 0.60 1.04 0.45 0.41 0.43 0.51 1.21 0.80 0.39 0.25 0.52 0.38 0.03 LT-5 0.26 0.50 0.59 nC23 1.11 1.17 0.32 0.19 0.59 1.03 0.41 0.52 0.31 0.47 0.95 0.69 0.28 0.23 0.50 0.31 0.02 LT-6 0.22 0.81 0.74 nC27 1.15 1.12 0.12 0.22 0.61 0.92 0.40 0.52 0.51 0.52 0.92 0.72 0.38 0.22 0.51 0.21 0.03 LT-7 0.23 0.37 0.57 nC19 1.09 1.18 0.53 0.22 0.56 1.00 0.41 0.52 0.24 0.55 0.83 0.62 0.22 0.22 0.44 0.31 0.05 GF-8 0.40 0.24 0.35 nC25 1.02 1.27 0.25 0.18 0.63 0.87 0.42 0.53 0.13 0.51 0.56 0.75 0.07 0.13 0.48 0.13 0.37 GF-9 0.52 0.24 0.39 nC18 1.02 1.21 0.59 0.18 0.76 0.71 0.42 0.52 0.32 0.51 0.52 0.92 0.09 0.13 0.96 0.08 0.55 GF-10 0.21 0.38 0.43 nC19 1.04 1.25 0.77 0.10 0.50 1.34 0.38 0.59 0.15 0.53 0.83 0.58 0.17 0.24 0.29 0.35 0.17 GF-11 0.40 0.17 0.28 nC18 1.03 1.30 0.78 0.16 0.76 0.65 0.42 0.50 0.31 0.49 0.54 0.96 0.09 0.13 1.00 0.09 0.50 GF-12 0.65 0.21 0.25 nC18 0.95 1.17 0.57 0.16 0.50 0.96 0.44 0.51 0.04 0.60 0.70 0.63 0.03 0.17 0.34 0.30 0.22 GF-13 0.53 0.44 0.72 nC25 1.04 1.12 0.55 0.22 0.82 0.52 0.43 0.52 0.49 0.44 0.53 1.01 0.09 0.02 1.63 0.04 1.62 GF-14 0.41 0.25 0.41 nC18 1.04 1.26 0.59 0.21 0.79 0.54 0.43 0.52 0.46 0.50 0.52 0.98 0.09 0.02 1.49 0.06 1.07 QX-15 0.40 0.40 0.43 nC29 1.02 1.41 0.37 0.18 0.73 0.71 0.41 0.50 0.40 0.52 0.61 0.98 0.13 0.03 1.01 0.07 0.47 QX-16 0.30 0.45 0.60 nC19 1.08 1.20 0.82 0.23 0.69 0.99 0.40 0.42 0.61 0.48 1.26 0.73 0.47 0.27 0.59 0.26 0.03 注:A: Pr/Ph,B: Pr/nC17,C: Ph/nC18,D: 主峰碳,E: OEP,F: CPI,G: nC21-/nC22+,H: 伽马蜡烷/αβC30藿烷,I: ETR=(C28TT+C29TT)/(C28TT+C29TT+Ts),J: Ts/Tm,K: C29ββ/(αα+ββ),L: C29αα20S/(20S+20R),M: C23TT/C30H,N: C24Tet/C26TT,O: C27/C29ST; P: C28/C29ST,Q: C21-22ST/C29ST,R: Dia.C27/C27ST,S: S/H,T: 4MS/C29ST,U: β-胡萝卜烷/nCmax。 表 3 南黄海盆地CSDP-2井二叠系烃源岩的生物标志化合物特征
Table 3. The biomarkers characteristics of the Permian source rocks in Well CSDP-2, South Yellow Sea Basin
层位 大隆组 龙潭组 孤峰组 栖霞组 硅质泥岩 硅质岩 上段 下段 ααC27-C29ST L形 L形 V形 反L形 反L形 L形 C27/C29ST >0.83 >0.83 0.6~0.83 <0.6 <0.6 >0.83 4MS/C29ST ≥0.1 ≥0.1 ≥0.1 <0.1 <0.1 ≥0.1 C21-22/C29ST ≥0.2 ≥0.2 <0.2 <0.2 <0.2 ≥0.2 Dia.C27/C27ST ≥0.22 ≥0.22 0.1~0.22 <0.1 <0.1 ≥0.22 C28/C29ST <0.8 <0.8 <0.8 >0.9 >0.9 <0.8 S/H <1 <1 <1 ≥1 ≥1 <1 β-胡萝卜烷/nCmax <0.1 <0.1 0.1~0.5 ≥0.5 ≥0.5 <0.1 DBT/P 0.13 0.03~0.46 0.11~1.2 0.48~0.84 0.06 0.03 DBTs/(DBTs+Fs) 0.33 0.09~0.76 0.63~0.90 0.86~0.94 0.43 0.2 三芳甾烷系列 缺失 缺失 微量 微量 微量 缺失 表 4 南黄海盆地CSDP-2井二叠系烃源岩芳香烃组分的相关参数
Table 4. Parameters of aromatic fractions of the Permian source rocks in Well CSDP-2, South Yellow Sea Basin
样品号 A B C D E F G H I J K L DL-1 0.52 0.28 0.53 0.72 0.56 0.33 0.83 1.43 0.33 0.35 0.13 0 LT-2 0.70 0.38 1.43 1.44 1.55 0.52 2.58 6.29 0.13 0.10 0.03 0 LT-3 0.70 0.38 1.26 1.54 1.38 0.42 1.52 3.99 0.15 0.12 0.04 0 LT-4 0.72 0.41 1.41 1.46 1.61 0.49 2.06 5.52 0.13 0.09 0.04 0 LT-5 0.70 0.39 1.25 1.55 1.41 0.41 1.24 5.21 0.09 0.12 0.03 0 LT-6 0.69 0.39 0.82 1.81 0.92 0.41 1.10 5.20 0.19 0.20 0.04 0 LT-7 0.70 0.38 1.14 1.62 1.23 0.48 2.04 6.79 0.76 0.14 0.46 0 GF-8 0.68 0.37 1.34 1.50 1.47 0.53 2.99 5.74 0.63 0.14 0.11 0.35% GF-9 0.66 0.36 1.08 1.65 1.18 0.50 2.52 5.24 0.91 0.21 0.59 0.03% GF-10 0.72 0.40 1.42 1.45 1.59 0.49 2.13 7.28 0.90 0.22 1.20 0 GF-11 0.69 0.38 1.33 1.50 1.48 0.50 2.63 6.31 0.93 0.17 0.70 0.03% GF-12 0.68 0.38 1.11 1.64 1.23 0.47 2.06 4.89 0.88 0.21 0.63 4.1% GF-13 0.67 0.37 0.98 1.71 1.09 0.50 2.36 5.58 0.86 0.27 0.48 0.4% GF-14 0.72 0.41 1.41 1.46 1.58 0.51 2.66 5.77 0.94 0.17 0.84 0.07% QX-15 0.72 0.41 1.47 1.42 1.68 0.48 2.28 5.14 0.43 0.13 0.06 0.14% QX-16 0.75 0.41 1.65 1.31 1.81 0.51 2.55 7.26 0.20 0.09 0.03 0 注:A: F1=(2-MP+3-MP)/(2-MP+3-MP+1-MP+9-MP), B: F2=2-MP/(2-MP+3-MP+1-MP+9-MP), C: MPI-1=1.5*(2-MP+3-MP)/(P+1-MP+9-MP), D: Rc=0.4+0.6*MPI-1或Rc=2.3-0.6*MPI-1, E: MPI-2=3*2-MP/(P+1-MP+9-MP), F: MDBI=4-MDBT/(DBT+4-MDBT+2-MDBT+3-MDBT+1-MDBT), G: MDR=4-MDBT/DBT, H: 4,6-/1,4-DMDBT, I: DBTs/(DBTs+Fs), J: DBFs/(DBFs+Fs), K: DBT/P, L: TARs/P。 -
[1] 左兆喜, 曹剑, 胡文瑄, 等. 高演化有机质的芳烃成熟度表征: 基于焦沥青反射率和拉曼参数的优选[J]. 中国科学:地球科学, 2022, 65(12):2335-2357 doi: 10.1007/s11430-022-9955-7
ZUO Zhaoxi, CAO Jian, HU Wenxuan, et al. Characterizing the maturity of highly evolved organic matter based on aromatic hydrocarbons and optimization with pyrobitumen reflectance and Raman spectral parameters [J]. Science China Earth Sciences, 2022, 65(12): 2335-2357. doi: 10.1007/s11430-022-9955-7
[2] 梁狄刚, 郭彤楼, 陈建平, 等. 中国南方海相生烃成藏研究的若干新进展(二): 南方四套区域性海相烃源岩的地球化学特征[J]. 海相油气地质, 2009, 14(1):1-15 doi: 10.3969/j.issn.1672-9854.2009.01.001
LIANG Digang, GUO Tonglou, CHEN Jianping, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, Southern China (Part 2): Geochemical Characteristics of Four Suits of Regional Marine Source Rocks, South China [J]. Marine Origin Petroleum Geology, 2009, 14(1): 1-15. doi: 10.3969/j.issn.1672-9854.2009.01.001
[3] 梁狄刚, 陈建平. 中国南方高、过成熟区海相油源对比问题[J]. 石油勘探与开发, 2005, 32(2):8-14 doi: 10.3321/j.issn:1000-0747.2005.02.002
LIANG Digang, CHEN Jianping. Oil-source correlat ions for high and over matured marine source rocks in South China [J]. Petroleum Exploration and Development, 2005, 32(2): 8-14. doi: 10.3321/j.issn:1000-0747.2005.02.002
[4] 包建平, 倪春华, 朱翠山, 等. 高演化地质样品中三芳甾类标志物及其地球化学意义[J]. 沉积学报, 2020, 38(04):898-911 doi: 10.14027/j.issn.1000-0550.2019.069
BAO Jianping, NI Chunhua, ZHU Cuishan, et al. Triaromatic Steroids and Their Geochemical Significance in Highly Mature Geological Samples in the North Guizhou Depression [J]. Acta Sedimentologica Sinica, 2020, 38(04): 898-911. doi: 10.14027/j.issn.1000-0550.2019.069
[5] Alexander R, Larcher A V, Kagi R I, et al. The use of plant derived biomarkers for correlation of oils with source rocks in the cooper/eromanga basin system, Australia [J]. The APPEA Journal, 1988, 28(1): 310-324. doi: 10.1071/AJ87024
[6] 朱扬明, 顾圣啸, 李颖, 等. 四川盆地龙潭组高热演化烃源岩有机质生源及沉积环境探讨[J]. 地球化学, 2012, 41(1):35-44 doi: 10.3969/j.issn.0379-1726.2012.01.004
ZHU Yangming, GU Shengxiao, LI Ying, et al. Biological organic source and depositional environment of over-mature source rocks of Longtan Formation in Sichuan basin [J]. Geochimica, 2012, 41(1): 35-44. doi: 10.3969/j.issn.0379-1726.2012.01.004
[7] 朱扬明, 张洪波, 傅家谟, 等. 塔里木不同成因原油芳烃组成和分布特征[J]. 石油学报, 1998, 19(3):33-37 doi: 10.3321/j.issn:0253-2697.1998.03.007
ZHU Yangming, ZHANG Hongbo, FU Jiamo, et al. Distribution and Composition of Aromatic Hydrocarbon in Various Oils From Tarim Basin [J]. Acta Petrolei Sinica, 1998, 19(3): 33-37. doi: 10.3321/j.issn:0253-2697.1998.03.007
[8] 宋长玉, 金洪蕊, 刘璇, 等. 烃源岩中甲基菲的分布及对成熟度参数的影响[J]. 石油实验地质, 2007, 29(02):183-187 doi: 10.3969/j.issn.1001-6112.2007.02.014
SONG Changyu, JIN Hongrui, LIU Xuan, et al. Distribution of Methyl Phenanthrene in Sediments and its impacting on maturity parameters [J]. Petroleum Geology & Experiment, 2007, 29(02): 183-187. doi: 10.3969/j.issn.1001-6112.2007.02.014
[9] 李颖, 朱扬明, 郝芳, 等. 四川盆地北部上三叠统须家河组高成熟煤系烃源岩芳烃热演化与应用[J]. 中国科学:地球科学, 2015, 58(11):1960-1969 doi: 10.1007/s11430-015-5084-8
LI Ying, ZHU Yangming, HAO Fang, et al. Thermal evolution and applications of aromatic hydrocarbons in highly mature coal-bearing source rocks of the Upper Triassic Xujiahe Formation in the northern Sichuan Basin [J]. Science China:Earth Sciences, 2015, 58(11): 1960-1969. doi: 10.1007/s11430-015-5084-8
[10] Alexander R, Kagi R I, Rowland S J, et al. The effects of thermal maturity on distributions of dimethylnaphthalenes and trimethylnaphthalenes in some ancient sediments and petroleums [J]. Geochimica et Cosmochimica Acta, 1985, 49(2): 385-395. doi: 10.1016/0016-7037(85)90031-6
[11] Radke M, Welte D H, Willsch H. Geochemical study on a well in the western Canada Basin: relation of the aromatic distribution pattern to maturity of organic matter [J]. Geochimica et Cosmochimica Acta, 1982, 46(1): 1-10. doi: 10.1016/0016-7037(82)90285-X
[12] 李美俊, 王铁冠. 原油中烷基萘的形成机理及其成熟度参数应用[J]. 石油实验地质, 2005, 27(6):606-611,623 doi: 10.3969/j.issn.1001-6112.2005.06.011
LI Meijun, WANG Tieguan. The generating mechanism of methylated naphthalene series in crude oils and the application of their maturity parameter [J]. Petroleum Geology & Experiment, 2005, 27(6): 606-611,623. doi: 10.3969/j.issn.1001-6112.2005.06.011
[13] 王保忠, 王传尚, 汪啸风, 等. 海相高过成熟页岩芳烃特征及页岩气意义[J]. 地球科学, 2019, 44(11):3705-3716
WANG Baozhong, WANG Chuanshang, WANG Xiaofeng, et al. Characteristics of Aromatic Compounds in High-over Matured Marine Shale and Its Significance to Shale Gas [J]. Earth Science, 2019, 44(11): 3705-3716.
[14] 王崇敬, 张鹤, 李世宇, 等. 基于分子标志物的有机质成熟度评价参数选择及其适用范围分析[J]. 地质科技情报, 2018, 37(4):202-211 doi: 10.19509/j.cnki.dzkq.2018.0427
WANG Chongjing, ZHANG He, LI Shiyu, et al. Maturity parameters selection and applicable range analysis of organic matter based on molecular markers [J]. Geological Science and Technology Information, 2018, 37(4): 202-211. doi: 10.19509/j.cnki.dzkq.2018.0427
[15] 陈治军, 张亚雄, 王永昌, 等. 多芳烃参数定量评价烃源岩成熟度的方法: 以银额盆地中生界烃源岩为例[J]. 石油实验地质, 2022, 44(1):139-149 doi: 10.11781/sysydz202201139
CHEN Zhijun, ZHANG Yaxiong, WANG Yongchang, et al. Quantitative assessment of source rock maturity with multiple aromatic parameters: a case study of Mesozoic source rocks in Yingen-Ejinaqi Basin [J]. Petroleum Geology & Experiment, 2022, 44(1): 139-149. doi: 10.11781/sysydz202201139
[16] 陈建文, 雷宝华, 梁杰, 等. 南黄海盆地油气资源调查新进展[J]. 海洋地质与第四纪地质, 2018, 38(3):1-23 doi: 10.16562/j.cnki.0256-1492.2018.03.001
CHEN Jianwen, LEI Baohua, LIANG Jie, et al. New progress of petroleum resources survey in South Yellow Sea basin [J]. Marine Geology & Quaternary Geology, 2018, 38(3): 1-23. doi: 10.16562/j.cnki.0256-1492.2018.03.001
[17] 杜叶龙, 李双应, 孔为伦, 等. 安徽泾县—南陵地区二叠纪沉积相与沉积环境分析[J]. 地层学杂志, 2010, 34(4):431-444 doi: 10.19839/j.cnki.dcxzz.2010.04.014
DU Yelong, LI Shuangying, KONG Weilun, et al. The Permian sedimentary facies and depositional environment analysis the Jingxian-Nanling region of Anhui [J]. Journal of Stratigraphy, 2010, 34(4): 431-444. doi: 10.19839/j.cnki.dcxzz.2010.04.014
[18] 丁江辉, 张金川, 石刚, 等. 皖南地区上二叠统大隆组页岩沉积环境与有机质富集机理[J]. 石油与天然气地质, 2021, 42(1):158-172 doi: 10.11743/ogg20210114
DING Jianghui, ZHANG Jinchuan, SHI Gang, et al. Sedimentary environment and organic matter enrichment mechanisms of the Upper Permian Dalong Formation shale, southern Anhui Province, China [J]. Oil & Gas Geology, 2021, 42(1): 158-172. doi: 10.11743/ogg20210114
[19] 丁江辉, 孙金声, 张金川, 等. 皖南地区大隆组页岩生物标志化合物特征及其地质意义[J]. 地球科学, 2023, 48(1):235-251
DING Jianghui, SUN Jinsheng, ZHANG Jinchuan, et al. Characteristics and geological significance of biomarker for the upper Permian Dalong Formation shale in southern Anhui Province [J]. Earth Science, 2023, 48(1): 235-251.
[20] 葛海霞, 张枝焕. 下扬子黄桥-句容地区二叠系-下三叠统油源分析[J]. 科学技术与工程, 2015, 15(26):140-151 doi: 10.3969/j.issn.1671-1815.2015.26.025
GE Haixia, ZHANG Zhihuan. Oil-source analysis of Permian-lower Triassic crude oils from Huangqiao and Jurong area in Lower Yangtze Region [J]. Science Technology and Engineering, 2015, 15(26): 140-151. doi: 10.3969/j.issn.1671-1815.2015.26.025
[21] 宋换新, 文志刚, 包建平. 巢湖地区二叠系栖霞组和三叠系南陵湖组石灰岩生物标志物特征与生烃潜力: 以平顶山和马家山剖面为例[J]. 海相油气地质, 2015, 20(2):21-28
SONG Huanxin, WEN Zhigang, BAO Jianping. Characteristics of biomarkers and hydrocarbon potential in lower Permian Qixia and lower Triassic Nanlinghu limestone: cases from Pingdingshan and Majiashan outcrops in Chaohu, Anhui [J]. Marine Origin Petroleum Geology, 2015, 20(2): 21-28.
[22] 江纳言, 贾蓉芬, 王子玉, 等. 下扬子区二叠纪古地理和地球化学环境[M]. 北京: 石油工业出版社, 1994: 1-214
JIANG Nayan, JIA Rongfen, WANG Ziyu, et al. Permian palaeogeography and geochemical environment in Lower Yangtze Region, China[M]. Beijing: Petroleum Industry Press, 1994: 1-214.
[23] 廖志伟. 下扬子地区二叠纪晚期沉积环境演化与烃源岩发育特征研究[D]. 南京大学博士学位论文, 2016
LIAO Zhiwei. A study of source rock features and sedimentary environmental evolution during the late Permian in Lower Yangtze Region, Southeastern China[D]. Doctor Dissertation of Nanjing University, 2016.
[24] Cai L X, Xiao G L, Guo X W, et al. Assessment of Mesozoic and Upper Paleozoic source rocks in the South Yellow Sea Basin based on the continuous borehole CSDP-2 [J]. Marine and Petroleum Geology, 2019, 101: 30-42. doi: 10.1016/j.marpetgeo.2018.11.028
[25] 蔡来星, 王蛟, 郭兴伟, 等. 南黄海中部隆起中—古生界沉积相及烃源岩特征: 以CSDP-2井为例[J]. 吉林大学学报: 地球科学版, 2017, 47(4):1030-1046
CAI Laixing, WANG Jiao, GUO Xingwei, et al. Characteristics of sedimentary facies and source rocks of Mesozoic-Paleozoic in Central Uplift of South Yellow Sea: A case study of CSDP-2 Coring Well [J]. Journal of Jilin University:Earth Science Edition, 2017, 47(4): 1030-1046.
[26] 蔡来星, 肖国林, 郭兴伟, 等. 南黄海盆地科学钻探CSDP-2井上古生界—中生界烃源岩评价及海相油气勘探前景[J]. 石油学报, 2018, 39(6):660-673
CAI Laixing, XIAO Guolin, GUO Xingwei, et al. Evaluation of Upper Paleozoic and Mesozoic source rocks in Well CSDP-2 and marine oil & gas exploration prospect in the South Yellow Sea Basin [J]. Acta Petrolei Sinica, 2018, 39(6): 660-673.
[27] 蔡来星, 郭兴伟, 徐朝晖, 等. 南黄海盆地中部隆起上古生界沉积环境探讨[J]. 沉积学报, 2018, 36(4):695-705
CAI Laixing, GUO Xingwei, XU Chaohui, et al. Depositional Environment of Upper Paleozoic in the Central Uplift of the South Yellow Sea Basin [J]. Acta Sedimentologica Sinica, 2018, 36(4): 695-705.
[28] 袁勇, 陈建文, 梁杰, 等. 应用多属性聚类分析方法研究南黄海盆地二叠系沉积特征[J]. 海洋地质前沿, 2016, 32(10):44-50
YUAN Yong, CHEN Jianwen, LIANG Jie, et al. Application of multiple attributes cluster analysis to Permian deposits in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(10): 44-50.
[29] 李文强. 南黄海盆地中部隆起晚二叠世—早三叠世沉积演化[D]. 中国石油大学(华东)硕士学位论文, 2019
LI Wenqiang. Sedimentary evolution of the Late Permian-Early Triassic in the central uplift of the South Yellow Sea Basin[D]. Master Dissertation of China University of Petroleum (East China), 2019.
[30] Cai L X, Zhang X H, Guo X W, et al. Effective hydrocarbon-bearing geological conditions of the Permian strata in the South Yellow Sea Basin, China: Evidence from borehole CSDP-2 [J]. Journal of Petroleum Science and Engineering, 2021, 196: 107815. doi: 10.1016/j.petrol.2020.107815
[31] Chen G, Chang X C, Guo X W, et al. Geochemical characteristics and organic matter enrichment mechanism of Permian black mudstone in the South Yellow Sea Basin, China [J]. Journal of Petroleum Science and Engineering, 2022, 208: 109248. doi: 10.1016/j.petrol.2021.109248
[32] 雷宝华, 张银国, 王明健, 等. 南黄海盆地崂山隆起构造特征与油气勘探方向[J]. 海洋地质与第四纪地质, 2022, 42(2):131-143
LEI Baohua, ZHANG Yinguo, WANG Mingjian, et al. Structural characteristics and hydrocarbon exploration prospect of the Laoshan uplift in the South Yellow Sea Basin [J]. Marine Geology & Quaternary Geology, 2022, 42(2): 131-143.
[33] 张训华, 杨金玉, 李刚, 等. 南黄海盆地基底及海相中、古生界地层分布特征[J]. 地球物理学报, 2014, 57(12):4041-4051
ZHANG Xunhua, YANG Jinyu, LI Gang, et al. Basement structure and distribution of Mesozoic-Paleozoic marine strata in the South Yellow Sea Basin [J]. Chinese Journal of Geophysics, 2014, 57(12): 4041-4051.
[34] 陈建文, 施剑, 刘俊, 等. 南黄海海相中—古生界地震地质条件[J]. 海洋地质前沿, 2016, 32(10):1-8
CHEN Jianwen, SHI Jian, LIU Jun, et al. Seismic Geological conditions of the Marine Meso-Paleozoic in the South Yellow Sea Basin [J]. Marine Geology Frontiers, 2016, 32(10): 1-8.
[35] 袁勇, 陈建文, 梁杰, 等. 南黄海崂山隆起二叠系砂岩储层特征及其油气勘探前景[J]. 海洋地质与第四纪地质, 2021, 41(5):181-193
YONG Yuan, JIANWEN Chen, JIE Liang, et al. Characteristics and hydrocarbon prospects of the Permian sandstone reservoirs of the Laoshan Uplift, South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2021, 41(5): 181-193.
[36] 谭思哲, 高顺莉, 葛和平, 等. 南黄海盆地二叠系烃源岩孢粉相特征及其形成环境[J]. 吉林大学学报:地球科学版, 2015, 45(3):691-700
TAN Sizhe, GAO Shunli, GE Heping, et al. Palynofacies Characteristics and formation environment of Permian source rock in South Yellow Sea Basin [J]. Journal of Jilin University:Earth Science Edition, 2015, 45(3): 691-700.
[37] Hu P P, Yang F L, Li S Z, et al. Opposite thrust systems under the Subei-South Yellow Sea Basin: A synthesis on the closure of the eastern Tethyan Ocean [J]. Earth-Science Reviews, 2022(231): 104075.
[38] 陈建平, 梁狄刚, 张水昌, 等. 中国古生界海相烃源岩生烃潜力评价标准与方法[J]. 地质学报, 2012, 86(7):1132-1142
CHEN Jianping, LIANG Digang, ZHANG Shuichang, et al. Evaluation criterion and methods of the hydrocarbon generation potential for China’s Paleozoic marine source rocks [J]. Acta Geologica Sinica, 2012, 86(7): 1132-1142.
[39] Peters K E, Walters C C, Moldowan J M. The Biomarker Guide. Volume 2. Biomarkers and Isotopes in petroleum exploration and earth history[M]. New York: Cambridge University Press, 2005.
[40] 包建平, 王铁冠, 王金渝. 下扬子地区海相中、古生界有机地球化学[M]. 重庆: 重庆大学出版社, 1996: 140
BAO Jianping, WANG Tieguan, WANG Jinyu. Marine Mesozoic-Paleozoic organic geochemistry in the Lower Yangtze region[M]. Chongqing: Chongqing University Press, 1996: 140.
[41] 李景贵. 高过成熟海相碳酸盐岩抽提物不寻常的正构烷烃分布及其成因[J]. 石油勘探与开发, 2002, 29(4):8-11
LI Jinggui. Unusual distribution and its origin of n-alkanes in extracts of marine carbonate rocks with high maturity and over maturity [J]. Petroleum Exploration and Development, 2002, 29(4): 8-11.
[42] 刘宝泉, 蔡冰, 方杰. 上元古界下马岭组页岩干酪根的油气生成模拟实验[J]. 石油实验地质, 1990, 12(2):147-161
LIU Baoquan, CAI Bin, FANG Jie. A simulation experiment of petroleum origin on Kerogen from shales of the Lower Xiamalin Formation in the Upper Proterozoic [J]. Experimental Petroleum Geology, 1990, 12(2): 147-161.
[43] 黄第藩, 赵孟军. 下古生界海相原油之中蜡的成因: 干酪根PY-GC分析提供的证据[J]. 沉积学报, 1996, 14(2):12-20
HUANG Difan, ZHAO Mengjun. The genesis of marine oils with middle wax from Lower Palaeozoic: evidences obtaining from Kerogen’s PY-GC Analysis [J]. Acta Sedimentologica Sinica, 1996, 14(2): 12-20.
[44] 陈世加, 王廷栋, 黄清德, 等. C29甾烷成熟度指标“倒转”及其地质意义[J]. 天然气地球科学, 1997, 8(1):28-30
CHEN Shijia, WANG Tingdong, HUANG Qingde, et al. C29 Sterane maturity index 'reversal' and its geological significance [J]. Natural Gas Geoscience, 1997, 8(1): 28-30.
[45] 郭小文, 何生, 石万忠. 珠江口盆地番禺低隆起轻质原油芳烃地球化学特征[J]. 石油学报, 2008, 29(1):52-57
GUO Xiaowen, HE Sheng, SHI Wanzhong. Aromatic geochemistry characteristics of light oils from Panyu Lower Uplift in Pearl River Mouth Basin [J]. Acta Petrolei Sinica, 2008, 29(1): 52-57.
[46] 刘亚洲, 刚文哲, 陈果, 等. 鄂尔多斯盆地盐池—定边地区长7段烃源岩芳烃地球化学特征[J]. 沉积学报, 2018, 36(4):818-828
LIU Yazhou, GANG Wenzhe, CHEN Guo, et al. Geochemical characteristics of aromatic hydrocarbons of Chang7 source rocks from the Yanchi-Dingbian area, Ordos Basin [J]. Acta Sedimentologica Sinica, 2018, 36(4): 818-828.
[47] 孟江辉, 张敏, 姚明君. 不同沉积环境原油的芳烃组成特征及其地质地球化学意义[J]. 石油天然气学报(江汉石油学院学报), 2008, 30(1):228-231
MENG Jianghui, ZHANG Min, YAO Mingjun. Features of aromatic composition in crude under different sedimentary environments and its geochemical meanings [J]. Journal of Oil and Gas Technology (J. JPI), 2008, 30(1): 228-231.
[48] Bennett B, Olsen S D. The influence of source depositional conditions on the hydrocarbon and nitrogen compounds in petroleum from central Montana, USA [J]. Organic Geochemistry, 2007, 38(6): 935-956. doi: 10.1016/j.orggeochem.2007.01.004
[49] 陈琰, 包建平, 刘昭茜, 等. 甲基菲指数及甲基菲比值与有机质热演化关系: 以柴达木盆地北缘地区为例[J]. 石油勘探与开发, 2010, 37(4):508-512
CHEN Yan, BAO Jianping, LIU Zhaoqian, et al. Relationship between methylphenanthrene index, methylphenanthrene ratio and organic thermal evolution: Take the northern margin of Qaidam Basin as an example [J]. Petroleum Exploration and Development, 2010, 37(4): 508-512.
[50] 陈治军, 张佳琪, 牛凌燕, 等. 芳烃参数在湖相烃源岩成熟度评价中的适用性: 以银根—额济纳旗盆地中生界烃源岩为例[J]. 石油学报, 2020, 41(8):928-939
CHEN Zhijun, ZHANG Jiaqi, NIU Lingyan, et al. Applicability of aromatic parameters in maturity evaluation of lacustrine source rocks: a case study of Mesozoic source rocks in Yingen-Ejinaqi Basin [J]. Acta Petrolei Sinica, 2020, 41(8): 928-939.
[51] 王辉. 辽河西部凹陷沙河街组泥岩中多环芳烃分布特征及其地球化学意义[J]. 西安石油大学学报(自然科学版), 2016, 31(6):39-47
WANG Hui. Distribution characteristic of polycyclic aromatic hydrocarbons in Shahejie Formation mudstone, the Western Sag, Liaohe Basin and its geochemical significance [J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2016, 31(6): 39-47.
[52] 魏志彬, 张大江, 张传禄, 等. 甲基二苯并噻吩分布指数(MDBI)作为烃源岩成熟度标尺的探讨[J]. 地球化学, 2001, 30(3):242-247
WEI Zhibin, ZHANG Dajiang, ZHANG Chuanlu, et al. Methydibenzothiophenes distribution index as a tool for maturity assessments of source rocks [J]. Geochimica, 2001, 30(3): 242-247.
[53] 吴小奇, 周小进, 陈迎宾, 等. 四川盆地川西坳陷上三叠统须家河组烃源岩分子地球化学特征[J]. 石油实验地质, 2022, 44(5):854-865
WU Xiaoqi, ZHOU Xiaojin, CHEN Yingbin, et al. Molecular characteristics of source rocks in Upper Triassic Xujiahe Formation, Western Sichuan Depression, Sichuan Basin [J]. Petroleum Geology & Experiment, 2022, 44(5): 854-865.
[54] 吴嘉, 齐雯, 罗情勇, 等. 二甲基二苯并噻吩生成实验及地球化学意义[J]. 石油实验地质, 2019, 41(2):260-267
WU Jia, QI Wen, LUO Qingyong, et al. Experiments on the generation of dimethyldibenzothiophene and its geochemical implications [J]. Petroleum Geology & Experiment, 2019, 41(2): 260-267.
[55] Hughes W B, Holba A G, Dzou L I P. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks [J]. Geochimica et Cosmochimica Acta, 1995, 59(17): 3581-3598. doi: 10.1016/0016-7037(95)00225-O
[56] Volkman J K. A review of sterol markers for marine and terrigenous organic matter [J]. Organic geochemistry, 1986, 9(2): 83-99. doi: 10.1016/0146-6380(86)90089-6
[57] Matsumoto G, Torii T, Hanya T. High abundance of algal 24-ethylcholesterol in Antarctic lake sediment [J]. Nature, 1982, 299(5878): 52-54. doi: 10.1038/299052a0
[58] Huang W Y, Meinschein W G. Sterols as ecological indicators [J]. Geochimica et Cosmochimica Acta, 1979, 43(5): 739-745. doi: 10.1016/0016-7037(79)90257-6
[59] Grantham P J, Wakefield L L. Variations in the sterane carbon number distributions of marine source rock derived crude oils through geological time [J]. Organic geochemistry, 1988, 12(1): 61-73. doi: 10.1016/0146-6380(88)90115-5
[60] Ye Z W, Jiang J G, Wu G H. Biosynthesis and regulation of carotenoids in Dunaliella: Progresses and prospects [J]. Biotechnology Advances, 2008, 26(4): 352-360. doi: 10.1016/j.biotechadv.2008.03.004
[61] 吴飘, 陈建文, 张银国, 等. 南黄海地区二叠系孤峰组硅质烃源岩的地球化学特征及上升流成因[J]. 海洋地质与第四纪地质, 2023, 43(1):1-21
WU Piao, CHEN Jianwen, ZHANG Yinguo, et al. Geochemical characteristics and upwelling origin of siliceous source rocks in the Permian Gufeng Formation of the South Yellow Sea area [J]. Marine Geology & Quaternary Geology, 2023, 43(1): 1-21.
[62] 张水昌, MOLDOWAN J. M. , LI M W, 等. 分子化石在寒武-前寒武纪地层中的异常分布及其生物学意义[J]. 中国科学(D辑), 2002, 45(3):193-200 doi: 10.1360/02yd9021
ZHANG Shuichang, MOLDOWAN J. M., LI Maowen, et al. The abnormal distribution of the molecular fossils in the pre-Cambrian and Cambrian: its biological significance [J]. Science in China Series D:Earth Sciences, 2002, 45(3): 193-200. doi: 10.1360/02yd9021
[63] 黄第藩, 张大江, 李晋超. 论4-甲基甾烷和孕甾烷的成因[J]. 石油勘探与开发, 1989(3):8-15
HUANG Difan, ZHANG Dajiang, LI Jinchao. On origin of 4-methyl steranes and pregnanes [J]. Petroleum Exploration and Development, 1989(3): 8-15.
[64] Moldowan J M, Seifert W K, Gallegos E J. Relationship between petroleum composition and depositional environment of petroleum source rocks [J]. AAPG Bulletin, 1985, 69(8): 1255-1268.
[65] Tissot B P, Welte D H. Petroleum Formation and Occurrence[M]. 2nd ed. Berlin: Springer, 1984.
[66] Volkman J K, Kearney P, Jeffrey S W. A new source of 4-methyl sterols and 5α(H)-stanols in sediments: prymnesiophyte microalgae of the genus Pavlova [J]. Organic Geochemistry, 1990, 15(5): 489-497. doi: 10.1016/0146-6380(90)90094-G
[67] Hakimi M H, Abdullah W H, Alqudah M, et al. Organic geochemical and petrographic characteristics of the oil shales in the Lajjun area, Central Jordan: Origin of organic matter input and preservation conditions [J]. Fuel, 2016, 181: 34-45. doi: 10.1016/j.fuel.2016.04.070
[68] 许婷, 侯读杰, 曹冰, 等. 东海盆地西湖凹陷轻质原油芳烃地球化学特征[J]. 沉积学报, 2017, 35(1):182-192
XU Ting, HOU Dujie, CAO Bing, et al. Characteristics of aromatic geochemistry in light oils from Xihu Sag in East China Sea Basin [J]. Acta Sedimentologica Sinica, 2017, 35(1): 182-192.
[69] Zhang M, Philp P. Geochemical characterization of aromatic hydrocarbons in crude oils from the Tarim, Qaidam and Turpan Basins, NW China [J]. Petroleum Science, 2010, 7(4): 448-457. doi: 10.1007/s12182-010-0097-6
[70] 李水福, 何生. 原油芳烃中三芴系列化合物的环境指示作用[J]. 地球化学, 2008, 37(1):45-50
LI Shuifu, HE Sheng. Geochemical characteristics of dibenzothiophene, dibenzofuran and fluorene and their homologues and their environmental indication [J]. Geochimica, 2008, 37(1): 45-50.