Precession forcing of the Holocene moisture transfer between tropical western Pacific and Indian Ocean
-
摘要:
大洋内部蒸发、水汽输送和降水过程构成了全球水文循环的主体,但长久以来对全新世大洋内部水文循环的演变历史和驱动机制缺乏认识。利用全球热带海区98个站位混合层浮游有孔虫壳体的δ18O和Mg/Ca温度记录,计算了全新世以来表层海水δ18O以及海水剩余δ18O的波动历史。发现最显著的特征是全新世以来热带西太平洋和东印度洋表层海水剩余δ18O具有不同的变化趋势。早—中全新世时期(11.5~6.0 kaBP),热带西太平洋表层海水剩余δ18O比东印度洋偏重约0.2‰,而晚全新世(2.0~0 kaBP),两个海区的重建值几乎相同。结合同位素数值模拟结果,发现岁差通过一系列机制控制了两个大洋不同的剩余δ18O变化信号。早全新世较低的岁差值可以驱动西太平洋往印度洋的大气水汽净输送并降低印度洋降水同位素,同时强盛的南亚季风通过河流体系向孟加拉湾倾注了大量陆地冲淡水。这些机制都有利于东印度洋海水剩余δ18O出现相对负偏移信号。但较低的岁差值导致开放的西太平洋净降水量下降,并通过大气传输损失淡水,因此海水剩余δ18O值较为偏重。本次研究结合大空间尺度上的δ18O重建记录和模拟结果,较为可靠地刻画了岁差调控下洋盆之间的水汽转移过程和机理。
Abstract:Precipitation, evaporation and moisture transport within the oceans are the main components of the global hydrological cycle. However, the evolution of the oceanic hydrological cycle over the Holocene remains a knowledge gap. In this study, through compiling paired planktonic foraminiferal δ18O and Mg/Ca sea surface temperature reconstructions from 98 locations in the tropical ocean, we calculate the fluctuation of sea surface δ18O and residual δ18O for the Holocene period. We notice a striking feature that the residual δ18O records of the tropical western Pacific and eastern Indian Ocean show a different change over the Holocene. The mean residual δ18O of the tropical western Pacific was about 0.2‰ heavier than that of the eastern Indian Ocean during the early-mid Holocene (11.5~6.0 kaBP), but they were almost identical over the late Holocene (2.0~0 kaBP). Combined with the transient climate simulations, we suggest that precession forcing is responsible for this different pattern through modulating a set of climate processes. The lower precession over the early Holocene drove a net atmospheric moisture transport from the western Pacific to the eastern Indian Ocean and lowered precipitation δ18O over the eastern Indian Ocean. Moreover, the strengthened South Asian monsoon delivered large amounts of diluted freshwater into the Bay of Bengal via river systems. All these three mechanisms contribute to a relatively negative excursion of residual δ18O in the eastern Indian Ocean. In contrast, the lower precession resulted in a decrease of net precipitation in the open western Pacific and a loss of freshwater via the atmospheric transport, thus generating heavier residual δ18O values. Through combining seawater δ18O reconstructions from a large spatial extent with the isotope-enabled simulations, this study has provided a reliable picture of the moisture transfer between different ocean basins and unveiled the underlying mechanisms regulated by precession.
-
-
表 1 本文收集的海洋沉积站位信息
Table 1. Information of the stations of marine sedimentation used in this study
站位名称 站位位置 水深/m 种属 参考文献 A7 27.82°N、126.98°E 1264 G. ruber [21] MD01-2404 26.65°N、125.81°E 1397 G. ruber [22-23] MD01-2390 6.6°N、113.4°E 1545 G. ruber [24-25] MD05-2896 8.83°N、111.44°E 1657 G. ruber [26] MD05-2894 7.04°N、111.55°E 1982 G. ruber [27] CG2 6.39°N、110.15°E 1239 G. ruber [28-29] MD05-2904 19.46°N、116.25°E 2066 G. ruber [30-31] S0204B 20.23°N、118.05°E 1533 G. ruber [32] MD97-2141 8.78°N、121.28°E 3633 G. ruber [33] MD98-2178 3.62°N、118.7°E 1984 G. ruber [34-35] MD98-2161 5.21°S、117.48°E 1185 G. ruber [34-35] MD06-3067 6.52°N、126.5°E 1575 G. ruber [36] MD01-2386 1.13°S、129.79°E 2816 G. ruber [37] GeoB17419-1/MD05-2920 2.81°S、144.5°E 1883 G. ruber [38-39] GeoB17426-3 2.19°S、150.86°E 1368 G. ruber [38-39] KX973-22-4 0°N、159.23°E 2362 G. ruber [40] KX973-21-2 1.42°S、157.98°E 1897 G. ruber [41-42] MD98-2176 5°S、133.44°E 2382 G. ruber [43-44] MD98-2181 6.3°N、125.8°E 2114 G. ruber [45-46] MD98-2188 14.82°N、123.49°E 730 G. ruber [47] 70GGC 3.57°S、119.38°E 482 G. ruber [48] 13GGC 7.4°S、115.2°E 594 G. ruber [48] SO217-18517 1.54°S、117.56°E 698 G. ruber [49] SO217-18515 3.63°S、119.36°E 688 G. ruber [50] SO217-18519 0.57°S、118.11°E 1658 G. ruber [51] SO217-18522 1.4°S、119.08°E 975 G. ruber [51] SO217-18526 3.61°S、118.17°E 1524 G. ruber [51] SO217-18540 6.87°S、119.58°E 1189 G. ruber [51] SO217-18460 8.79°S、128.64°E 1875 G. ruber [52] MD98-2170 10.59°S、125.39°E 832 G. ruber [45] TR163-22 0.5°N、92.4°W 2830 G. ruber [53] ODP1240 0.02°N、86.46°W 2921 G. ruber [54] ME0005A-43JC 7.85°N、83.6°W 1368 G. ruber [55] V21-30 1.2°S、89.7°W 617 G. sacculifer [56] ORI715-21 22.7°N、121.5°E 760 G. ruber [57] TGS-931 2.41°S、122.62°E 1912 G. ruber [51] ODP1242 7.85°N、83.6°W 1364 G. ruber [55] ODP806b 0.32°N、159.36°E 2520 G. ruber [58] ODP1145 19.58°N、117.63°E 3175 G. ruber [59] GHE27L 19.85°N、115.34°E 1533 G. ruber [60] GeoB16602 18.95°N、113.71°E 953 G. ruber [61-62] 191PC 19.05°N、116.22°E 2510 G. ruber [63] MD05-2905 21.36°N、117.36°E 1647 G. ruber [64] M77/2-056-5 3.75°S、81.12°W 355 G. ruber [65] MD05-2925 9.34°S、151.46°E 1661 G. ruber [66] SO18480-3 12.06°S、121.65°E 2299 G. ruber [13] MD98-2162 4.69°S、117.9°E 1855 G. ruber [13] SO189-119KL 3.52°N、96.32°E 808 G. ruber [67] SO189-39KL 0.78°S、99.9°E 517 G. ruber [67] GeoB10029-4 1.49°S、100.13°E 964 G. ruber [68] GeoB10042-1 7.11°S、104.64°E 2454 G. ruber [69] GeoB10043-3 7.31°S、105.06°E 2171 G. ruber [69] MD98-2165 9.65°S、118.35°E 2100 G. ruber [70] GeoB10069-3 9.6°S、120.9°E 1250 G. ruber [71] MD01-2378 13.1°S、121.8°E 1783 G. ruber [72] SO139-74KL 6.54°S、130.83°E 1690 G. ruber [73-74] SK237-GC04 12.75°N、75°E 1245 G. ruber [75] SK237-GC09 12.01°N、70.87°E 3001 G. ruber [76] SK281/1 14.04°N、82°E 3307 G. ruber [77] P178-15P 11.96°N、44.3°E 869 G. ruber [78] NGHP-01-17 10.75°N、93.11°E 1356 G. sacculifer [79] ABP32GC01R 15.49°N、72.73°E 639 G. sacculifer [80] SK168/GC-1 11.71°N、94.49°E 2064 G. sacculifer [81] GeoB12610-2 4.82°S、39.42°E 399 G. ruber [82] GeoB12605-3 5.57°S、39.11°E 195 G. ruber [83] GeoB12615-4 7.14°S、39.84°E 446 G. ruber [84] GeoB16160-3 18.24°S、37.87°E 1339 G. ruber [85] AAS9_21 14.51°N、72.65°E 1807 G. ruber [86] WIND-28K 10.15°S、51.01°E 4157 G. ruber [87] GeoB9307-3/GeoB9310-4 18.57°S、37.38°E 542 G. ruber [88] U1446 19.08°N、85.74°E 1430 G. ruber [89] SO257-1-5 15.06°S、120.31°E 1608 G. ruber [90] SO257-5-9 22.11°S、113.49°E 1052 G. ruber [90] TR163-19 2.26°N、90.95°E 2348 G. ruber [58] ADM-C1 7.44°N、97°E 850 G. ruber [91] BoB-24 15.57°N、87.16°E 2769 G. ruber [92] MD02-2575 29°N、87.12°W 847 G. ruber [93] KNR166-2-26JPC 24.33°N、83.25°W 546 G. ruber [94] KNR159-JPC26 26.37°N、92.03°W 1995 G. ruber [95] EN32-PC6 26.95°N、91.35°W 2280 G. ruber [96] GeoB9526-5 12.44°N、18.06°W 3231 G. ruber [97-98] MD03-2707 2.5°N、9.39°E 1295 G. ruber [10] GeoB4905 2.5°N、9.39°E 1328 G. ruber [99] RC24-08 1.02°S、11.9°W 3882 G. ruber [100] SO164-03-4 16.54°N、72.21°W 2744.7 G. ruber [101] PL07-39PC 10.7°N、64.94°W 790 G. ruber [102-103] GeoB3129-3911 4.61°S、36.64°W 830 G. ruber [104] GL1090 24.92°S、42.51°W 2225 G. ruber [105] CF10-01B 23.6°S、41.6°W 130 G. ruber white [106] M78/1-235-1 11.61°N、60.96°W 852.2 G. ruber [107] VM12-107 11.33°N、66.63°W 1079 G. ruber [108] KNR166-2JPC51 24.41°N、83.22°W 198 G. ruber white [108] RC24-11 2.18°S、11.25°W 3445 G. ruber white [100] VM25-59 1.37°N、33.48°W 3824 G. ruber white [100] VM30-40 0.2°S、23.15°W 3706 G. ruber white [100] FAN17 4.81°N、4.45°E 1178 G. ruber [109] GeoB10038-4 5.94°S、5.25°E 1819 G. ruber [68] 表 2 全球热带大洋δ18Osw主成分分析结果
Table 2. Principal component analysis on δ18Osw of the global tropical ocean
成分 特征值 方差贡献率/% 方差累计贡献率/% 1 2.7472 54.41 54.41 2 0.4604 8.93 63.34 3 0.3128 6.52 69.87 -
[1] Trenberth K E, Fasullo J T, Mackaro J. Atmospheric moisture transports from ocean to land and global energy flows in reanalyses [J]. Journal of Climate, 2011, 24(18): 4907-4924. doi: 10.1175/2011JCLI4171.1
[2] Gimeno L, Stohl A, Trigo R M, et al. Oceanic and terrestrial sources of continental precipitation [J]. Reviews of Geophysics, 2012, 50(4): RG4003.
[3] Shakun J D, Lea D W, Lisiecki L E, et al. An 800-kyr record of global surface ocean δ18 O and implications for ice volume-temperature coupling [J]. Earth and Planetary Science Letters, 2015, 426: 58-68. doi: 10.1016/j.jpgl.2015.05.042
[4] Coplen T B, Herczeg A L, Barnes C. Isotope engineering—using stable isotopes of the water molecule to solve practical problems [J]. Environmental tracers in subsurface hydrology, 2000: 79-110.
[5] Shackleton N J. Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial[C]//Proceedings of the Colloques Internationaux du C. N. R. S. 1974.
[6] Zhang P, Xu J, Holbourn A, et al. Obliquity induced latitudinal migration of the Intertropical Convergence Zone during the past~ 410 kyr [J]. Geophysical Research Letters, 2022, 49(21): e2022GL100039.
[7] 黄恩清, 赵蔓, 王跃, 等. 第四纪热带西太平洋表层海水氧同位素的岁差周期[J]. 第四纪研究, 2020, 40(6):1464-1473
HUANG Enqing, ZHAO Man, WANG Yue, et al. Quaternary precession cycles of sea-surface oxygen isotope records from the tropical western Pacific [J]. Quaternary Sciences, 2020, 40(6): 1464-1473.
[8] Zhang P, Xu J, Beil S, et al. Variability in Indonesian throughflow upper hydrology in response to precession‐induced tropical climate processes over the past 120 kyr [J]. Journal of Geophysical Research: Oceans, 2021, 126(8): e2020JC017014.
[9] Weldeab S. Bipolar modulation of millennial-scale West African monsoon variability during the last glacial (75, 000–25, 000 years ago) [J]. Quaternary Science Reviews, 2012, 40: 21-29. doi: 10.1016/j.quascirev.2012.02.014
[10] Weldeab S, Lea D W, Schneider R R, et al. 155, 000 years of West African monsoon and ocean thermal evolution [J]. Science, 2007, 316(5829): 1303-1307. doi: 10.1126/science.1140461
[11] Clemens S C, Holbourn A, Kubota Y, et al. Precession-band variance missing from East Asian monsoon runoff [J]. Nature Communications, 2018, 9(1): 3364. doi: 10.1038/s41467-018-05814-0
[12] Huang E Q, Wang P X, Wang Y, et al. Dole effect as a measurement of the low-latitude hydrological cycle over the past 800 ka [J]. Science Advances, 2020, 6(41): eaba4823. doi: 10.1126/sciadv.aba4823
[13] Jian Z M, Wang Y, Dang H W, et al. Warm pool ocean heat content regulates ocean–continent moisture transport [J]. Nature, 2022, 612(7938): 92-99. doi: 10.1038/s41586-022-05302-y
[14] Cheng H, Li H Y, Sha L J, et al. Milankovitch theory and monsoon [J]. The Innovation, 2022, 3(6): 100338. doi: 10.1016/j.xinn.2022.100338
[15] Schmidt G A, LeGrande A N, Hoffmann G. Water isotope expressions of intrinsic and forced variability in a coupled ocean‐atmosphere model [J]. Journal of Geophysical Research:Atmospheres, 2007, 112(D10): D10103.
[16] 石正国, 雷婧, 周朋, 等. 轨道尺度亚洲气候演化机理的数值模拟: 历史与展望[J]. 第四纪研究, 2020, 40(1):8-17
SHI Zhengguo, LEI Jing, ZHOU Peng, et al. Numerical simulation researches on orbital-scale Asian climate dynamics: history and perspective [J]. Quaternary Sciences, 2020, 40(1): 8-17.
[17] Leduc G, Schneider R, Kim J H, et al. Holocene and Eemian sea surface temperature trends as revealed by alkenone and Mg/Ca paleothermometry [J]. Quaternary Science Reviews, 2010, 29(7-8): 989-1004. doi: 10.1016/j.quascirev.2010.01.004
[18] Huang E Q, Tian J, Steinke S. Millennial-scale dynamics of the winter cold tongue in the southern South China Sea over the past 26 ka and the East Asian winter monsoon [J]. Quaternary Research, 2011, 75(1): 196-204. doi: 10.1016/j.yqres.2010.08.014
[19] Tierney J E, Tingley M P. A TEX86 surface sediment database and extended Bayesian calibration [J]. Scientific Data, 2015, 2: 150029. doi: 10.1038/sdata.2015.29
[20] Heaton T J, Bard E, Bronk Ramsey C, et al. Radiocarbon: a key tracer for studying Earth’s dynamo, climate system, carbon cycle, and Sun [J]. Science, 2021, 374(6568): eabd7096. doi: 10.1126/science.abd7096
[21] Sun Y B, Oppo D W, Xiang R, et al. Last deglaciation in the Okinawa Trough: subtropical northwest Pacific link to Northern Hemisphere and tropical climate [J]. Paleoceanography, 2005, 20(4): PA4005.
[22] Chang Y P, Chen M T, Yokoyama Y, et al. Monsoon hydrography and productivity changes in the East China Sea during the past 100, 000 years: okinawa Trough evidence (MD012404) [J]. Paleoceanography, 2009, 24(3): PA3208.
[23] Chen M T, Lin X P, Chang Y P, et al. Dynamic millennial‐scale climate changes in the northwestern Pacific over the past 40, 000 years [J]. Geophysical Research Letters, 2010, 37(23): L23603.
[24] Steinke S, Kienast M, Groeneveld J, et al. Proxy dependence of the temporal pattern of deglacial warming in the tropical South China Sea: toward resolving seasonality [J]. Quaternary Science Reviews, 2008, 27(7-8): 688-700. doi: 10.1016/j.quascirev.2007.12.003
[25] Steinke S, Mohtadi M, Groeneveld J, et al. Reconstructing the southern South China Sea upper water column structure since the Last Glacial Maximum: implications for the East Asian winter monsoon development [J]. Paleoceanography, 2010, 25(2): PA2219.
[26] Tian J, Huang E Q, Pak D K. East Asian winter monsoon variability over the last glacial cycle: insights from a latitudinal sea-surface temperature gradient across the South China Sea [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 292(1-2): 319-324. doi: 10.1016/j.palaeo.2010.04.005
[27] An Y, Jian Z M. Pulleniatina Minimum Event during the last deglaciation in the southern South China Sea [J]. Chinese Science Bulletin, 2009, 54(23): 4514-4519.
[28] 郝鹏, 李铁刚, 常凤鸣, 等. 末次盛冰期以来南海西南海区对快速气候变化的响应特征[J]. 海洋地质与第四纪地质, 2014, 34(4):83-91
HAO Peng, LI Tiegang, CHANG Fengming, et al. Response of the southwestern South China Sea to the rapid climate changes since the last glacial maximum [J]. Marine Geology & Quaternary Geology, 2014, 34(4): 83-91.
[29] Huang J, Wan S M, Li A C, et al. Two-phase structure of tropical hydroclimate during Heinrich Stadial 1 and its global implications [J]. Quaternary Science Reviews, 2019, 222: 105900. doi: 10.1016/j.quascirev.2019.105900
[30] 葛黄敏, 李前裕, 成鑫荣, 等. 南海北部晚第四纪高分辨率浮游氧同位素地层学及其古气候信息[J]. 地球科学-中国地质大学学报, 2010, 35(4):515-525 doi: 10.3799/dqkx.2010.067
GE Huangmin, LI Qianyu, CHENG Xinrong, et al. Late Quaternary high resolution monsoon records in planktonic stable isotopes from northern South China Sea [J]. Earth Science-Journal of China University of Geosciences, 2010, 35(4): 515-525. doi: 10.3799/dqkx.2010.067
[31] Wang P X, Li Q Y, Tian J, et al. Monsoon influence on planktic δ18O records from the South China Sea [J]. Quaternary Science Reviews, 2016, 142: 26-39. doi: 10.1016/j.quascirev.2016.04.009
[32] Yang Y P, Xiang R, Zhang L L, et al. Is the upward release of intermediate ocean heat content a possible engine for low-latitude processes? [J]. Geology, 2020, 48(6): 579-583. doi: 10.1130/G47271.1
[33] Rosenthal Y, Oppo D W, Linsley B K. The amplitude and phasing of climate change during the last deglaciation in the Sulu Sea, western equatorial Pacific [J]. Geophysical Research Letters, 2003, 30(8): 1428.
[34] Fan W J, Jian Z M, Bassinot F, et al. Holocene centennial-scale changes of the Indonesian and South China Sea throughflows: evidences from the Makassar Strait [J]. Global and Planetary Change, 2013, 111: 111-117. doi: 10.1016/j.gloplacha.2013.08.017
[35] Fan W J, Jian Z M, Chu Z H, et al. Variability of the Indonesian throughflow in the Makassar Strait over the last 30 ka [J]. Scientific Reports, 2018, 8(1): 5678. doi: 10.1038/s41598-018-24055-1
[36] Bolliet T, Holbourn A, Kuhnt W, et al. Mindanao Dome variability over the last 160 kyr: episodic glacial cooling of the West Pacific Warm Pool [J]. Paleoceanography, 2011, 26(1): PA1208.
[37] Jian Z M, Wang Y, Dang H W, et al. Half-precessional cycle of thermocline temperature in the western equatorial Pacific and its bihemispheric dynamics [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(13): 7044-7051. doi: 10.1073/pnas.1915510117
[38] Hollstein M, Mohtadi M, Rosenthal Y, et al. Variations in Western Pacific Warm Pool surface and thermocline conditions over the past 110, 000 years: forcing mechanisms and implications for the glacial Walker circulation [J]. Quaternary Science Reviews, 2018, 201: 429-445. doi: 10.1016/j.quascirev.2018.10.030
[39] Tachikawa K, Timmermann A, Vidal L, et al. CO2 radiative forcing and Intertropical Convergence Zone influences on western Pacific warm pool climate over the past 400 ka [J]. Quaternary Science Reviews, 2014, 86: 24-34. doi: 10.1016/j.quascirev.2013.12.018
[40] Hollstein M, Mohtadi M, Kienast M, et al. The impact of astronomical forcing on surface and thermocline variability within the Western Pacific Warm Pool over the past 160 kyr [J]. Paleoceanography and Paleoclimatology, 2020, 35(6): e2019PA003832.
[41] Zhang S, Li T G, Chang F M, et al. Correspondence between the ENSO-like state and glacial-interglacial condition during the past 360 kyr [J]. Chinese Journal of Oceanology and Limnology, 2017, 35(5): 1018-1031. doi: 10.1007/s00343-017-6082-9
[42] Zhang S, Yu Z F, Wang Y, et al. Thermal coupling of the Indo-Pacific warm pool and Southern Ocean over the past 30, 000 years [J]. Nature Communications, 2022, 13(1): 5457. doi: 10.1038/s41467-022-33206-y
[43] Dang H W, Jian Z M, Wang Y, et al. Pacific warm pool subsurface heat sequestration modulated Walker circulation and ENSO activity during the Holocene [J]. Science Advances, 2020, 6(42): eabc0402. doi: 10.1126/sciadv.abc0402
[44] Dang H W, Wu J W, Xiong Z F, et al. Orbital and sea-level changes regulate the iron-associated sediment supplies from Papua New Guinea to the equatorial Pacific [J]. Quaternary Science Reviews, 2020, 239: 106361. doi: 10.1016/j.quascirev.2020.106361
[45] Stott L D. Comment on “Anomalous radiocarbon ages for foraminifera shells” by W. Broecker et al. : a correction to the western tropical Pacific MD9821-81 record [J]. Paleoceanography, 2007, 22(1): PA1211.
[46] Saikku R, Stott L, Thunell R. A bi-polar signal recorded in the western tropical Pacific: northern and Southern Hemisphere climate records from the Pacific warm pool during the last Ice Age [J]. Quaternary Science Reviews, 2009, 28(23-24): 2374-2385. doi: 10.1016/j.quascirev.2009.05.007
[47] Dang H W, Jian Z M, Bassinot F, et al. Decoupled Holocene variability in surface and thermocline water temperatures of the Indo‐Pacific Warm Pool [J]. Geophysical Research Letters, 2012, 39(1): L01701.
[48] Linsley B K, Rosenthal Y, Oppo D W. Holocene evolution of the Indonesian throughflow and the western Pacific warm pool [J]. Nature Geoscience, 2010, 3(8): 578-583. doi: 10.1038/ngeo920
[49] Hendrizan M, Kuhnt W, Holbourn A. Variability of indonesian throughflow and borneo runoff during the last 14 kyr [J]. Paleoceanography, 2017, 32(10): 1054-1069. doi: 10.1002/2016PA003030
[50] Schröder J F, Holbourn A, Kuhnt W, et al. Variations in sea surface hydrology in the southern Makassar Strait over the past 26 kyr [J]. Quaternary Science Reviews, 2016, 154: 143-156. doi: 10.1016/j.quascirev.2016.10.018
[51] Schröder J F, Kuhnt W, Holbourn A, et al. Deglacial warming and hydroclimate variability in the central Indonesian Archipelago [J]. Paleoceanography and Paleoclimatology, 2018, 33(9): 974-993. doi: 10.1029/2018PA003323
[52] 张鹏, 徐建, 杨策, 等. 末次冰期以来印尼穿越流出口处古海洋学记录及其意义[J]. 海洋地质与第四纪地质, 2017, 37(3):129-137 doi: 10.16562/j.cnki.0256-1492.2017.03.013
ZHANG Peng, XU Jian, YANG Ce, et al. Paleoceanographic records of Indonesian throughflow at its exit since the last glacial and their significance [J]. Marine Geology & Quaternary Geology, 2017, 37(3): 129-137. doi: 10.16562/j.cnki.0256-1492.2017.03.013
[53] Lea D W, Pak D K, Belanger C L, et al. Paleoclimate history of Galápagos surface waters over the last 135, 000 yr [J]. Quaternary Science Reviews, 2006, 25(11-12): 1152-1167. doi: 10.1016/j.quascirev.2005.11.010
[54] Pena L D, Cacho I, Ferretti P, et al. El Niño–Southern Oscillation–like variability during glacial terminations and interlatitudinal teleconnections [J]. Paleoceanography, 2008, 23(3): PA3101.
[55] Benway H M, Mix A C, Haley B A, et al. Eastern Pacific Warm Pool paleosalinity and climate variability: 0–30 kyr [J]. Paleoceanography, 2006, 21(3): PA3008.
[56] Koutavas A, Lynch-Stieglitz J, Marchitto Jr T M, et al. El Niño-like pattern in ice age tropical Pacific sea surface temperature [J]. Science, 2002, 297(5579): 226-230. doi: 10.1126/science.1072376
[57] Lo L, Lai Y H, Wei K Y, et al. Persistent sea surface temperature and declined sea surface salinity in the northwestern tropical Pacific over the past 7500 years [J]. Journal of Asian Earth Sciences, 2013, 66: 234-239. doi: 10.1016/j.jseaes.2013.01.014
[58] Lea D W, Pak D K, Spero H J. Climate impact of late quaternary equatorial pacific sea surface temperature variations [J]. Science, 2000, 289(5485): 1719-1724. doi: 10.1126/science.289.5485.1719
[59] Oppo D W, Sun Y B. Amplitude and timing of sea-surface temperature change in the northern South China Sea: dynamic link to the East Asian monsoon [J]. Geology, 2005, 33(10): 785-788. doi: 10.1130/G21867.1
[60] Yang Y P, Xiang R, Liu J G, et al. Inconsistent sea surface temperature and salinity changing trend in the northern South China Sea since 7.0 ka BP [J]. Journal of Asian Earth Sciences, 2019, 171: 178-186. doi: 10.1016/j.jseaes.2018.05.033
[61] Cheng Z J, Weng C Y, Steinke S, et al. Anthropogenic modification of vegetated landscapes in southern China from 6, 000 years ago [J]. Nature Geoscience, 2018, 11(12): 939-943. doi: 10.1038/s41561-018-0250-1
[62] Huang E Q, Chen Y R, Schefuß E, et al. Precession and glacial-cycle controls of monsoon precipitation isotope changes over East Asia during the Pleistocene [J]. Earth and Planetary Science Letters, 2018, 494: 1-11. doi: 10.1016/j.jpgl.2018.04.046
[63] 范维佳, 陈荣华. 南海北部5万年来的表层海水盐度及东亚季风降水[J]. 第四纪研究, 2011, 31(2):227-235
FAN Weijia, CHEN Ronghua. Sea surface salinity and East Asian monsoon precipitation since the last 50000 years in the northern South China Sea [J]. Quaternary Sciences, 2011, 31(2): 227-235.
[64] 杨文光, 郑洪波, 王可, 等. 南海东北部MD05-2905站36ka BP以来的陆源碎屑沉积特征与东亚季风的演化[J]. 地球科学进展, 2007, 22(10):1012-1018
YANG W G, ZHENG H B, WANG K, et al. Sedimentary characteristic of terrigenous clast of site MD05-2905 in the northeastern part of South China Sea after 36ka and evolution of East Asian monsoon [J]. Advances in Earth Science, 2007, 22(10): 1012-1018.
[65] Nürnberg D, Böschen T, Doering K, et al. Sea surface and subsurface circulation dynamics off equatorial Peru during the last ~ 17 kyr [J]. Paleoceanography, 2015, 30(7): 984-999. doi: 10.1002/2014PA002706
[66] Lo L, Chang S P, Wei K Y, et al. Nonlinear climatic sensitivity to greenhouse gases over past 4 glacial/interglacial cycles [J]. Scientific Reports, 2017, 7(1): 4626. doi: 10.1038/s41598-017-04031-x
[67] Mohtadi M, Prange M, Oppo D W, et al. North Atlantic forcing of tropical Indian Ocean climate [J]. Nature, 2014, 509(7498): 76-80. doi: 10.1038/nature13196
[68] Mohtadi M, Steinke S, Lückge A, et al. Glacial to Holocene surface hydrography of the tropical eastern Indian Ocean [J]. Earth and Planetary Science Letters, 2010, 292(1-2): 89-97. doi: 10.1016/j.jpgl.2010.01.024
[69] Setiawan R Y, Mohtadi M, Southon J, et al. The consequences of opening the Sunda Strait on the hydrography of the eastern tropical Indian Ocean [J]. Paleoceanography, 2015, 30(10): 1358-1372. doi: 10.1002/2015PA002802
[70] Levi C, Labeyrie L, Bassinot F, et al. Low‐latitude hydrological cycle and rapid climate changes during the last deglaciation [J]. Geochemistry, Geophysics, Geosystems, 2007, 8(5): Q05N12.
[71] Gibbons F T, Oppo D W, Mohtadi M, et al. Deglacial δ18O and hydrologic variability in the tropical Pacific and Indian Oceans [J]. Earth and Planetary Science Letters, 2014, 387: 240-251. doi: 10.1016/j.jpgl.2013.11.032
[72] Xu J, Holbourn A, Kuhnt W, et al. Changes in the thermocline structure of the Indonesian outflow during Terminations I and II [J]. Earth and Planetary Science Letters, 2008, 273(1-2): 152-162. doi: 10.1016/j.jpgl.2008.06.029
[73] Lückge A, Mohtadi M, Rühlemann C, et al. Monsoon versus ocean circulation controls on paleoenvironmental conditions off southern Sumatra during the past 300, 000 years [J]. Paleoceanography, 2009, 24(1): PA1208.
[74] Wang X X, Jian Z M, Lückge A, et al. Precession-paced thermocline water temperature changes in response to upwelling conditions off southern Sumatra over the past 300, 000 years [J]. Quaternary Science Reviews, 2018, 192: 123-134. doi: 10.1016/j.quascirev.2018.05.035
[75] Saraswat R, Lea D W, Nigam R, et al. Deglaciation in the tropical Indian Ocean driven by interplay between the regional monsoon and global teleconnections [J]. Earth and Planetary Science Letters, 2013, 375: 166-175. doi: 10.1016/j.jpgl.2013.05.022
[76] Saraswat R, Singh D P, Lea D W, et al. Indonesian throughflow controlled the westward extent of the Indo-Pacific Warm Pool during glacial-interglacial intervals [J]. Global and Planetary Change, 2019, 183: 103031. doi: 10.1016/j.gloplacha.2019.103031
[77] Govil P, Naidu P D. Variations of Indian monsoon precipitation during the last 32 kyr reflected in the surface hydrography of the Western Bay of Bengal [J]. Quaternary Science Reviews, 2011, 30(27-28): 3871-3879. doi: 10.1016/j.quascirev.2011.10.004
[78] Tierney J E, Pausata F S R, deMenocal P. Deglacial Indian monsoon failure and North Atlantic stadials linked by Indian Ocean surface cooling [J]. Nature Geoscience, 2016, 9(1): 46-50. doi: 10.1038/ngeo2603
[79] Gebregiorgis D, Hathorne E C, Giosan L, et al. Southern Hemisphere forcing of South Asian monsoon precipitation over the past~ 1 million years [J]. Nature Communications, 2018, 9(1): 4702. doi: 10.1038/s41467-018-07076-2
[80] Banakar V K, Baidya S, Piotrowski A M, et al. Indian summer monsoon forcing on the deglacial polar cold reversals [J]. Journal of Earth System Science, 2017, 126(6): 87. doi: 10.1007/s12040-017-0864-5
[81] Gebregiorgis D, Hathorne E C, Sijinkumar A V, et al. South Asian summer monsoon variability during the last ~54 kyrs inferred from surface water salinity and river runoff proxies [J]. Quaternary Science Reviews, 2016, 138: 6-15. doi: 10.1016/j.quascirev.2016.02.012
[82] Rippert N, Baumann K H, Pätzold J. Thermocline fluctuations in the western tropical Indian Ocean during the past 35 ka [J]. Journal of Quaternary Science, 2015, 30(3): 201-210. doi: 10.1002/jqs.2767
[83] Kuhnert H, Kuhlmann H, Mohtadi M, et al. Holocene tropical western Indian Ocean sea surface temperatures in covariation with climatic changes in the Indonesian region [J]. Paleoceanography, 2014, 29(5): 423-437. doi: 10.1002/2013PA002555
[84] Romahn S, Mackensen A, Groeneveld J, et al. Deglacial intermediate water reorganization: new evidence from the Indian Ocean [J]. Climate of the Past, 2014, 10(1): 293-303. doi: 10.5194/cp-10-293-2014
[85] Wang Y V, Leduc G, Regenberg M, et al. Northern and southern hemisphere controls on seasonal sea surface temperatures in the Indian Ocean during the last deglaciation [J]. Paleoceanography, 2013, 28(4): 619-632. doi: 10.1002/palo.20053
[86] Govil P, Naidu P D. Evaporation‐precipitation changes in the eastern Arabian Sea for the last 68 ka: Implications on monsoon variability [J]. Paleoceanography, 2010, 25(1): PA1210.
[87] Kiefer T, McCave I N, Elderfield H. Antarctic control on tropical Indian Ocean sea surface temperature and hydrography [J]. Geophysical Research Letters, 2006, 33(24): L24612. doi: 10.1029/2006GL027097
[88] Weldeab S, Lea D W, Oberhänsli H, et al. Links between southwestern tropical Indian Ocean SST and precipitation over southeastern Africa over the last 17 kyr [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 410: 200-212. doi: 10.1016/j.palaeo.2014.06.001
[89] Clemens S C, Yamamoto M, Thirumalai K, et al. Remote and local drivers of Pleistocene South Asian summer monsoon precipitation: a test for future predictions [J]. Science Advances, 2021, 7(23): eabg3848. doi: 10.1126/sciadv.abg3848
[90] Pei R J, Kuhnt W, Holbourn A, et al. Evolution of sea surface hydrology along the Western Australian margin over the past 450 kyr [J]. Paleoceanography and Paleoclimatology, 2021, 36(11): e2021PA004222.
[91] Yang Y P, Xiang R, Huang Y, et al. Meridional migration of Indian Ocean Monsoon precipitation during the early Holocene: evidence from the Andaman Sea [J]. Quaternary Science Reviews, 2021, 267: 107102. doi: 10.1016/j.quascirev.2021.107102
[92] Liu S F, Ye W X, Chen M T, et al. Millennial-scale variability of Indian summer monsoon during the last 42 kyr: evidence based on foraminiferal Mg/Ca and oxygen isotope records from the central Bay of Bengal [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 562: 110112. doi: 10.1016/j.palaeo.2020.110112
[93] Nürnberg D, Ziegler M, Karas C, et al. Interacting Loop Current variability and Mississippi River discharge over the past 400 kyr [J]. Earth and Planetary Science Letters, 2008, 272(1-2): 278-289. doi: 10.1016/j.jpgl.2008.04.051
[94] Schmidt M W, Lynch‐Stieglitz J. Florida Straits deglacial temperature and salinity change: implications for tropical hydrologic cycle variability during the Younger Dryas [J]. Paleoceanography, 2011, 26(4): PA4205.
[95] Antonarakou A, Kontakiotis G, Mortyn P G, et al. Biotic and geochemical (δ18O, δ13C, Mg/Ca, Ba/Ca) responses of Globigerinoides ruber morphotypes to upper water column variations during the last deglaciation, Gulf of Mexico [J]. Geochimica et Cosmochimica Acta, 2015, 170: 69-93. doi: 10.1016/j.gca.2015.08.003
[96] Flower B P, Hastings D W, Hill H W, et al. Phasing of deglacial warming and Laurentide Ice Sheet meltwater in the Gulf of Mexico [J]. Geology, 2004, 32(7): 597-600. doi: 10.1130/G20604.1
[97] Zarriess M, Johnstone H, Prange M, et al. Bipolar seesaw in the northeastern tropical Atlantic during Heinrich stadials [J]. Geophysical Research Letters, 2011, 38(4): L04706.
[98] Zarriess M, Mackensen A. The tropical rainbelt and productivity changes off northwest Africa: a 31, 000-year high-resolution record [J]. Marine Micropaleontology, 2010, 76(3-4): 76-91. doi: 10.1016/j.marmicro.2010.06.001
[99] Weldeab S, Schneider R R, Kölling M, et al. Holocene African droughts relate to eastern equatorial Atlantic cooling [J]. Geology, 2005, 33(12): 981-984. doi: 10.1130/G21874.1
[100] Arbuszewski J A, Demenocal P B, Cléroux C, et al. Meridional shifts of the Atlantic intertropical convergence zone since the Last Glacial Maximum [J]. Nature Geoscience, 2013, 6(11): 959-962. doi: 10.1038/ngeo1961
[101] Reißig S, Nürnberg D, Bahr A, et al. Southward displacement of the North Atlantic subtropical gyre circulation system during North Atlantic cold spells [J]. Paleoceanography and Paleoclimatology, 2019, 34(5): 866-885.
[102] Lin H L, Peterson L C, Overpeck J T, et al. Late Quaternary climate change from δ18O records of multiple species of planktonic foraminifera: high‐resolution records from the Anoxic Cariaco Basin, Venezuela [J]. Paleoceanography, 1997, 12(3): 415-427. doi: 10.1029/97PA00230
[103] Lea D W, Pak D K, Peterson L C, et al. Synchroneity of tropical and high-latitude Atlantic temperatures over the last glacial termination [J]. Science, 2003, 301(5638): 1361-1364. doi: 10.1126/science.1088470
[104] Weldeab S, Schneider R R, Kölling M. Deglacial sea surface temperature and salinity increase in the western tropical Atlantic in synchrony with high latitude climate instabilities [J]. Earth and Planetary Science Letters, 2006, 241(3-4): 699-706. doi: 10.1016/j.jpgl.2005.11.012
[105] Santos T P, Lessa D O, Venancio I M, et al. Prolonged warming of the Brazil Current precedes deglaciations [J]. Earth and Planetary Science Letters, 2017, 463: 1-12. doi: 10.1016/j.jpgl.2017.01.014
[106] Lessa D V O, Venancio I M, dos Santos T P, et al. Holocene oscillations of Southwest Atlantic shelf circulation based on planktonic foraminifera from an upwelling system (off Cabo Frio, Southeastern Brazil) [J]. The Holocene, 2016, 26(8): 1175-1187. doi: 10.1177/0959683616638433
[107] Hoffmann J, Bahr A, Voigt S, et al. Disentangling abrupt deglacial hydrological changes in northern South America: insolation versus oceanic forcing [J]. Geology, 2014, 42(7): 579-582. doi: 10.1130/G35562.1
[108] Schmidt M W, Weinlein W A, Marcantonio F, et al. Solar forcing of Florida Straits surface salinity during the early Holocene [J]. Paleoceanography, 2012, 27(3): PA3204.
[109] Parker A O, Schmidt M W, Jobe Z R, et al. A new perspective on West African hydroclimate during the last deglaciation [J]. Earth and Planetary Science Letters, 2016, 449: 79-88. doi: 10.1016/j.jpgl.2016.05.038
[110] Bemis B E, Spero H J, Bijma J, et al. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: experimental results and revised paleotemperature equations [J]. Paleoceanography, 1998, 13(2): 150-160. doi: 10.1029/98PA00070
[111] Mulitza S, Boltovskoy D, Donner B, et al. Temperature: δ18O relationships of planktonic foraminifera collected from surface waters [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 202(1-2): 143-152. doi: 10.1016/S0031-0182(03)00633-3
[112] Lambeck K, Rouby H, Purcell A, et al. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(43): 15296-15303. doi: 10.1073/pnas.1411762111
[113] Schrag D P, Adkins J F, McIntyre K, et al. The oxygen isotopic composition of seawater during the Last Glacial Maximum [J]. Quaternary Science Reviews, 2002, 21(1-3): 331-342. doi: 10.1016/S0277-3791(01)00110-X
[114] LeGrande A N, Schmidt G A. Global gridded data set of the oxygen isotopic composition in seawater [J]. Geophysical Research Letters, 2006, 33(12): L12604. doi: 10.1029/2006GL026011
[115] Manabe S, Stouffer R J. Two stable equilibria of a coupled ocean-atmosphere model [J]. Journal of Climate, 1988, 1(9): 841-866. doi: 10.1175/1520-0442(1988)001<0841:TSEOAC>2.0.CO;2
[116] Zaucker F, Broecker W S. The influence of atmospheric moisture transport on the fresh water balance of the Atlantic drainage basin: general circulation model simulations and observations [J]. Journal of Geophysical Research:Atmospheres, 1992, 97(D3): 2765-2773. doi: 10.1029/91JD01699
[117] Joussaume S, Sadourny R, Vignal C. Origin of precipitating water in a numerical simulation of the July climate [J]. Ocean-Air Interactions, 1986, 1(1): 43-56.
[118] Schmittner A, Clement A C. Sensitivity of the thermohaline circulation to tropical and high latitude freshwater forcing during the last glacial‐interglacial cycle [J]. Paleoceanography, 2002, 17(2): 1017.
[119] Broecker W S, Blanton S, Smethie Jr W M, et al. Radiocarbon decay and oxygen utilization in the deep Atlantic Ocean [J]. Global Biogeochemical Cycles, 1991, 5(1): 87-117. doi: 10.1029/90GB02279
[120] Carlson A E, LeGrande A N, Oppo D W, et al. Rapid early Holocene deglaciation of the Laurentide ice sheet [J]. Nature Geoscience, 2008, 1(9): 620-624. doi: 10.1038/ngeo285
[121] Ullman D J, Carlson A E, Hostetler S W, et al. Final Laurentide ice-sheet deglaciation and Holocene climate-sea level change [J]. Quaternary Science Reviews, 2016, 152: 49-59. doi: 10.1016/j.quascirev.2016.09.014
[122] Bentley M J. The Antarctic palaeo record and its role in improving predictions of future Antarctic Ice Sheet change [J]. Journal of Quaternary Science, 2010, 25(1): 5-18. doi: 10.1002/jqs.1287
[123] Moy C M, Seltzer G O, Rodbell D T, et al. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch [J]. Nature, 2002, 420(6912): 162-165. doi: 10.1038/nature01194
[124] Conroy J L, Overpeck J T, Cole J E, et al. Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record [J]. Quaternary Science Reviews, 2008, 27(11-12): 1166-1180. doi: 10.1016/j.quascirev.2008.02.015
[125] Liu Z Y, Lu Z Y, Wen X Y, et al. Evolution and forcing mechanisms of El Niño over the past 21, 000 years [J]. Nature, 2014, 515(7528): 550-553. doi: 10.1038/nature13963
[126] Partin J W, Cobb K M, Adkins J F, et al. Millennial-scale trends in west Pacific warm pool hydrology since the Last Glacial Maximum [J]. Nature, 2007, 449(7161): 452-455. doi: 10.1038/nature06164
[127] Weber M E, Lantzsch H, Dekens P, et al. 200, 000 years of monsoonal history recorded on the lower Bengal Fan-strong response to insolation forcing [J]. Global and Planetary Change, 2018, 166: 107-119. doi: 10.1016/j.gloplacha.2018.04.003
-