Progradational sediment: succession and paleo-channel system in the central South Yellow Sea since the Late Pleistocene
-
摘要:
通过高分辨率浅地层剖面声学地层与钻孔沉积地层的综合对比分析,系统研究了晚更新世以来南黄海中部海域的层序地层序列及其对海平面变化的响应。研究显示,基于高分辨率浅地层剖面自老至新划分的6个声学地层单元(U5、U4、U3、U2、U1-2、U1-1)与钻孔划分的沉积地层单元密切相关。MIS4期与末次冰盛期低海面时期发育的2个层序界面(R4、R2),将研究区晚更新世以来的层序地层自下而上划分为3个层序(SQ3、SQ2、SQ1),并识别出3期进积体序列与2期古河流系统。MIS5期与MIS3期高海面及海平面下降期间的2期东向进积体序列主要包括高位体系域与强制海退体系域,对应浅海—滨海沉积,厚度分别由西部的24 m与40 m向东明显变薄,而全新世高海面以来向海的进积体序列主要对应高位体系域,与长江源的浅海相泥质沉积相关,最大厚度超过16 m。研究区MIS4期和末次冰盛期发育的2期古河流系统与低位体系域相对应,最大沉积厚度分别超过36 m与24 m,均与长江及黄河密切相关,影响范围延伸至黄海槽及其以东海域,尤其末次冰盛期最远可达济州岛附近海域。
Abstract:High-resolution seismic profiles and depositional stratigraphy of cores in the central South Yellow Sea (SYS) since the Late Pleistocene were analyzed. The sequence stratigraphy succession and its response to sea-level changes were studied. Results indicate that high-resolution seismic stratigraphy could be divided into six seismic units (U5, U4, U3, U2, U1-2, and U1-1 from early to late times), and they were closely related to depositional units of cores. Based on the two sequence boundaries R4 and R2, corresponding to sea-level lowstands of MIS4 and the Last Glacial Maximum (LGM) respectively, three distinct sequences (SQ3, SQ2, SQ1 from bottom to top) were identified. There are three stages of progradational sedimentation and two stages of paleo-channel systems. Two eastward progradational successions match the sea-level highstands after sea-level falls of MIS5 and MIS3, with thickness maxima 24 m and 40 m in the western part of the study area respectively; and they mainly consist of highstand systems tract (HST) and falling stage systems tract (FFST) (neritic and littoral facies), and obviously become thinner eastward. The seaward progradational succession since the sea-level highstand of the Holocene, with a maximum thickness of 24 m, is related to HST (mud sediment of neritic facies from the Yangtze River). The two stages of paleo-channel systems were dated to MIS4 and LGM, with the maxima thickness of 36 m and 24 m respectively, and they correspond to the lowstand systems tract that were closely associated with the Yellow River and Yangtze River in the past. The paleo-channel systems extended to the Yellow Sea trough and its eastern area could reach the Jeju Island (Korean Peninsula) coast in the past especially in the LGM.
-
[1] 秦蕴珊, 赵一阳, 陈丽蓉, 等. 黄海地质[M]. 北京: 海洋出版社, 1989
QIN Yunshan, ZHAO Yiyang, CHEN Lirong, et al. Geology in the Yellow Sea[M]. Beijing: China Ocean Press, 1989.
[2] Liu J, Zhang X H, Mei X, et al. The sedimentary succession of the last ~3.50 Myr in the western South Yellow Sea: paleoenvironmental and tectonic implications [J]. Marine Geology, 2018, 399: 47-75. doi: 10.1016/j.margeo.2017.11.005
[3] Zhao D B, Wan S M, Jiang S J, et al. Quaternary sedimentary record in the northern Okinawa Trough indicates the tectonic control on depositional environment change [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 516: 126-138. doi: 10.1016/j.palaeo.2018.12.001
[4] 蓝先洪, 王红霞, 张志珣, 等. 南黄海表层沉积物稀土元素分布与物源关系[J]. 中国稀土学报, 2006, 24(6):745-749 doi: 10.3321/j.issn:1000-4343.2006.06.020
LAN Xianhong, WANG Hongxia, ZHANG Zhixun, et al. Distributions of rare earth elements and provenance relations in the surface sediments of the South Yellow Sea [J]. Journal of the Chinese Rare Earth Society, 2006, 24(6): 745-749. doi: 10.3321/j.issn:1000-4343.2006.06.020
[5] 蓝先洪, 张宪军, 王红霞, 等. 南黄海NT2孔沉积地球化学及其物源[J]. 海洋地质与第四纪地质, 2008, 28(1):51-60
LAN Xianhong, ZHANG Xianjun, WANG Hongxia, et al. Sedimentary geochemistry in Core NT2 of the South Yellow Sea and its provenance [J]. Marine Geology & Quaternary Geology, 2008, 28(1): 51-60.
[6] 蓝先洪, 张宪军, 赵广涛, 等. 南黄海NT1孔沉积物稀土元素组成与物源判别[J]. 地球化学, 2009, 38(2):123-132 doi: 10.3321/j.issn:0379-1726.2009.02.003
LAN Xianhong, ZHANG Xianjun, ZHAO Guangtao, et al. Distributions of rare earth elements in sediments from Core NT1 of the South Yellow Sea and their provenance discrimination [J]. Geochimica, 2009, 38(2): 123-132. doi: 10.3321/j.issn:0379-1726.2009.02.003
[7] 蓝先洪, 张志珣, 李日辉, 等. 南黄海NT2孔沉积物物源研究[J]. 沉积学报, 2010, 28(6):1182-1189 doi: 10.14027/j.cnki.cjxb.2010.06.006
LAN Xianhong, ZHANG Zhixun, LI Rihui, et al. Provenance study of sediments in Core NT2 of the South Yellow Sea [J]. Acta Sedimentologica Sinica, 2010, 28(6): 1182-1189. doi: 10.14027/j.cnki.cjxb.2010.06.006
[8] 何梦颖, 梅西, 张训华, 等. 南黄海陆架区CSDP-1孔沉积物碎屑锆石U-Pb年龄物源判别[J]. 吉林大学学报:地球科学版, 2019, 49(1):85-95
HE Mengying, MEI Xi, ZHANG Xunhua, et al. Provenance discrimination of detrital zircon U-Pb dating in the Core CSDP-1 in the Continental Shelf of South Yellow Sea [J]. Journal of Jilin University:Earth Science Edition, 2019, 49(1): 85-95.
[9] 刘庚, 韩喜彬, 陈燕萍, 等. 南黄海沉积物磁性特征及其对物源变化的指示: 以南黄海中部泥质区YSC-10孔为例[J]. 沉积学报, 2021, 39(2):383-394
LIU Geng, HAN Xibin, CHEN Yanping, et al. Magnetic characteristics of Core YSC-10 sediments in the central Yellow Sea Mud Area and implications for provenance changes [J]. Acta Sedimentologica Sinica, 2021, 39(2): 383-394.
[10] 杨子赓, 林和茂. 中国第四纪地层与国际对比[M]. 北京: 地质出版社, 1996: 31-55
YANG Zigeng, LIN Hemao. Quaternary Stratigraphy in China and its International Correlation[M]. Beijing: Geological Publishing House, 1996: 31-55.
[11] Liu J, Saito Y, Kong X H, et al. Delta development and channel incision during marine isotope stages 3 and 2 in the western South Yellow Sea [J]. Marine Geology, 2010, 278(1-4): 54-76. doi: 10.1016/j.margeo.2010.09.003
[12] Yang J C, Li G X, Liu Y, et al. Evolution of sedimentary mode since Pleistocene in the central South Yellow Sea, China, based on seismic stratigraphy analysis [J]. Quaternary International, 2018, 482: 157-170. doi: 10.1016/j.quaint.2018.03.018
[13] 王中波, 张江勇, 梅西, 等. 中国陆架海MIS5(74~128 ka)以来地层及其沉积环境[J]. 中国地质, 2020, 47(5):1370-1394
WANG Zhongbo, ZHANG Jiangyong, MEI Xi, et al. The stratigraphy and depositional environments of China’s sea shelves since MIS5(74-128) ka [J]. Geology in China, 2020, 47(5): 1370-1394.
[14] Jin J H, Chough S K, Ryang W H. Sequence aggradation and systems tracts partitioning in the mid-eastern Yellow Sea: roles of glacio-eustasy, subsidence and tidal dynamics [J]. Marine Geology, 2002, 184(3-4): 249-271. doi: 10.1016/S0025-3227(01)00281-X
[15] Lee G S, Kim D C, Yoo D G, et al. Stratigraphy of late Quaternary deposits using high resolution seismic profile in the southeastern Yellow Sea [J]. Quaternary International, 2014, 344: 109-124. doi: 10.1016/j.quaint.2014.07.023
[16] 汪品先, 闵秋宝, 卞云华, 等. 我国东部第四纪海侵地层的初步研究[J]. 地质学报, 1981, 55(1):1-13
WANG Pinxian, MIN Qiubao, BIAN Yunhua, et al. Strata of quaternary transgressions in East China: a preliminary study [J]. Acta Geologica Sinica, 1981, 55(1): 1-13.
[17] 汪品先, 闵秋宝, 卞云华. 黄海有孔虫、介形虫组合的初步研究[M]//汪品先. 海洋微体古生物论文集. 北京: 海洋出版社, 1980: 84-100
WANG Pinxian, MIN Qiubao, BIAN Yunhua. A preliminary study of foraminiferal and ostracod assemblages of the Yellow Sea[M]//WANG Pinxian. Papers on Marine Micropaleontology. Beijing: China Ocean Press, 1980: 84-100.
[18] 汪品先, 章纪军, 赵泉鸿, 等. 东海底质中的有孔虫和介形虫[M]. 北京: 海洋出版社, 1988
WANG Pinxian, ZHANG Jijun, ZHAO Quanhong, et al. Foraminiferaand Ostracoda in Surface Sediments of the East China Sea[M]. Beijing: China Ocean Press, 1988.
[19] 赵泉鸿, 汪品先. 中国浅海现代介形虫的数量和属种分布[J]. 海洋与湖沼, 1988, 19(6):553-561
ZHAO Quanhong, WANG Pinxian. Modern ostracoda in sediments of shelf seas off China: quantitative and qualitative distributions [J]. Oceanologia et Limnologia Sinica, 1988, 19(6): 553-561.
[20] Chappell J, Omura A, Esat T, et al. Reconciliaion of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records [J]. Earth and Planetary Science Letters, 1996, 141(1-4): 227-236. doi: 10.1016/0012-821X(96)00062-3
[21] Lea D W, Martin P A, Pak D K, et al. Reconstructing a 350 ky history of sea level using planktonic Mg/Ca and oxygen isotope records from a Cocos Ridge core [J]. Quaternary Science Reviews, 2002, 21(1-3): 283-293. doi: 10.1016/S0277-3791(01)00081-6
[22] Berné S, Vagner P, Guichard F, et al. Pleistocene forced regressions and tidal sand ridges in the East China Sea [J]. Marine Geology, 2002, 188(3-4): 293-315. doi: 10.1016/S0025-3227(02)00446-2
[23] Hanebuth T J J, Saito Y, Tanabe S, et al. Sea levels during late marine isotope stage 3 (or older?) reported from the Red River delta (northern Vietnam) and adjacent regions [J]. Quaternary International, 2006, 145-146: 119-134. doi: 10.1016/j.quaint.2005.07.008
[24] Zhao B C, Wang Z H, Chen J, et al. Marine sediment records and relative sea level change during late Pleistocene in the Changjiang delta area and adjacent continental shelf [J]. Quaternary International, 2008, 186(1): 164-172. doi: 10.1016/j.quaint.2007.08.006
[25] Yang Z S, Liu J P. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea [J]. Marine Geology, 2007, 240(1-4): 169-176. doi: 10.1016/j.margeo.2007.02.008
[26] Liu J, Saito Y, Wang H, et al. Sedimentary evolution of the Holocene subaqueous clinoform off the Shandong Peninsula in the Yellow Sea [J]. Marine Geology, 2007, 236(3-4): 165-187. doi: 10.1016/j.margeo.2006.10.031
[27] Li G X, Li P, Liu Y, et al. Sedimentary system response to the global sea level change in the East China Seas since the last glacial maximum [J]. Earth-Science Reviews, 2014, 139: 390-405. doi: 10.1016/j.earscirev.2014.09.007
[28] Yoo D G, Chang T S, Lee G S, et al. Late Quaternary seismic stratigraphy in response to postglacial sea-level rise at the mid-eastern Yellow Sea [J]. Quaternary International, 2016, 392: 125-136. doi: 10.1016/j.quaint.2015.07.045
[29] Yang S Y, Wang Z B, Dou Y G, et al. A review of sedimentation since the Last Glacial Maximum on the continental shelf of eastern China[M]//Chiocci F L, Chivas A R. Continental Shelves of the World: Their Evolution during the Last Glacio-Eustatic Cycle. Geological Society, London, Memoirs, 2014, 41: 293-303.
[30] Xu T Y, Shi X F, Liu C G, et al. Stratigraphic framework and evolution of the mid-late Quaternary (since marine isotope stage 8) deposits on the outer shelf of the East China Sea [J]. Marine Geology, 2020, 419: 106047. doi: 10.1016/j.margeo.2019.106047
[31] Lambeck K, Chappell J. Sea level change through the last glacial cycle [J]. Science, 2001, 292(5517): 679-686. doi: 10.1126/science.1059549
[32] Liu J P, Milliman J D, Gao S, et al. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea [J]. Marine Geology, 2004, 209(1-4): 45-67. doi: 10.1016/j.margeo.2004.06.009
[33] Park S C, Yoo D G, Lee C W, et al. Last glacial sea-level changes and paleogeography of the Korea (Tsushima) Strait [J]. Geo-Marine Letters, 2000, 20(2): 64-71. doi: 10.1007/s003670000039
[34] 李凡, 张秀荣, 李永植, 等. 南黄海埋藏古三角洲[J]. 地理学报, 1998, 53(3):238-244 doi: 10.3321/j.issn:0375-5444.1998.03.006
LI Fan, ZHANG Xiurong, LI Yongzhi, et al. Buried paleo-delta in the South Yellow Sea [J]. Acta Geographica Sinica, 1998, 53(3): 238-244. doi: 10.3321/j.issn:0375-5444.1998.03.006
[35] Xu Z K, Lim D, Li T G, et al. REEs and Sr-Nd isotope variations in a 20 ky-sediment core from the middle Okinawa Trough, East China Sea: an in-depth provenance analysis of siliciclastic components [J]. Marine Geology, 2019, 415: 105970. doi: 10.1016/j.margeo.2019.105970
[36] 陈晓辉, 李日辉, 蓝先洪, 等. 渤海西部晚第四纪地层层序特征及沉积响应[J]. 地球科学, 2020, 45(7):2684-2696
CHEN Xiaohui, LI Rihui, LAN Xianhong, et al. Late Quaternary stratigraphic sequence and depositional response in the Western Bohai Sea [J]. Earth Science, 2020, 45(7): 2684-2696.
[37] 陈晓辉, 孟祥君, 李日辉. 辽东湾晚第四纪层序地层[J]. 海洋地质与第四纪地质, 2020, 40(2):37-47 doi: 10.16562/j.cnki.0256-1492.2019042301
CHEN Xiaohui, MENG Xiangjun, LI Rihui. Sequence stratigraphy of the late Quaternary in Liaodong Bay [J]. Marine Geology & Quaternary Geology, 2020, 40(2): 37-47. doi: 10.16562/j.cnki.0256-1492.2019042301
[38] Chen X H, Li R H, Lan X H, et al. Paleo-fluvial systems during Marine Isotope Stages 6, 4 and 2 in the North Yellow Sea [J]. Acta Geologica Sinica:English Edition, 2016, 90(2): 765-766. doi: 10.1111/1755-6724.12710
[39] Chen X H, Li R H, Lan X H, et al. Stratigraphy of late Quaternary deposits in the mid-western North Yellow Sea [J]. Journal of Oceanology and Limnology, 2018, 36(6): 2130-2153. doi: 10.1007/s00343-019-7146-9
[40] Wang Z B, Yang S Y, Wang Q, et al. Late Quaternary stratigraphic evolution on the outer shelf of the East China Sea [J]. Continental Shelf Research, 2014, 90: 5-16. doi: 10.1016/j.csr.2014.04.015
[41] Yoo D G, Park S C. High-resolution seismic study as a tool for sequence stratigraphic evidence of high-frequency sea-level changes: latest Pleistocene-Holocene example from the Korea Strait [J]. Journal of Sedimentary Research, 2000, 70(2): 296-309. doi: 10.1306/2DC40912-0E47-11D7-8643000102C1865D
[42] Yoo D G, Park S C, Sunwoo D, et al. Evolution and chronology of late Pleistocene shelf-perched lowstand wedges in the Korea strait [J]. Journal of Asian Earth Sciences, 2003, 22(1): 29-39. doi: 10.1016/S1367-9120(03)00020-8