Sedimentary facies characteristics and dating of the late Quaternary sedimentary sequence in the nearshore coastal area of Nantong, Jiangsu Province, China
-
摘要:
近三十多年来长江三角洲地区晚第四纪3期下切河谷的形成与演化得到了学术界的关注,但以往对晚第四纪早期和中期下切河谷充填层序年龄的限制还很欠缺。为了探讨这些下切河谷及其沉积充填的形成时间以及下切河谷形成与全球海平面变化的关系,对江苏南通近岸区孔深79 m的全取芯钻孔(JC-1205)岩芯开展了综合测试(沉积物粒度、底栖有孔虫、光释光(OSL)测年和AMS 14C测年)和沉积相分析。结果表明,该孔所揭示的晚第四纪沉积序列可划分为4个沉积单元(从下至上为DU 4—DU 1),中—下部3个沉积单元(DU 4—DU 2)为3期直接接触的河流沉积,上部DU 1为近岸海洋沉积(从下至上包括潮道沉积、浅水潮下带—内陆架沉积和潮坪沉积)。晚第四纪海平面变化是控制钻孔位置附近区沉积序列形成的主要因素,晚第四纪早期和中期的下切河谷及其充填沉积(DU 4和DU 3)分别形成于MIS 6和MIS 4,而与晚期下切谷相关的河间地的洪泛平原沉积(DU 2)形成于MIS 2;MIS 4时期下切谷的发育使得其下伏的MIS 5海洋沉积被侵蚀殆尽,而MIS 3时期相对较高的地势导致了沉积间断的出现。DU 1形成于MIS 1晚期,其底部的潮道沉积在其发育过程中对其下伏沉积物(可能形成于MIS 2晚期—MIS 1中期)的侵蚀造成了DU 1和DU 2之间超过10 kyr的沉积缺失。本文的研究成果为长江三角洲地区晚第四纪下切河谷的形成演化提供了重要的时间约束。
Abstract:The formation and evolution of three-stage incised valleys in the Yangtze River delta during the late Quaternary have attracted much research attention. However, age constraints on the infilling sequence for the early and middle stages of incised valley formation are lacking. In this study, a 79-m-long sediment core (JC-1205) obtained from the nearshore coastal area in Nantong (Jiangsu Province) was analyzed, including measurements of down-core changes in grain size and benthic foraminiferal assemblages, optically stimulated luminescence and AMS 14C dating, and sedimentary-facies characterization, to determine the ages of valley incision and infilling and the responses of these processes to global sea-level variation. The sedimentary succession in core JC-1205 can be divided into four depositional units (DU 4 to DU 1) from bottom to top. Units DU 4 to DU 2 in the lower to middle parts of the core are interpreted as fluvial deposits with distinct contacts between vertically adjacent units. The uppermost unit DU 1 is interpreted as having been deposited in a nearshore shallow-marine environment and consists of tidal-channel, shallow-subtidal, and tidal-flat deposits from bottom to top. Late Quaternary sea-level variations are considered to have been a key control on the late Quaternary sequence at and around the core site. The early- and middle-stage valley incisions and corresponding infilling sequences (DU 4 and DU 3) were formed during the lower sea-level periods of MIS 6 and MIS 4, respectively, and the flood-plain deposit (DU 2) in the interfluve area, which is genetically linked to the late-stage valley incision, was formed during MIS 2. Fluvial incision during MIS 4 is interpreted to have eroded the underlying marine sediments that were deposited during MIS 5, and the development of relatively high terrain during MIS 3 resulted in a hiatus between DU 2 and DU 3. There is an unconformity corresponding to a hiatus of >10 kyr between DU 2 and DU 1, which was deposited during late MIS 1. This hiatus is attributed to the occurrence of tidal-channel scour, as evidenced at the bottom of DU 1, which is interpreted to have eroded the underlying deposits that presumably formed from late MIS 2 to middle MIS 1. This study provides important temporal constraints on the formation and evolution of late Quaternary incised valleys in the Yangtze River delta.
-
Key words:
- incised valley /
- sedimentary sequence /
- sedimentary facies /
- OSL dating /
- Late Quaternary /
- Nantong, Jiangsu province
-
-
图 1 长江三角洲和晚第四纪下切河谷分布图[11]以及本文研究的JC-1205孔位置
Figure 1.
图 8 过去200 kyr全球海平面变化曲线[40]和JC-1205孔沉积单元(DU 4—DU 1)之间的对应关系
Figure 8.
表 1 JC-1205孔 AMS 14C测年结果
Table 1. AMS 14C dating results for core JC-1205
深度/m 测年材料 δ 13C/‰ 惯用年龄
/14C yr BP日历年龄/cal yr BP Beta编号 中值 范围 (1σ) 0.29 腹足类 (Semisulcospira gredleri) −2.7 102.3 ± 0.3 − − 371210 0.55 腹足类 (Semisulcospira gredleri) −3 100.1 ± 0.4 − − 371211 13.01 腹足类 −0.6 1010 ± 30 BP 561 463~663 468133 21.42 底栖有孔虫 −2.1 3790 ± 30 BP 3724 3562~3876 468132 60.25 腹足类
(Angulyagra sp.)−2.6 >43500 BP − − 371221 64.15 腹足类
(Angulyagra sp.)−5.2 39110 ± 550 BP 42703 42432~42917 371212 64.71 双壳类和腹足类碎片 −8.6 >43500 BP − − 371213 65.56 腹足类
(Angulyagra sp.)−8.6 37770 ± 470 BP 42165 41983~42377 371214 65.8 腹足类
(Angulyagra sp.)−5.8 >43500 BP − − 371215 65.96 腹足类
(Angulyaga sp.)−4.7 >43500 BP − − 371216 66.51 腹足类
(Angulyaga sp.)−9.5 >43500 BP − − 371217 67.05 腹足类
(Angulyaga sp.)−7.6 39350 ± 500 BP 42805 42519~43016 371218 67.47 腹足类
(Angulyaga sp.)−5.6 >42000 BP − − 371219 67.63 腹足类
(Angulyaga sp.)−7.8 >43500 BP − − 371220 表 2 JC-1205孔光释光测年结果
Table 2. OSL dating results for core JC-1205
孔深/m 粒径/μm U/10-6 Th/10-6 K/10-6 含水率/% 离散值 等效剂量/Gy 剂量率/(Gy/ka) 年代/ka 22.74 38~63 1.36 ± 0.2 8.06 ± 0.5 1.72 ± 0.03 23 ± 5 0.08 ± 0.01 2.53 ± 0.08 2.13 ± 0.09 1.2 ± 0.1 24.4 38~63 1.12 ± 0.2 6.84 ± 0.4 1.34 ± 0.03 18 ± 5 0.09 ± 0.02 7.15 ± 0.25 1.79 ± 0.08 4.0 ± 0.2 31.37 38~63 1.82 ± 0.3 10.04 ± 0.6 1.47 ± 0.03 21 ± 5 0.16 ± 0.03 133.1 ± 10.7 2.16 ± 0.10 61.5 ± 5.7 35.74 38~63 1.71 ± 0.3 9.09 ± 0.5 1.46 ± 0.03 23 ± 5 0.15 ± 0.03 131.3 ± 10.2 2.04 ± 0.09 64.5 ± 5.9 37.56 38~63 1.34 ± 0.2 8.08 ± 0.5 1.41 ± 0.03 14 ± 5 0.13 ± 0.02 138.2 ± 7.3 2.04 ± 0.09 67.7 ± 4.8 41.67 38~63 1.44 ± 0.2 8.07 ± 0.5 1.58 ± 0.03 15 ± 5 0.24 ± 0.04 116.1 ± 15.3 2.18 ± 0.10 53.2 ± 7.4 47.31 38~63 1.07 ± 0.2 5.83 ± 0.4 1.37 ± 0.03 17 ± 5 0.24 ± 0.04 84.4 ± 12.1 1.75 ± 0.08 48.3 ± 7.3 49.78 38~63 1.04 ± 0.2 5.55 ± 0.4 1.74 ± 0.03 20 ± 5 0.20 ± 0.03 125.3 ± 11.7 1.98 ± 0.09 63.3 ± 6.6 68.52 38~63 2.03 ± 0.3 11.32 ± 0.6 1.61 ± 0.03 21 ± 5 – 339 ± 30 2.38 ± 0.11 143 ± 14* 73.11 38~63 1.87 ± 0.3 10.43 ± 0.6 1.75 ± 0.03 22 ± 5 – 357 ± 31 2.39 ± 0.11 149 ± 15* 78.94 38~63 1.78 ± 0.3 10.56 ± 0.6 1.27 ± 0.03 18 ± 5 – 330 ± 42 2.07 ± 0.10 160 ± 22* 注:*测年结果超出了石英颗粒OSL测年的上限,仅供参考。 -
[1] Zaitlin B A, Dalrymple R W, Boyd R. The stratigraphic organization of incised-valley systems associated with relative sea-level change[M]//Dalrymple R W, Boyd R, Zaitlin B A. Incised-Valley Systems: Origin and Sedimentary Sequences. Tulsa: SEPM Society for Sedimentary Geology, 1994: 45-62.
[2] Lericolais G, Berné S, Féniès H. Seaward pinching out and internal stratigraphy of the Gironde incised valley on the shelf (Bay of Biscay) [J]. Marine Geology, 2001, 175(1-4): 183-197. doi: 10.1016/S0025-3227(01)00134-7
[3] Nordfjord S, Goff J A, Austin J A, et al. Seismic facies of incised-valley fills, New Jersey continental shelf: implications for erosion and preservation processes acting during latest Pleistocene–Holocene transgression [J]. Journal of Sedimentary Research, 2006, 76(12): 1284-1303. doi: 10.2110/jsr.2006.108
[4] Allen G P, Posamentier H W. Sequence stratigraphy and facies model of an incised valley fill: the Gironde estuary, France [J]. Journal of Sedimentary Research, 1993, 63(3): 378-391.
[5] Weber N, Chaumillon E, Tesson M, et al. Architecture and morphology of the outer segment of a mixed tide and wave-dominated-incised valley, revealed by HR seismic reflection profiling: the paleo-Charente River, France [J]. Marine Geology, 2004, 207(1-4): 17-38. doi: 10.1016/j.margeo.2004.04.001
[6] Breda A, Mellere D, Massari F. Facies and processes in a Gilbert-delta-filled incised valley (Pliocene of Ventimiglia, NW Italy) [J]. Sedimentary Geology, 2007, 200(1-2): 31-55. doi: 10.1016/j.sedgeo.2007.02.008
[7] Lin C M, Zhuo H C, Gao S. Sedimentary facies and evolution in the Qiantang River incised valley, Eastern China [J]. Marine Geology, 2005, 219(4): 235-259. doi: 10.1016/j.margeo.2005.06.009
[8] 张家强, 张桂甲, 李从先. 长江三角洲晚第四纪地层层序特征[J]. 同济大学学报, 1998, 26(4):438-442
ZHANG Jiaqiang, ZHANG Guijia, LI Congxian, et al. Characteristics of the Late Quaternary stratigraphic sequence in the Changjiang River Delta area [J]. Journal of Tongji University, 1998, 26(4): 438-442.
[9] 李从先, 范代读, 杨守业, 等. 中国河口三角洲地区晚第四纪下切河谷层序特征和形成[J]. 古地理学报, 2008, 10(1):87-97
LI Congxian, FAN Daidu, YANG Shouye, et al. Characteristics and formation of the Late Quaternary incised-valley sequences in estuary and delta areas in China [J]. Journal of Palaeogeography, 2008, 10(1): 87-97.
[10] Li C X, Wang P, Sun H P, et al. Late Quaternary incised-valley fill of the Yangtze delta (China): its stratigraphic framework and evolution [J]. Sedimentary Geology, 2002, 152(1-2): 133-158. doi: 10.1016/S0037-0738(02)00066-0
[11] 李从先, 汪品先. 长江晚第四纪河口地层学研究[M]. 北京: 科学出版社, 1998: 1-222
LI Congxian, WANG Pinxian. Researches on Stratigraphy of the Late Quaternary Period in Yangtze River Mouth[M]. Beijing: Science Press, 1998: 1-222.
[12] 林春明, 张霞, 邓程文, 等. 江苏南通地区晚第四纪下切河谷沉积与环境演变[J]. 沉积学报, 2016, 34(2):268-280 doi: 10.14027/j.cnki.cjxb.2016.02.006
LIN Chunming, ZHANG Xia, DENG Chengwen, et al. Sedimentary characteristics and environmental evolution of the Late Quaternary incised-valley fills in the Nantong area of Jiangsu Province, China [J]. Acta Sedimentologica Sinica, 2016, 34(2): 268-280. doi: 10.14027/j.cnki.cjxb.2016.02.006
[13] Gao L, Long H, Hou Y D, et al. Chronology constraints on the complex sedimentary stratigraphy of the paleo-Yangtze incised valley in China [J]. Quaternary Science Reviews, 2022, 287: 107573. doi: 10.1016/j.quascirev.2022.107573
[14] 高磊, 隆浩. MIS 5以来长江三角洲地区沉积环境演变的光释光年代证据[J]. 第四纪研究, 2023, 43(1):33-45 doi: 10.11928/j.issn.1001-7410.2023.01.03
GAO Lei, LONG Hao. Luminescence chronology constraints on the sedimentary stratigraphy of the Yangtze River delta since the last interglacial [J]. Quaternary Sciences, 2023, 43(1): 33-45. doi: 10.11928/j.issn.1001-7410.2023.01.03
[15] Song B, Li Z, Saito Y, et al. Initiation of the Changjiang (Yangtze) delta and its response to the mid-Holocene Sea level change [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 388: 81-97. doi: 10.1016/j.palaeo.2013.07.026
[16] Chen Z Y, Stanley D. Quaternary subsidence and river channel migration in the Yangtze Delta Plain, Eastern China [J]. Journal of Coastal Research, 1995, 11(3): 927-945.
[17] 顾家伟. 上新世以来苏北盆地与长江三角洲构造沉降史分析[J]. 地质科技情报, 2015, 34(1):95-99,106
GU Jiawei. Tectonic subsidence analysis of Subei Basin and Yangtze delta from the Pliocene [J]. Geological Science and Technology Information, 2015, 34(1): 95-99,106.
[18] 王张峤, 陈中原, 魏子新, 等. 长江口第四纪沉积物中构造与古气候耦合作用的探讨[J]. 科学通报, 2005, 50(14):1503-1511 doi: 10.1360/982004-361
WANG Zhangqiao, CHEN Zhongyuan, WEI Zixin, et al. Investigations on coupling effects between tectonic and paleo-climate through research on Quaternary sediments from Yangtze estuary [J]. Chinese Science Bulletin, 2005, 50(14): 1503-1511. doi: 10.1360/982004-361
[19] Lambeck K, Rouby H, Purcell A, et al. Sea level and global ice volumes from the last glacial maximum to the Holocene [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(43): 15296-15303. doi: 10.1073/pnas.1411762111
[20] Wellner R W, Bartek L R. The effect of sea level, climate, and shelf physiography on the development of incised-valley complexes: a modern example from the East China Sea [J]. Journal Sedimentary Research, 2003, 73(6): 926-940. doi: 10.1306/041603730926
[21] Li G X, Liu Y, Yang Z G, et al. Ancient Changjiang channel system in the East China Sea continental shelf during the last glaciation [J]. Science in China Series D:Earth Sciences, 2005, 48(11): 1972-1978. doi: 10.1360/04yd0053
[22] Shepard F P. Nomenclature based on sand-silt-clay ratios [J]. Journal of Sedimentary Research, 1954, 24(3): 151-158.
[23] Folk R L, Ward W C. Brazos River bar: a study in the significance of grain size parameters [J]. Journal of Sedimentary Research, 1957, 27(1): 3-26. doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D
[24] Stuiver M, Reimer P J, Reimer R. CALIB 8.2[EB/OL]. [2023-04-25]. http://calib.org.
[25] 刘健, 段宗奇, 梅西, 等. 南黄海中部隆起晚新近纪—第四纪沉积序列的地层划分与沉积演化[J]. 海洋地质与第四纪地质, 2021, 41(5):25-43
LIU Jian, DUAN Zongqi, MEI Xi, et al. Stratigraphic classification and sedimentary evolution of the Late Neogene to Quaternary sequence on the central uplift of the South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2021, 41(5): 25-43.
[26] Zhang X, Liu J, Wang Y X, et al. Timing of sedimentary evolution and transgressions in the Bohai Sea during the last ~200 ka: constraints from luminescence dating of a core from the Yellow River Delta [J]. Frontiers in Earth Science, 2022, 10: 865761. doi: 10.3389/feart.2022.865761
[27] Roberts H M, Duller G A T. Standardised growth curves for optical dating of sediment using multiple-grain aliquots [J]. Radiation Measurements, 2004, 38(2): 241-252. doi: 10.1016/j.radmeas.2003.10.001
[28] Lai Z P. Testing the use of an OSL standardised growth curve (SGC) for De determination on quartz from the Chinese Loess Plateau [J]. Radiation Measurements, 2006, 41(1): 9-16. doi: 10.1016/j.radmeas.2005.06.031
[29] 朱锦旗, 龚绪龙, 苟富刚, 等. 长江三角洲北翼第一硬土层理化特征及其地质成因[J/OL]. 地质通报, 2023. https://kns.cnki.net/kcms/detail//11.4648.P.20230113.1825.003.html
ZHU Jinqi, GONG Xulong, GOU Fugang, et al. Physicochemical characteristics and geological formation of the first hard soil layer of the north wing of the Yangtze River delta[J/OL]. Geological Bulletin of China, 2023. https://kns.cnki.net/kcms/detail//11.4648.P.20230113.1825.003.html.
[30] Amorosi A, Pavesi M, Lucchi M R, et al. Climatic signature of cyclic fluvial architecture from the Quaternary of the central Po Plain, Italy [J]. Sedimentary Geology, 2008, 209(1-4): 58-68. doi: 10.1016/j.sedgeo.2008.06.010
[31] 何起祥. 中国海洋沉积地质学[M]. 北京: 海洋出版社, 2006: 348-352
HE Qixiang. Marine Sedimentary Geology of China[M]. Beijing: China Ocean Press, 2006: 348-352.
[32] Zhang J F, Qiu W L, Wang X Q, et al. Optical dating of a hyperconcentrated flow deposit on a Yellow River terrace in Hukou, Shaanxi, China [J]. Quaternary Geochronology, 2010, 5(2-3): 194-199. doi: 10.1016/j.quageo.2009.05.001
[33] Zhao H, Liu Z, Song L, et al. OSL dating of flood sediments in the North China Plain [J]. Quaternary Geochronology, 2019, 49: 101-107. doi: 10.1016/j.quageo.2018.07.010
[34] Smedley R K, Skirrow G K A. Luminescence dating in fluvial settings: overcoming the challenge of partial bleaching[M]//Herget J, Fontana A. Palaeohydrology. Cham: Springer, 2020: 155-168.
[35] Olley J, Caitcheon G, Murray A. The distribution of apparent dose as determined by optically stimulated luminescence in small aliquots of fluvial quartz: implications for dating young sediments [J]. Quaternary Science Reviews, 1998, 17(11): 1033-1040. doi: 10.1016/S0277-3791(97)00090-5
[36] Liu J, Qiu J D, Saito Y, et al. Formation of the Yangtze shoal in response to the post-glacial transgression of the paleo-Yangtze (Changjiang) estuary, China [J]. Marine Geology, 2020, 423: 106080. doi: 10.1016/j.margeo.2019.106080
[37] Lai Z P. Chronology and the upper dating limit for loess samples from Luochuan section in the Chinese Loess Plateau using quartz OSL SAR protocol [J]. Journal of Asian Earth Sciences, 2010, 37(2): 176-185. doi: 10.1016/j.jseaes.2009.08.003
[38] Murray A, Arnold L J, Buylaert J -P, et al. Optically stimulated luminescence dating using quartz. Nature Reviews Methods Primers, 2021, 1: 72,doi: 10.1038/s43586-021-00068-5.
[39] Pigati J S, Quade J, Wilson J, et al. Development of low-background vacuum extraction and graphitization systems for 14C dating of old (40-60 ka) samples [J]. Quaternary International, 2007, 166(1): 4-14. doi: 10.1016/j.quaint.2006.12.006
[40] Rohling E J, Foster G L, Grant K M, et al. Sea-level and deep-sea-temperature variability over the past 5.3 million years [J]. Nature, 2014, 508(7497): 477-482. doi: 10.1038/nature13230
[41] Campo B, Amorosi A, Vaiani S C. Sequence stratigraphy and Late Quaternary paleoenvironmental evolution of the northern Adriatic coastal plain (Italy) [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 466: 265-278. doi: 10.1016/j.palaeo.2016.11.016
[42] Grant K M, Rohling E J, Ramsey C B, et al. Sea-level variability over five glacial cycles [J]. Nature Communications, 2014, 5: 5076. doi: 10.1038/ncomms6076
[43] Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records [J]. Paleoceanography, 2005, 20(1): PA1003.
[44] Clark P U, Dyke A S, Shakun J D, et al. The last glacial maximum [J]. Science, 2009, 325(5941): 710-714. doi: 10.1126/science.1172873
[45] Spratt R M, Lisiecki L E. A Late Pleistocene sea level stack [J]. Climate of the Past, 2016, 12(4): 1079-1092. doi: 10.5194/cp-12-1079-2016
[46] Dutton A, Lambeck K. Ice volume and sea level during the last interglacial [J]. Science, 2012, 337(6091): 216-219. doi: 10.1126/science.1205749
[47] 林春明, 张霞, 黄舒雅. 晚第四纪下切河谷体系研究综述[J]. 地质论评, 2022, (2): 627-647
LIN Chunming, ZHANG Xia, HUANG Shuya. Review of Late Quaternary incised valley system. Geological Review, 2022, (2): 627-647.
[48] Grant K M, Rohling E J, Bar-Matthews M, et al. Rapid coupling between ice volume and polar temperature over the past 150, 000 years [J]. Nature, 2012, 491(7426): 744-747. doi: 10.1038/nature11593
[49] Rasmussen S O, Bigler M, Blockley S P, et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy [J]. Quaternary Science Reviews, 2014, 106: 14-28. doi: 10.1016/j.quascirev.2014.09.007
[50] Waelbroeck C, Lougheed B C, Vazquez Riveiros N, et al. Consistently dated Atlantic sediment cores over the last 40 thousand years [J]. Scientific Data, 2019, 6(1): 165. doi: 10.1038/s41597-019-0173-8
[51] Liu J, Saito Y, Kong X H, et al. Delta development and channel incision during marine isotope stages 3 and 2 in the western South Yellow Sea [J]. Marine Geology, 2010, 278(1-4): 54-76. doi: 10.1016/j.margeo.2010.09.003
[52] Siddall M, Rohling E J, Thompson W G, et al. Marine isotope stage 3 sea level fluctuations: data synthesis and new outlook [J]. Reviews of Geophysics, 2008, 46(4): RG4003.
-