末次冰消期以来冲绳海槽深水氧化性与通风演化研究进展与展望

窦衍光, 孙呈慧, 邹建军, 丛静艺, 张勇, 吴永华, 石学法. 末次冰消期以来冲绳海槽深水氧化性与通风演化研究进展与展望[J]. 海洋地质与第四纪地质, 2023, 43(3): 74-83. doi: 10.16562/j.cnki.0256-1492.2023051602
引用本文: 窦衍光, 孙呈慧, 邹建军, 丛静艺, 张勇, 吴永华, 石学法. 末次冰消期以来冲绳海槽深水氧化性与通风演化研究进展与展望[J]. 海洋地质与第四纪地质, 2023, 43(3): 74-83. doi: 10.16562/j.cnki.0256-1492.2023051602
DOU Yanguang, SUN Chenghui, ZOU Jianjun, CONG Jingyi, ZHANG Yong, WU Yonghua, SHI Xuefa. Research progress and prospects on the evolution of deep water oxygenation and ventilation in the Okinawa Trough since the last Deglaciation[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 74-83. doi: 10.16562/j.cnki.0256-1492.2023051602
Citation: DOU Yanguang, SUN Chenghui, ZOU Jianjun, CONG Jingyi, ZHANG Yong, WU Yonghua, SHI Xuefa. Research progress and prospects on the evolution of deep water oxygenation and ventilation in the Okinawa Trough since the last Deglaciation[J]. Marine Geology & Quaternary Geology, 2023, 43(3): 74-83. doi: 10.16562/j.cnki.0256-1492.2023051602

末次冰消期以来冲绳海槽深水氧化性与通风演化研究进展与展望

  • 基金项目: 国家自然科学基金项目“MIS6期以来东海外陆架–冲绳海槽沉积汇周期性转换过程与机制研究”(42276084),“中全新世浙闽泥质体沉积模式区域差异性与驱动机制研究”(42206078);中国地质调查局地质调查专项(DD20230069)
详细信息
    通讯作者: 窦衍光(1979—),男,研究员,主要从事海洋沉积地球化学研究,E-mail:douyanguang@gmail.com
  • 中图分类号: P736.2

Research progress and prospects on the evolution of deep water oxygenation and ventilation in the Okinawa Trough since the last Deglaciation

More Information
  • 过去二十年,末次冰消期以来冲绳海槽深层水沉积氧化性与通风演化、碳埋藏与释放等研究一直备受关注。尽管目前该研究方向已开展了大量的工作,但由于多种替代指标的复杂性和局限性,与冲绳海槽黑潮动力学相关的深水环流和沉积氧化还原研究目前仍然存在较大争议。本文系统总结了末次冰消期以来冲绳海槽深层水沉积氧化性与通风演化的研究进展,发现高有机质沉降通量和高古生产力是末次盛冰期(LGM)至冰消期期间冲绳海槽深层水缺氧的主要原因;Younger Drays(YD)和Heinrich Stadial 1(HS1)事件期间深水通风增强、含氧量增加与北太平洋中层水(NPIW)强化和侵入有关;早全新世以来黑潮加强引发的深水通风抵消了上升流驱动的生产力提高的影响,使得冲绳海槽深层水处于氧化状态。最后提出未来冲绳海槽古海洋学研究应加强对轨道-千年尺度深层水水源识别与演化示踪、不同气候状态下古生产力与沉积氧化还原耦合关系,以及深层水演化的环境与气候效应等方面的研究。

  • 加载中
  • 图 1  东海环流体系与研究北太平洋中层水影响范围

    Figure 1. 

    图 2  末次冰消期以来冲绳海槽古生产力演化(Preact/Al[14]、CaCO3[15]、Ba/Al(未发表数据)、Opal/Al[14]、OCmarFlux[88]、TOC/Al(未发表数据)、OCmarine/Al[14]、OCmarine/Preact[14]

    Figure 2. 

    图 3  末次冰消期以来冲绳海槽古生产力演化与其控制因素对比(Preact/Al[14]、OCmarFlux[88]、HgEF[89]、P.obliguiloculataMAR[90]、海洋浮游生物贡献[91]、UK’37-SST[92]、海平面变化[93]、东亚季风[94]

    Figure 3. 

    图 4  末次冰消期以来冲绳海槽沉积氧化性[13-16]与黑潮演变[90]、深层水通风[12,86,68]、古生产力变化[14-15]的耦合关系

    Figure 4. 

    表 1  冲绳海槽深层水沉积氧化性与通风演化相关研究

    Table 1.  Relative study on sedimentary oxygenation and ventilation evolution of deep water in the Okinawa Trough

    区域钻孔经纬度指标氧化性变化特征影响因素参考文献
    海槽北部U142931.37°N、128.59°EU间冰期缺氧,冰期氧化冰期NPIW侵入含氧量增加[8]
    CSH131.23°N、128.72°E氧化还原敏感
    元素(Mo、U)
    YD, H1冷期和8.5 ka以来氧化性增强;B/A等暖期氧化性降低冷期与NPIW有关、8.5 ka后氧化性增强与黑潮有关[15]
    海槽中部MD01-240426.65°N、125.81°ETS, DOP, Mn, Preact, OCmarine全新世
    含氧量升高
    黑潮引起深水通风[13-14,16]
    E01726.57°N、126.02°E底栖有孔虫冰期-冰消期深层水流通较差冰期隔绝状态,与太平洋水体交换减弱[12]
    MD01-240325.07°N、123.28°ETS全新世含氧量升高黑潮引发深水环流增强[16]
    KX12-3Hg全新世含氧量升高黑潮增强使深水部通风增强[18]
    海槽南部25525.2°N、123.12°E底栖有孔虫冰消期底层水体氧含量低生产力和沉积物中有机质含量高低[11]
    1202B24.48°N、122.30°EδCeLGM和冰消期氧化环境,
    全新世缺氧环境
    LGM通风增强,全新世通风减弱,黑潮引发水体分层[17]
    下载: 导出CSV
  • [1]

    Hoogakker B A A, Elderfield H, Schmiedl G, et al. Glacial–interglacial changes in bottom-water oxygen content on the Portuguese margin [J]. Nature Geoscience, 2015, 8(1): 40-43. doi: 10.1038/ngeo2317

    [2]

    Jaccard S L, Galbraith E D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation [J]. Nature Geoscience, 2012, 5(2): 151-156. doi: 10.1038/ngeo1352

    [3]

    Sigman D M, Boyle E A. Glacial/interglacial variations in atmospheric carbon dioxide [J]. Nature, 2000, 407(6806): 859-869. doi: 10.1038/35038000

    [4]

    Jaccard S L, Galbraith E D, Martínez-García A, et al. Covariation of deep southern Ocean oxygenation and atmospheric CO2 through the last ice age [J]. Nature, 2016, 530(7589): 207-210. doi: 10.1038/nature16514

    [5]

    Du J H, Haley B A, Mix A C, et al. Flushing of the deep Pacific Ocean and the deglacial rise of atmospheric CO2 concentrations [J]. Nature Geoscience, 2018, 11(10): 749-755. doi: 10.1038/s41561-018-0205-6

    [6]

    Detlef H, Sosdian S M, Belt S T, et al. Late Quaternary sea-ice and sedimentary redox conditions in the eastern Bering Sea – Implications for ventilation of the mid-depth North Pacific and an Atlantic-Pacific seesaw mechanism [J]. Quaternary Science Reviews, 2020, 248: 106549. doi: 10.1016/j.quascirev.2020.106549

    [7]

    Nameroff T J, Calvert S E, Murray J W. Glacial-interglacial variability in the eastern tropical North Pacific oxygen minimum zone recorded by redox-sensitive trace metals [J]. Paleoceanography, 2004, 19(1): PA1010.

    [8]

    Zhao D B, Wan S M, Lu Z Y, et al. Delayed collapse of the North Pacific intermediate water after the glacial termination [J]. Geophysical Research Letters, 2021, 48(13): e2021GL092911.

    [9]

    Hu D X, Wu L X, Cai W J, et al. Pacific western boundary currents and their roles in climate [J]. Nature, 2015, 522(7556): 299-308. doi: 10.1038/nature14504

    [10]

    Wang L, Li T M, Zhou T J. Intraseasonal SST variability and air-sea interaction over the Kuroshio extension region during boreal summer [J]. Journal of Climate, 2012, 25(5): 1619-1634. doi: 10.1175/JCLI-D-11-00109.1

    [11]

    翦知湣, 陈荣华, 李保华. 冲绳海槽南部20ka来深水底栖有孔虫的古海洋学记录[J]. 中国科学(D辑), 1996, 39(5):551-560 doi: 10.3321/j.issn:1006-9267.1996.05.008

    JIAN Zhimin, CHEN Ronghua, LI Baohua. Deep-sea benthic foraminiferal record of the paleoceanography in the southern Okinawa Trough over the last 20 000 years [J]. Science China Earth Sciences, 1996, 39(5): 551-560. doi: 10.3321/j.issn:1006-9267.1996.05.008

    [12]

    李铁刚, 向荣, 孙荣涛, 等. 冲绳海槽中南部18ka以来的底栖有孔虫与底层水演化[J]. 中国科学 D辑 地球科学, 2005, 48(6):805-814 doi: 10.1360/03yd0222

    LI Tiegang, XIANG Rong, SUN Rongtao, et al. Benthic foraminifera and bottom water evolution in the Middle-southern Okinawa Trough during the last 18 ka [J]. Science in China Series D:Earth Sciences, 2005, 48(6): 805-814. doi: 10.1360/03yd0222

    [13]

    Kao S J, Dai M H, Wei K Y, et al. Enhanced supply of fossil organic carbon to the Okinawa Trough since the last deglaciation [J]. Paleoceanography, 2008, 23(2): PA2207.

    [14]

    Li D W, Chang Y P, Li Q, et al. Effect of sea-level on organic carbon preservation in the Okinawa Trough over the last 91 kyr [J]. Marine Geology, 2018, 399: 148-157. doi: 10.1016/j.margeo.2018.02.013

    [15]

    Zou J J, Shi X F, Zhu A M, et al. Millennial-scale variations in sedimentary oxygenation in the western subtropical North Pacific and its links to North Atlantic climate [J]. Climate of the Past, 2020, 16(1): 387-407. doi: 10.5194/cp-16-387-2020

    [16]

    Kao S J, Horng C S, Hsu S C, et al. Enhanced deepwater circulation and shift of sedimentary organic matter oxidation pathway in the Okinawa Trough since the Holocene [J]. Geophysical Research Letters, 2005, 32(15): L15609. doi: 10.1029/2005GL023139

    [17]

    Dou Y G, Yang S Y, Li C, et al. Deepwater redox changes in the southern Okinawa Trough since the last glacial maximum [J]. Progress in Oceanography, 2015, 135: 77-90. doi: 10.1016/j.pocean.2015.04.007

    [18]

    Lim D, Kim J, Xu Z K, et al. New evidence for Kuroshio inflow and deepwater circulation in the Okinawa Trough, East China Sea: sedimentary mercury variations over the last 20 kyr [J]. Paleoceanography, 2017, 32(6): 571-579. doi: 10.1002/2017PA003116

    [19]

    Lee K E, Lee H J, Park J H, et al. Stability of the Kuroshio path with respect to glacial sea level lowering [J]. Geophysical Research Letters, 2013, 40(2): 392-396. doi: 10.1002/grl.50102

    [20]

    Chen C T A. The Kuroshio Intermediate Water is the major source of nutrients on the East China Sea continental shelf [J]. Oceanologica Acta, 1996, 19(5): 523-527.

    [21]

    Andres M, Wimbush M, Park J H, et al. Observations of Kuroshio flow variations in the East China Sea [J]. Journal of Geophysical Research:Oceans, 2008, 113(C5): C05013.

    [22]

    Hsin Y C, Wu C R, Shaw P T. Spatial and temporal variations of the Kuroshio East of Taiwan, 1982-2005: anumerical study [J]. Journal of Geophysical Research:Oceans, 2008, 113(C5): C04002.

    [23]

    Qiu B. Kuroshio and Oyashio currents[M]//Steele J H. Encyclopedia of Ocean Sciences. London: Academic Press, 2001: 1413-1425.

    [24]

    Qu T D, Lukas R. The bifurcation of the North equatorial current in the Pacific [J]. American Meteorological Society, 2003, 33(1): 5-18.

    [25]

    Qu T D, Kim Y Y, Yaremchuk M, et al. Can Luzon strait transport play a role in conveying the impact of ENSO to the South China Sea? [J]. Journal of Climate, 2004, 17(18): 3644-3657. doi: 10.1175/1520-0442(2004)017<3644:CLSTPA>2.0.CO;2

    [26]

    Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea [J]. Geomorphology, 2007, 85(3-4): 208-224. doi: 10.1016/j.geomorph.2006.03.023

    [27]

    Nakamura H, Nishina A, Liu Z J, et al. Intermediate and deep water Formation in the Okinawa Trough [J]. Journal of Geophysical Research:Oceans, 2013, 118(12): 6881-6893. doi: 10.1002/2013JC009326

    [28]

    You Y Z, Suginohara N, Fukasawa M, et al. Roles of the Okhotsk Sea and gulf of Alaska in forming the North Pacific intermediate water [J]. Journal of Geophysical Research:Oceans, 2000, 105(C2): 3253-3280. doi: 10.1029/1999JC900304

    [29]

    Talley L D. Distribution and Formation of North Pacific intermediate water [J]. Journal of Physical Oceanography, 1993, 23(3): 517-537. doi: 10.1175/1520-0485(1993)023<0517:DAFONP>2.0.CO;2

    [30]

    Li L, Qu T D. Thermohaline circulation in the deep South China Sea Basin inferred from oxygen distributions [J]. Journal of Geophysical Research:Oceans, 2006, 111(C5): C05017.

    [31]

    Li G, Rashid H, Zhong L F, et al. Changes in deep water oxygenation of the South China Sea since the last glacial Period [J]. Geophysical Research Letters, 2018, 45(17): 9058-9066. doi: 10.1029/2018GL078568

    [32]

    Nishina A, Nakamura H, Park J H, et al. Deep ventilation in the Okinawa Trough induced by Kerama Gap overflow [J]. Journal of Geophysical Research:Oceans, 2016, 121(8): 6092-6102. doi: 10.1002/2016JC011822

    [33]

    Fontanier C, Jorissen F J, Licari L, et al. Live benthic foraminiferal faunas from the Bay of Biscay: faunal density, composition, and microhabitats [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2002, 49(4): 751-785. doi: 10.1016/S0967-0637(01)00078-4

    [34]

    Jorissen F J, Fontanier C, Thomas E. Chapter seven paleoceanographical proxies based on deep-sea benthic foraminiferal assemblage characteristics [J]. Developments in Marine Geology, 2007, 1: 263-325.

    [35]

    Zhou Y, Chen F, Wu C, et al. Palaeoproductivity linked to monsoon variability in the northern slope of the South China Sea from the last 290 kyr: evidence of benthic foraminifera from Core SH7B [J]. Geological Society, London, Special Publications, 2016, 429(1): 197-210. doi: 10.1144/SP429.10

    [36]

    Das M, Singh R K, Gupta A K, et al. Holocene strengthening of the Oxygen Minimum Zone in the northwestern Arabian Sea linked to changes in intermediate water circulation or Indian monsoon intensity? [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 483: 125-135. doi: 10.1016/j.palaeo.2016.10.035

    [37]

    Burkett A M, Rathburn A E, Elena Pérez M, et al. Colonization of over a thousand Cibicidoides wuellerstorfi (foraminifera: Schwager, 1866) on artificial substrates in seep and adjacent off-seep locations in dysoxic, deep-sea environments [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2016, 117: 39-50. doi: 10.1016/j.dsr.2016.08.011

    [38]

    Rathburn A E, Willingham J, Ziebis W, et al. A New biological proxy for deep-sea paleo-oxygen: pores of epifaunal benthic foraminifera [J]. Scientific Reports, 2018, 8(1): 9456. doi: 10.1038/s41598-018-27793-4

    [39]

    Kaiho K. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean [J]. Geology, 1994, 22(8): 719-722. doi: 10.1130/0091-7613(1994)022<0719:BFDOIA>2.3.CO;2

    [40]

    Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update [J]. Chemical Geology, 2006, 232(1-2): 12-32. doi: 10.1016/j.chemgeo.2006.02.012

    [41]

    Dean W E, Gardner J V, Piper D Z. Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin [J]. Geochimica et Cosmochimica Acta, 1997, 61(21): 4507-4518. doi: 10.1016/S0016-7037(97)00237-8

    [42]

    Piper D Z, Isaacs C M. Minor elements in Quaternary sediment from the Sea of Japan: a record of surface-water productivity and intermediate-water redox conditions [J]. Geological Society of America Bulletin, 1995, 107(1): 54-67. doi: 10.1130/0016-7606(1995)107<0054:MEIQSF>2.3.CO;2

    [43]

    Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems [J]. Chemical Geology, 2004, 206(3-4): 289-318. doi: 10.1016/j.chemgeo.2003.12.009

    [44]

    Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation [J]. Chemical Geology, 2009, 268(3-4): 211-225. doi: 10.1016/j.chemgeo.2009.09.001

    [45]

    Crusius J, Thomson J. Comparative behavior of authigenic Re, U, and Mo during reoxidation and subsequent long-term burial in marine sediments [J]. Geochimica et Cosmochimica Acta, 2000, 64(13): 2233-2242. doi: 10.1016/S0016-7037(99)00433-0

    [46]

    Tribovillard N, Riboulleau A, Lyons T, et al. Enhanced trapping of molybdenum by sulfurized marine organic matter of marine origin in Mesozoic limestones and shales [J]. Chemical Geology, 2004, 213(4): 385-401. doi: 10.1016/j.chemgeo.2004.08.011

    [47]

    常华进, 储雪蕾, 冯连君, 等. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评, 2009, 55(1):91-99 doi: 10.3321/j.issn:0371-5736.2009.01.011

    CHANG Huajin, CHU Xuelei, FENG Lianjun, et al. Redox sensitive trace elements as paleoenvironments proxies [J]. Geological Review, 2009, 55(1): 91-99. doi: 10.3321/j.issn:0371-5736.2009.01.011

    [48]

    Cruse A M, Lyons T W. Trace metal records of regional paleoenvironmental variability in Pennsylvanian (Upper Carboniferous) black shales [J]. Chemical Geology, 2004, 206(3-4): 319-345. doi: 10.1016/j.chemgeo.2003.12.010

    [49]

    Koeppenkastrop D, De Carlo E H. Sorption of rare-earth elements from seawater onto synthetic mineral particles: an experimental approach [J]. Chemical Geology, 1992, 95(3-4): 251-263. doi: 10.1016/0009-2541(92)90015-W

    [50]

    Koeppenkastrop D, De Carlo E H. Uptake of rare earth elements from solution by metal oxides [J]. Environmental Science & Technology, 1993, 27(9): 1796-1802.

    [51]

    Ohta A, Kawabe I. REE(III) adsorption onto Mn dioxide (δ-MnO2) and Fe oxyhydroxide: Ce(III) oxidation by δ-MnO2 [J]. Geochimica et Cosmochimica Acta, 2001, 65(5): 695-703. doi: 10.1016/S0016-7037(00)00578-0

    [52]

    Lyons T W, Severmann S. A critical look at iron paleoredox proxies: new insights from modern euxinic marine basins [J]. Geochimica et Cosmochimica Acta, 2006, 70(23): 5698-5722. doi: 10.1016/j.gca.2006.08.021

    [53]

    Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones [J]. Chemical Geology, 1994, 111(1-4): 111-129. doi: 10.1016/0009-2541(94)90085-X

    [54]

    Morse J W, Emeis K C. Carbon/sulphur/iron relationships in upwelling sediments [J]. Geological Society, London, Special Publications, 1992, 64(1): 247-255. doi: 10.1144/GSL.SP.1992.064.01.16

    [55]

    Ujiié H, Ujiié Y. Late Quaternary course changes of the Kuroshio Current in the Ryukyu Arc region, northwestern Pacific Ocean [J]. Marine Micropaleontology, 1999, 37(1): 23-40. doi: 10.1016/S0377-8398(99)00010-9

    [56]

    Xu X D, Oda M. Surface-water evolution of the eastern East China Sea during the last 36, 000 years [J]. Marine Geology, 1999, 156(1-4): 285-304. doi: 10.1016/S0025-3227(98)00183-2

    [57]

    Li T G, Liu Z X, Hall M A, et al. Heinrich event imprints in the Okinawa Trough: evidence from oxygen isotope and planktonic foraminifera [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 176(1-4): 133-146. doi: 10.1016/S0031-0182(01)00332-7

    [58]

    Jian Z M, Wang P X, Saito Y, et al. Holocene variability of the Kuroshio Current in the Okinawa Trough, northwestern Pacific Ocean [J]. Earth and Planetary Science Letters, 2000, 184(1): 305-319. doi: 10.1016/S0012-821X(00)00321-6

    [59]

    Ujiié Y, Ujiié H, Taira A, et al. Spatial and temporal variability of surface water in the Kuroshio source region, Pacific Ocean, over the past 21, 000 years: evidence from planktonic foraminifera [J]. Marine Micropaleontology, 2003, 49(4): 335-364. doi: 10.1016/S0377-8398(03)00062-8

    [60]

    Xiang R, Sun Y B, Li T G, et al. Paleoenvironmental change in the Middle Okinawa Trough since the last deglaciation: evidence from the sedimentation rate and planktonic foraminiferal record [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 243(3-4): 378-393. doi: 10.1016/j.palaeo.2006.08.016

    [61]

    Wang L B, Li J, Zhao J T, et al. Solar-, monsoon- and Kuroshio-influenced thermocline depth and sea surface salinity in the southern Okinawa Trough during the past 17, 300 years [J]. Geo-Marine Letters, 2016, 36(4): 281-291. doi: 10.1007/s00367-016-0448-4

    [62]

    Zheng X F, Li A C, Kao S, et al. Synchronicity of Kuroshio Current and climate system variability since the Last Glacial Maximum [J]. Earth and Planetary Science Letters, 2016, 452: 247-257. doi: 10.1016/j.jpgl.2016.07.028

    [63]

    Li T G, Xu Z K, Lim D, et al. Sr-Nd isotopic constraints on detrital sediment provenance and paleoenvironmental change in the northern Okinawa Trough during the Late Quaternary [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 430: 74-84. doi: 10.1016/j.palaeo.2015.04.017

    [64]

    Chen H F, Chang Y P, Kao S J, et al. Mineralogical and geochemical investigations of sediment-source region changes in the Okinawa Trough during the past 100 ka (IMAGES core MD012404) [J]. Journal of Asian Earth Sciences, 2011, 40(6): 1238-1249. doi: 10.1016/j.jseaes.2010.09.015

    [65]

    Wang J Z, Li A C, Xu K H, et al. Clay mineral and grain size studies of sediment provenances and paleoenvironment evolution in the Middle Okinawa Trough since 17 ka [J]. Marine Geology, 2015, 366: 49-61. doi: 10.1016/j.margeo.2015.04.007

    [66]

    Zheng X F, Li A C, Wan S M, et al. Formation of the modern current system in the East China Sea since the early Holocene and its relationship with sea level and the monsoon system [J]. Chinese Journal of Oceanology and Limnology, 2015, 33(4): 1062-1071. doi: 10.1007/s00343-015-4089-7

    [67]

    Keigwin L D. Glacial-age hydrography of the far northwest Pacific Ocean [J]. Paleoceanography, 1998, 13(4): 323-339. doi: 10.1029/98PA00874

    [68]

    Kubota Y, Kimoto K, Itaki T, et al. Variations in intermediate and deep ocean circulation in the subtropical northwestern Pacific from 26 ka to present based on a new calibration for Mg/Ca in benthic foraminifera [J]. Climate of the Past, 2014, 10(2): 1265-1303.

    [69]

    Dou Y G, Yang S Y, Liu Z X, et al. Sr–Nd isotopic constraints on terrigenous sediment provenances and Kuroshio Current variability in the Okinawa Trough during the Late Quaternary [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 365-366: 38-47. doi: 10.1016/j.palaeo.2012.09.003

    [70]

    Liu J, Zhu R X, Li T G, et al. Sediment−magnetic signature of the mid-Holocene paleoenvironmental change in the central Okinawa Trough [J]. Marine Geology, 2007, 239(1-2): 19-31. doi: 10.1016/j.margeo.2006.12.011

    [71]

    Ujiié Y, Asahi H, Sagawa T, et al. Evolution of the North Pacific Subtropical Gyre during the past 190 kyr through the interaction of the Kuroshio Current with the surface and intermediate waters [J]. Paleoceanography, 2016, 31(11): 1498-1513. doi: 10.1002/2015PA002914

    [72]

    Chang Y P, Chen M T, Yokoyama Y, et al. Monsoon hydrography and productivity changes in the East China Sea during the past 100, 000 years: Okinawa Trough evidence (MD012404) [J]. Paleoceanography, 2009, 24(3): PA3208.

    [73]

    Kubota Y, Kimoto K, Tada R, et al. Variations of East Asian summer monsoon since the last deglaciation based on Mg/Ca and oxygen isotope of planktic foraminifera in the northern East China Sea [J]. Paleoceanography, 2010, 25(4): PA4205.

    [74]

    Sun Y B, Oppo D W, Xiang R, et al. Last deglaciation in the Okinawa Trough: subtropical northwest Pacific link to Northern Hemisphere and tropical climate [J]. Paleoceanography, 2005, 20(4): PA4005.

    [75]

    Yu H, Liu Z X, Berné S, et al. Variations in temperature and salinity of the surface water above the Middle Okinawa Trough during the past 37kyr [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 281(1-2): 154-164. doi: 10.1016/j.palaeo.2009.08.002

    [76]

    Jaccard S L, Haug G H, Sigman D M, et al. Glacial/interglacial changes in Subarctic North Pacific stratification [J]. Science, 2005, 308(5724): 1003-1006. doi: 10.1126/science.1108696

    [77]

    Jaccard S L, Galbraith E D, Sigman D M, et al. A pervasive link between Antarctic ice core and subarctic Pacific sediment records over the past 800 kyrs [J]. Quaternary Science Reviews, 2010, 29(1-2): 206-212. doi: 10.1016/j.quascirev.2009.10.007

    [78]

    Kohfeld K E, Chase Z. Controls on deglacial changes in biogenic fluxes in the North Pacific Ocean [J]. Quaternary Science Reviews, 2011, 30(23-24): 3350-3363. doi: 10.1016/j.quascirev.2011.08.007

    [79]

    Keigwin L D, Jones G A, Froelich P N. A 15, 000 year paleoenvironmental record from Meiji Seamount, far northwestern Pacific [J]. Earth and Planetary Science Letters, 1992, 111(2-4): 425-440. doi: 10.1016/0012-821X(92)90194-Z

    [80]

    Burgay F, Spolaor A, Gabrieli J, et al. Atmospheric iron supply and marine productivity in the glacial North Pacific Ocean [J]. Climate of the Past, 2021, 17(1): 491-505. doi: 10.5194/cp-17-491-2021

    [81]

    Knudson K P, Ravelo A C, Aiello I W, et al. Causes and timing of recurring subarctic Pacific hypoxia [J]. Science Advances, 2021, 7(23): eabg2906. doi: 10.1126/sciadv.abg2906

    [82]

    Lee T N, Johns W E, Liu C T, et al. Mean transport and seasonal cycle of the Kuroshio east of Taiwan with comparison to the Florida Current [J]. Journal of Geophysical Research:Oceans, 2001, 106(C10): 22143-22158. doi: 10.1029/2000JC000535

    [83]

    Matsuzaki K M, Itaki T, Kimoto K. Vertical distribution of polycystine radiolarians in the northern East China Sea [J]. Marine Micropaleontology, 2016, 125: 66-84. doi: 10.1016/j.marmicro.2016.03.004

    [84]

    Li D W, Zheng L W, Jaccard S L, et al. Millennial-scale ocean dynamics controlled export productivity in the subtropical North Pacific [J]. Geology, 2017, 45(7): 651-654. doi: 10.1130/G38981.1

    [85]

    Shao H B, Yang S Y, Cai F, et al. Sources and burial of organic carbon in the Middle Okinawa Trough during Late Quaternary paleoenvironmental change [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2016, 118: 46-56. doi: 10.1016/j.dsr.2016.10.005

    [86]

    Wahyudi, Minagawa M. Response of benthic foraminifera to organic carbon accumulation rates in the Okinawa trough [J]. Journal of Oceanography, 1997, 53(5): 411-420.

    [87]

    吴永华, 程振波, 石学法. 冲绳海槽北部CSH1岩芯地层与碳酸盐沉积特征[J]. 海洋科学进展, 2004, 22(2):163-169 doi: 10.3969/j.issn.1671-6647.2004.02.006

    WU Yonghua, CHENG Zhenbo, SHI Xuefa. Stratigraphic and carbonate sediment characteristics of core CSH1 from the northern Okinawa Trough [J]. Advances in Marine Science, 2004, 22(2): 163-169. doi: 10.3969/j.issn.1671-6647.2004.02.006

    [88]

    Hu B Q, Zhang H D, Ouyang S Q, et al. Evolution of ocean productivity in the sub-tropical West Pacific Ocean across the last deglaciation [J]. Paleoceanography and Paleoclimatology, 2021, 36(8): e2021PA004250.

    [89]

    Zou J J, Chang Y P, Zhu A M, et al. Sedimentary mercury and antimony revealed orbital-scale dynamics of the Kuroshio Current [J]. Quaternary Science Reviews, 2021, 265: 107051. doi: 10.1016/j.quascirev.2021.107051

    [90]

    Chang Y P, Wang W L, Yokoyama Y, et al. Millennial-scale planktic foraminifer faunal variability in the East China Sea during the past 40000 years (IMAGES MD012404 from the Okinawa Trough) [J]. Terrestrial, Atmospheric and Oceanic Sciences, 2008, 19(4): 389-401. doi: 10.3319/TAO.2008.19.4.389(IMAGES)

    [91]

    王玥铭, 窦衍光, 徐景平, 等. 16 ka以来冲绳海槽中南部有机质来源及其对上升流演变的指示[J]. 第四纪研究, 2018, 38(3):769-781 doi: 10.11928/j.issn.1001-7410.2018.03.21

    WANG Yueming, DOU Yanguang, XU Jingping, et al. Organic matter source in the Middle southern Okinawa Trough and its indication to upwelling evolution since 16 ka [J]. Quaternary Sciences, 2018, 38(3): 769-781. doi: 10.11928/j.issn.1001-7410.2018.03.21

    [92]

    Zhao J T, Li J, Cai F, et al. Sea surface temperature variation during the last deglaciation in the southern Okinawa Trough: modulation of high latitude teleconnections and the Kuroshio Current [J]. Progress in Oceanography, 2015, 138: 238-248. doi: 10.1016/j.pocean.2015.06.008

    [93]

    Bintanja R, van de Wal R S W, Oerlemans J. Modelled atmospheric temperatures and global sea levels over the past million years [J]. Nature, 2005, 437(7055): 125-128. doi: 10.1038/nature03975

    [94]

    Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640, 000 years and ice age terminations [J]. Nature, 2016, 534(7609): 640-646. doi: 10.1038/nature18591

    [95]

    Qu T D, Lindstrom E J. Northward intrusion of Antarctic intermediate water in the western Pacific [J]. Journal of Physical Oceanography, 2004, 34(9): 2104-2118. doi: 10.1175/1520-0485(2004)034<2104:NIOAIW>2.0.CO;2

    [96]

    Horikawa K, Asahara Y, Yamamoto K, et al. Intermediate water Formation in the Bering Sea during glacial periods: evidence from neodymium isotope ratios [J]. Geology, 2010, 38(5): 435-438. doi: 10.1130/G30225.1

    [97]

    Kender S, Ravelo A C, Worne S, et al. Closure of the Bering Strait caused Mid-Pleistocene Transition cooling [J]. Nature Communications, 2018, 9(1): 5386. doi: 10.1038/s41467-018-07828-0

    [98]

    Knudson K P, Ravelo A C. North Pacific Intermediate Water circulation enhanced by the closure of the Bering Strait [J]. Paleoceanography, 2015, 30(10): 1287-1304. doi: 10.1002/2015PA002840

    [99]

    Sagawa T, Ikehara K. Intermediate water ventilation change in the subarctic northwest Pacific during the last deglaciation [J]. Geophysical Research Letters, 2008, 35(24): L24702. doi: 10.1029/2008GL035133

    [100]

    Max L, Lembke-Jene L, Riethdorf J R, et al. Pulses of enhanced North Pacific Intermediate Water ventilation from the Okhotsk Sea and Bering Sea during the last deglaciation [J]. Climate of the Past, 2014, 10(2): 591-605. doi: 10.5194/cp-10-591-2014

    [101]

    Okazaki Y, Timmermann A, Menviel L, et al. Deepwater Formation in the North Pacific during the last glacial termination [J]. Science, 2010, 329(5988): 200-204. doi: 10.1126/science.1190612

    [102]

    Chikamoto M O, Menviel L, Abe-Ouchi A, et al. Variability in North Pacific intermediate and deep water ventilation during Heinrich events in two coupled climate models [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2012, 61-64: 114-126. doi: 10.1016/j.dsr2.2011.12.002

    [103]

    Gong X, Lembke-Jene L, Lohmann G, et al. Enhanced North Pacific deep-ocean stratification by stronger intermediate water Formation during Heinrich Stadial 1 [J]. Nature Communications, 2019, 10(1): 656. doi: 10.1038/s41467-019-08606-2

    [104]

    Ohkushi K, Hara N, Ikehara M, et al. Intensification of North Pacific intermediate water ventilation during the Younger Dryas [J]. Geo-Marine Letters, 2016, 36(5): 353-360. doi: 10.1007/s00367-016-0450-x

    [105]

    Gray W R, Rae J W B, Wills R C J, et al. Deglacial upwelling, productivity and CO2 outgassing in the North Pacific Ocean [J]. Nature Geoscience, 2018, 11(5): 340-344. doi: 10.1038/s41561-018-0108-6

    [106]

    Max L, Rippert N, Lembke-Jene L, et al. Evidence for enhanced convection of North Pacific Intermediate Water to the low-latitude Pacific under glacial conditions [J]. Paleoceanography, 2017, 32(1): 41-55. doi: 10.1002/2016PA002994

    [107]

    Rippert N, Max L, Mackensen A, et al. Alternating influence of northern versus southern-sourced water masses on the Equatorial Pacific subthermocline during the past 240 ka [J]. Paleoceanography, 2017, 32(11): 1256-1274. doi: 10.1002/2017PA003133

    [108]

    Worne S, Kender S, Swann G E A, et al. Coupled climate and subarctic Pacific nutrient upwelling over the last 850, 000 years [J]. Earth and Planetary Science Letters, 2019, 522: 87-97. doi: 10.1016/j.jpgl.2019.06.028

    [109]

    Kao S J, Wu C R, Hsin Y C, et al. Effects of sea level change on the upstream Kuroshio Current through the Okinawa Trough [J]. Geophysical Research Letters, 2006, 33(16): L16604. doi: 10.1029/2006GL026822

    [110]

    Shi X, Wu Y, Zou J, et al. Multiproxy reconstruction for Kuroshio responses to northern hemispheric oceanic climate and the Asian Monsoon since Marine Isotope Stage 5.1 (~88 ka) [J]. Climate of the Past, 2014, 10(5): 1735-1750. doi: 10.5194/cp-10-1735-2014

    [111]

    Lembke-Jene L, Tiedemann R, Nürnberg D, et al. Deglacial variability in Okhotsk Sea Intermediate Water ventilation and biogeochemistry: implications for North Pacific nutrient supply and productivity [J]. Quaternary Science Reviews, 2017, 160: 116-137. doi: 10.1016/j.quascirev.2017.01.016

    [112]

    Xiong Z F, Li T G, Algeo T, et al. Paleoproductivity and paleoredox conditions during Late Pleistocene accumulation of laminated diatom mats in the tropical West Pacific [J]. Chemical Geology, 2012, 334: 77-91. doi: 10.1016/j.chemgeo.2012.09.044

  • 加载中

(4)

(1)

计量
  • 文章访问数:  1546
  • PDF下载数:  39
  • 施引文献:  0
出版历程
收稿日期:  2023-05-16
修回日期:  2023-06-01
刊出日期:  2023-06-28

目录