东海内陆架夏季台风与冬季寒潮沉积动力过程的差异—基于现场观测的认识

卢健, 姜静波, 李安春, 马小川. 东海内陆架夏季台风与冬季寒潮沉积动力过程的差异—基于现场观测的认识[J]. 海洋地质与第四纪地质, 2023, 43(5): 96-105. doi: 10.16562/j.cnki.0256-1492.2023051603
引用本文: 卢健, 姜静波, 李安春, 马小川. 东海内陆架夏季台风与冬季寒潮沉积动力过程的差异—基于现场观测的认识[J]. 海洋地质与第四纪地质, 2023, 43(5): 96-105. doi: 10.16562/j.cnki.0256-1492.2023051603
LU Jian, JIANG Jingbo, LI Anchun, MA Xiaochuan. Differences in sedimentary dynamic processes between summer typhoons and winter cold waves on the inner shelf of the East China Sea: Insights from in-situ observations[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 96-105. doi: 10.16562/j.cnki.0256-1492.2023051603
Citation: LU Jian, JIANG Jingbo, LI Anchun, MA Xiaochuan. Differences in sedimentary dynamic processes between summer typhoons and winter cold waves on the inner shelf of the East China Sea: Insights from in-situ observations[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 96-105. doi: 10.16562/j.cnki.0256-1492.2023051603

东海内陆架夏季台风与冬季寒潮沉积动力过程的差异—基于现场观测的认识

  • 基金项目: 国家自然科学基金项目“近五千年来西北太平洋台风活动在东海内陆架的沉积记录研究”(42276052);山东省自然科学基金面上项目(ZR2020MD066);国家自然科学基金重点项目(41430965)
详细信息
    作者简介: 卢健(1984—),男,博士,副研究员,主要从事海洋沉积学研究,E-mail:lujian@qdio.ac.cn
    通讯作者: 姜静波(1979—),男,副研究员,主要从事海洋环境监测仪器的研究,E-mail:jiangjingbo@qdio.ac.cn
  • 中图分类号: P736.2

Differences in sedimentary dynamic processes between summer typhoons and winter cold waves on the inner shelf of the East China Sea: Insights from in-situ observations

More Information
  • 在全球变暖的背景下,台风活动在未来如何发展是关系到人类社会安全的重大问题之一。受器测记录时间长度的限制,我们对于台风长期的发展与演化机制的认识还不充分。从东海内陆架泥质区的沉积记录中提取台风信息,是了解几千年来影响我国的台风演变规律的有效手段。但是,其他极端事件,尤其是冬季寒潮,会影响台风沉积事件识别的准确性。台风与冬季寒潮大风沉积事件的辨识也是台风活动重建的难点之一。利用布放在东海内陆架泥质区的四脚架观测系统,分别获取了台风“天鹅”和冬季寒潮大风期间的海水温度、盐度、悬浮体浓度和海流等数据,并结合近海观测浮标的风速、风向和波浪等数据,探讨了台风与冬季寒潮沉积动力过程的差异。结果表明,台风与冬季寒潮在风向、有效波高和近底层流速变化上有一定的相似性,但是台风较高的强度更容易引起近底层沉积物的再悬浮;台风经过时,高浓度悬浮体主要来自海底沉积物的再悬浮,而冬季寒潮期间高浓度悬浮体与长江入海物质的输入有关。由于台风和冬季寒潮近底层海流流向的差异,在东海内陆架泥质区向海一侧边缘沉积记录中的砂层可能代表了台风事件沉积,是研究台风活动规律的良好研究材料。研究结果为从东海泥质区沉积记录中提取更准确的台风信息提供了科学参考。

  • 加载中
  • 图 1  四脚架站位分布图及结构示意图

    Figure 1. 

    图 2  四脚架观测期间俯仰角和翻滚角变化

    Figure 2. 

    图 3  东海站6号和20号近海浮标观测数据

    Figure 3. 

    图 4  OBS浊度与悬浮体浓度室内标定结果

    Figure 4. 

    图 5  四脚架记录的2015年台风“天鹅”和2019年冬季寒潮期间的流速、悬浮体浓度、温度、盐度以及近底层沿岸方向和垂直岸线方向的流速

    Figure 5. 

    图 6  2015年台风“天鹅”和2019年冬季寒潮期间四脚架记录的近底层流速玫瑰图

    Figure 6. 

    表 1  东海站6号和20号浮标分别在2015年台风“天鹅”和2019年冬季寒潮期间的观测数据

    Table 1.  Observation data of buoys No. 6 and No. 20 in the East China Sea during Typhoon Goni in 2015 and winter cold waves in 2019, respectively

    观测指标 2015年8月 2019年11—12月
    范围 平均值 范围 平均值
    有效波高/m 1.6~4.5 3.0 1.1~3.9 2.2
    有效波周期/s 7.0~26.9 8.6 4.4~8.1 6.2
    10分钟平均风速/(m/s) 5.7~18.9 11.4 10.8~18.0 13.2
    10分钟平均风向/(°) 0~359.0 226.6 1.0~358.0 254.1
    流速/(cm/s) 16.2~78.3 42.0 0.8~68.6 19.2
    流向/(°) 0~346.0 209.4 0~359.0 133.7
    下载: 导出CSV

    表 2  四脚架在2015年台风“天鹅”和2019年冬季寒潮期间的观测数据

    Table 2.  Observation data of quadripod during Typhoon Goni in 2015 and winter cold waves in 2019

    观测指标 2015年8月 2019年11—12月
    范围 平均值 范围 平均值
    流速/(cm/s) 3.6~55.2 29.1 6.7~64.7 29.3
    悬浮体浓度/(mg/L) 56.4~1691.9 606.6 27.3~823.7 149.8
    沿岸方向流速/(cm/s) −42.7~24.4 −12.9 −42.1~60.7 13.0
    垂直岸线方向流速/(cm/s) −39.4~46.0 6.4 −36.0~44.3 −2.9
    注:流速沿岸向西南方向为正值,垂直岸线向海方向为正值。
    下载: 导出CSV
  • [1]

    Peduzzi P, Chatenoux B, Dao H, et al. Global trends in tropical cyclone risk[J]. Nature Climate Change, 2012, 2(4): 289-294. doi: 10.1038/nclimate1410

    [2]

    Milliman J D, Lin S W, Kao S J, et al. Short-term changes in seafloor character due to flood-derived hyperpycnal discharge: Typhoon Mindulle, Taiwan, July 2004[J]. Geology, 2007, 35(9): 779-782. doi: 10.1130/G23760A.1

    [3]

    Siswanto E, Ishizaka J, Morimoto A, et al. Ocean physical and biogeochemical responses to the passage of Typhoon Meari in the East China Sea observed from Argo float and multiplatform satellites[J]. Geophysical Research Letters, 2008, 35(15): L15604. doi: 10.1029/2008GL035040

    [4]

    Li Y H, Ye X, Wang A J, et al. Impact of Typhoon Morakot on chlorophyll a distribution on the inner shelf of the East China Sea[J]. Marine Ecology Progress Series, 2013, 483: 19-29. doi: 10.3354/meps10223

    [5]

    Woodruff J D, Irish J L, Camargo S J. Coastal flooding by tropical cyclones and sea-level rise[J]. Nature, 2013, 504(7478): 44-52. doi: 10.1038/nature12855

    [6]

    Wang B, Chen J F, Jin H Y, et al. Diatom bloom-derived bottom water hypoxia off the Changjiang estuary, with and without typhoon influence[J]. Limnology and Oceanography, 2017, 62(4): 1552-1569. doi: 10.1002/lno.10517

    [7]

    Lu J, Jiang J B, Li A C, et al. Impact of Typhoon Chan-hom on the marine environment and sediment dynamics on the inner shelf of the East China Sea: In-situ seafloor observations[J]. Marine Geology, 2018, 406: 72-83. doi: 10.1016/j.margeo.2018.09.009

    [8]

    Elsner J B, Liu K B. Examining the ENSO-typhoon hypothesis[J]. Climate Research, 2003, 25(1): 43-54.

    [9]

    苏纪兰. 中国近海水文[M]. 北京: 海洋出版社, 2005: 192-249

    SU Jilan. Hydrography of China Seas[M]. Beijing: Ocean Press, 2005: 192-249.

    [10]

    Zhou C, Chen P Y, Yang S F, et al. The impact of Typhoon Lekima (2019) on East China: a postevent survey in Wenzhou City and Taizhou City[J]. Frontiers of Earth Science, 2022, 16(1): 109-120. doi: 10.1007/s11707-020-0856-7

    [11]

    Mei W, Xie S P. Intensification of landfalling typhoons over the northwest Pacific since the late 1970s[J]. Nature Geoscience, 2016, 9(10): 753-757. doi: 10.1038/ngeo2792

    [12]

    Knutson T R, Sirutis J J, Garner S T, et al. Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions[J]. Nature Geoscience, 2008, 1(6): 359-364. doi: 10.1038/ngeo202

    [13]

    Knutson T R, McBride J L, Chan J, et al. Tropical cyclones and climate change[J]. Nature Geoscience, 2010, 3(3): 157-163. doi: 10.1038/ngeo779

    [14]

    Wehner M F, Reed K A, Loring B, et al. Changes in tropical cyclones under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols[J]. Earth System Dynamics, 2018, 9(1): 187-195. doi: 10.5194/esd-9-187-2018

    [15]

    Emanuel K A. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(30): 12219-12224.

    [16]

    Emanuel K. Response of global tropical cyclone activity to increasing CO2: Results from downscaling CMIP6 models[J]. Journal of Climate, 2021, 34(1): 57-70. doi: 10.1175/JCLI-D-20-0367.1

    [17]

    Donnelly J P, Woodruff J D. Intense hurricane activity over the past 5, 000 years controlled by El Niño and the West African monsoon[J]. Nature, 2007, 447(7143): 465-468. doi: 10.1038/nature05834

    [18]

    Wallace D J, Anderson J B. Evidence of similar probablility of intense hurricane strikes for the Gulf of Mexico over the late Holocene[J]. Geology, 2010, 38(6): 511-514. doi: 10.1130/G30729.1

    [19]

    Tian Y, Fan D J, Zhang X L, et al. Event deposits of intense typhoons in the muddy wedge of the East China Sea over the past 150 years[J]. Marine Geology, 2019, 410: 109-121. doi: 10.1016/j.margeo.2018.12.010

    [20]

    Yang Y, Piper D J W, Normandeau A, et al. A late Holocene shift of typhoon activity recorded by coastal sedimentary archives in eastern China[J]. Sedimentology, 2022, 69(2): 954-969. doi: 10.1111/sed.12934

    [21]

    Liu J P, Li A C, Xu K H, et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J]. Continental Shelf Research, 2006, 26(17-18): 2141-2156. doi: 10.1016/j.csr.2006.07.013

    [22]

    Jia J J, Gao J H, Cai T L, et al. Sediment accumulation and retention of the Changjiang (Yangtze River) subaqueous delta and its distal muds over the last century[J]. Marine Geology, 2018, 401: 2-16. doi: 10.1016/j.margeo.2018.04.005

    [23]

    Xiao S B, Li A C, Liu J P, et al. Coherence between solar activity and the East Asian winter monsoon variability in the past 8 000 years from Yangtze River-derived mud in the East China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 237(2-4): 293-304. doi: 10.1016/j.palaeo.2005.12.003

    [24]

    Xu K H, Milliman J D, Li A C, et al. Yangtze- and Taiwan-derived sediments on the inner shelf of East China Sea[J]. Continental Shelf Research, 2009, 29(18): 2240-2256. doi: 10.1016/j.csr.2009.08.017

    [25]

    Liu X T, Li A C, Dong J, et al. Provenance discrimination of sediments in the Zhejiang-Fujian mud belt, East China Sea: Implications for the development of the mud depocenter[J]. Journal of Asian Earth Sciences, 2018, 151: 1-15. doi: 10.1016/j.jseaes.2017.10.017

    [26]

    李安春, 张凯棣. 东海内陆架泥质沉积体研究进展[J]. 海洋与湖沼, 2020, 51(4): 705-727 doi: 10.11693/hyhz20200500145

    LI Anchun, ZHANG Kaidi. Research progress of mud wedge in the inner continental shelf of the East China Sea[J]. Oceanologia et Limnologia Sinica, 2020, 51(4): 705-727. doi: 10.11693/hyhz20200500145

    [27]

    Xu K H, Li A C, Liu J P, et al. Provenance, structure, and formation of the mud wedge along inner continental shelf of the East China Sea: A synthesis of the Yangtze dispersal system[J]. Marine Geology, 2012, 291-294: 176-191. doi: 10.1016/j.margeo.2011.06.003

    [28]

    Pang C G, Li K, Hu D X. Net accumulation of suspended sediment and its seasonal variability dominated by shelf circulation in the Yellow and East China Seas[J]. Marine Geology, 2016, 371: 33-43. doi: 10.1016/j.margeo.2015.10.017

    [29]

    Chen D X, He L, Liu F F, et al. Effects of typhoon events on chlorophyll and carbon fixation in different regions of the East China Sea[J]. Estuarine, Coastal and Shelf Science, 2017, 194: 229-239. doi: 10.1016/j.ecss.2017.06.026

    [30]

    Keen T R, Bentley S J, Chad Vaughan W, et al. The generation and preservation of multiple hurricane beds in the northern Gulf of Mexico[J]. Marine Geology, 2004, 210(1-4): 79-105. doi: 10.1016/j.margeo.2004.05.022

    [31]

    Zhou X, Liu Z H, Yan Q, et al. Enhanced tropical cyclone intensity in the Western North Pacific during warm periods over the last two Millennia[J]. Geophysical Research Letters, 2019, 46(15): 9145-9153. doi: 10.1029/2019GL083504

    [32]

    Yang S L, Bouma T J, Xu K H, et al. Storms dominate the erosion of the Yangtze Delta and southward sediment transport[J]. Science Bulletin, 2023, 68(6): 553-556. doi: 10.1016/j.scib.2023.03.005

    [33]

    Lu J, Li A C, Dong J, et al. Impact of Typhoon Talim on surface sediment records on the East China Sea continental shelf[J]. Estuarine, Coastal and Shelf Science, 2021, 259: 107479. doi: 10.1016/j.ecss.2021.107479

    [34]

    Li Y H, Wang A J, Qiao L, et al. The impact of typhoon Morakot on the modern sedimentary environment of the mud deposition center off the Zhejiang–Fujian coast, China[J]. Continental Shelf Research, 2012, 37: 92-100. doi: 10.1016/j.csr.2012.02.020

    [35]

    Bian C W, Jiang W S, Song D H. Terrigenous transportation to the Okinawa Trough and the influence of typhoons on suspended sediment concentration[J]. Continental Shelf Research, 2010, 30(10-11): 1189-1199. doi: 10.1016/j.csr.2010.03.008

    [36]

    Bian C W, Jiang W S, Quan Q, et al. Distributions of suspended sediment concentration in the Yellow Sea and the East China Sea based on field surveys during the four seasons of 2011[J]. Journal of Marine Systems, 2013, 121-122: 24-35. doi: 10.1016/j.jmarsys.2013.03.013

    [37]

    秦蕴珊, 赵一阳, 陈丽蓉, 等. 东海地质[M]. 北京: 科学出版社, 1987: 29-136

    QIN Yunshan, ZHAO Yiyang, CHEN Lirong, et al. Geology of the East China Sea[M]. Beijing: Science Press, 1987: 29-136.

    [38]

    Liu J, Qiu J D, Saito Y, et al. Formation of the Yangtze Shoal in response to the post-glacial transgression of the paleo-Yangtze (Changjiang) estuary, China[J]. Marine Geology, 2020, 423: 106080. doi: 10.1016/j.margeo.2019.106080

    [39]

    Xu J S, Wang N, Li G X, et al. The dynamic responses of flow and near-bed turbidity to typhoons on the continental shelf of the East China Sea: field observations[J]. Geological Journal, 2016, 51: 12-21. doi: 10.1002/gj.2804

    [40]

    Lu J, Li A C, Zhang J, et al. Sedimentary record off the Yangtze River estuary and its response to typhoons and human activities over the past 70 years[J]. Regional Studies in Marine Science, 2023, 65: 103074. doi: 10.1016/j.rsma.2023.103074

    [41]

    杨作升, 郭志刚, 王兆祥, 等. 黄东海陆架悬浮体向其东部深海区输送的宏观格局[J]. 海洋学报, 1992, 14(2): 81-90

    YANG Zuosheng, GUO Zhigang, WANG Zhaoxiang, et al. Basic pattern of transport of suspended matter from the Yellow Sea and East China Sea to the eastern deep seas[J]. Acta Oceanologica Sinica, 1992, 14(2): 81-90.

    [42]

    Hoshika A, Tanimoto T, Mishima Y, et al. Variation of turbidity and particle transport in the bottom layer of the East China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(2): 443-455. doi: 10.1016/S0967-0645(02)00462-9

    [43]

    Liu J T, Lee J, Yang R J, et al. Coupling between physical processes and biogeochemistry of suspended particles over the inner shelf mud in the East China Sea[J]. Marine Geology, 2021, 442: 106657. doi: 10.1016/j.margeo.2021.106657

  • 加载中

(6)

(2)

计量
  • 文章访问数:  1168
  • PDF下载数:  84
  • 施引文献:  0
出版历程
收稿日期:  2023-05-16
修回日期:  2023-08-16
录用日期:  2023-08-16
刊出日期:  2023-10-28

目录