南黄海表层沉积磷的赋存形态及其对水体富营养化态势的影响

吴晓丹, 常凤鸣, 吴斌, 孙晗杰, 钟伟杰. 南黄海表层沉积磷的赋存形态及其对水体富营养化态势的影响[J]. 海洋地质与第四纪地质, 2023, 43(5): 106-118. doi: 10.16562/j.cnki.0256-1492.2023073101
引用本文: 吴晓丹, 常凤鸣, 吴斌, 孙晗杰, 钟伟杰. 南黄海表层沉积磷的赋存形态及其对水体富营养化态势的影响[J]. 海洋地质与第四纪地质, 2023, 43(5): 106-118. doi: 10.16562/j.cnki.0256-1492.2023073101
WU Xiaodan, CHANG Fengming, WU Bin, SUN Hanjie, ZHONG Weijie. Forms of sedimentary phosphorus in the South Yellow Sea and the implication to regional eutrophication trend[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 106-118. doi: 10.16562/j.cnki.0256-1492.2023073101
Citation: WU Xiaodan, CHANG Fengming, WU Bin, SUN Hanjie, ZHONG Weijie. Forms of sedimentary phosphorus in the South Yellow Sea and the implication to regional eutrophication trend[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 106-118. doi: 10.16562/j.cnki.0256-1492.2023073101

南黄海表层沉积磷的赋存形态及其对水体富营养化态势的影响

  • 基金项目: 中国科学院战略性先导科技专项(B类)“印太交汇区海洋物质能量中心形成演化过程与机制”(XDB42000000);崂山实验室科技创新项目“大陆架埋藏态遗址/遗迹考古调查取样技术方法和埋藏潜力评价”(LSKJ202204903),“上新世以来西太平洋暖池演化及其机理”(LSKJ202204201);国家自然科学基金项目“更新世以来热带西太平洋颗石藻钙化作用研究”(41876041)
详细信息
    作者简介: 吴晓丹(1985—),女,博士,助理研究员,主要从事海洋生物地球化学研究,E-mail:xdwu@qdio.ac.cn
    通讯作者: 常凤鸣(1973—),男,博士,研究员,主要从事古海洋学研究,E-mail:chfm@qdio.ac.cn
  • 中图分类号: P736.4

Forms of sedimentary phosphorus in the South Yellow Sea and the implication to regional eutrophication trend

More Information
  • 南黄海水体富营养化日益加剧,作为我国绿潮孕育和暴发的主要场所,其水体富营养化的形成演变机制仍未完全清楚。为解析该区沉积物中营养元素磷(P)的释放特征和对水体富营养化的潜在贡献,采用改进的连续浸取法(SEDEX)分析了表层沉积中磷的含量水平和赋存形态,探讨了其生物有效性和对水体富营养化态势的影响。研究表明:总磷(TP)平均值为514 mg/kg,处于轻度污染,以无机磷(IP)为主要赋存形态(76.39%),有机磷(OP)次之,IP又以Ca-P为主(30.17%)。各形态磷平均贡献依次为OP>Ca-P>De-P>Fe-P>Ex-P。Ca-P和De-P属于生物不可利用磷,在沉积物中稳定性较强,在较粗粒径沉积物中含量较高。Ex-P和Fe-P易吸附于细颗粒沉积物表面,pH、温度、水体动力和氧化还原条件等是影响其吸附-释放的主要因素,南黄海海水酸化将促进Ex-P和Fe-P向海水释放,加剧海水富营养化程度。OP变化趋势显示,近岸以陆源输入为主,远岸生物过程具有重要贡献。南黄海生物有效磷(BAP:Ex-P + Fe-P + OP)平均值为240.1 mg/kg,占TP的46.4%,表明研究区沉积磷生物可利用性较强,释放到水体的风险较高,对该区富营养化具有重要长期潜在贡献。

  • 加载中
  • 图 1  研究区域海流系统及采样站位分布示意图

    Figure 1. 

    图 2  南黄海表层和底层水体温度、盐度和pH值分布特征

    Figure 2. 

    图 3  南黄海表层沉积物黏土、粉砂、砂、黏土+粉砂组分和TOC分布特征

    Figure 3. 

    图 4  南黄海表层沉积物的谢帕德分类[19]

    Figure 4. 

    图 5  南黄海表层沉积物中总磷及各形态P分布特征

    Figure 5. 

    图 6  南黄海表层沉积物中形态磷占比

    Figure 6. 

    图 7  南黄海表层沉积物形态磷与沉积物组分相关关系

    Figure 7. 

    图 8  南黄海表层沉积物中OC/OP摩尔比

    Figure 8. 

    图 9  南黄海表层沉积物中BAP(Ex-P + Fe-P + OP)的分布特征

    Figure 9. 

    表 1  改进的SEDEX连续提取方法[18]

    Table 1.  Modified SEDEX extraction method[18]

    步骤 提取试剂和条件 磷形态
    1 1 mol/L MgCl2 (pH=8), 2h Ex-P
    2 CDB (pH=7.6), 8h Fe-P
    3 1 mol/L NaAc-Hac (pH=4), 6h Ca-P
    4 1 mol/L HCl, 24h De-P
    下载: 导出CSV

    表 2  南黄海表层沉积物中各形态磷相关性

    Table 2.  Correlation among various phosphorus forms in the surface sediments of South Yellow Sea

    参数 TP IP OP Ex-P Fe-P Ca-P De-P
    TP 1
    IP 0.639** 1
    OP 0.480* −0.368 1
    Ex-P 0.526* 0.423 0.154 1
    Fe-P 0.512* 0.595** −0.059 0.727** 1
    Ca-P 0.519* 0.907** −0.408 0.222 0.470* 1
    De-P 0.085 0.271 −0.207 −0.271 0.457* 0.082 1
    注:**:p<0.01,*:p<0.05。
    下载: 导出CSV

    表 3  南黄海表层沉积物中形态磷与环境参数相关性

    Table 3.  Correlation among various phosphorus forms and environmental parameters in the surface sediments of South Yellow Sea

    参数 TP IP OP Ex-P Fe-P Ca-P De-P
    水深 −0.317 −0.107 −0.261 0.320 0.503* −0.087 −0.682**
    表层海水硫化物 0.368 0.148 0.273 0.029 0.092 0.025 0.208
    底层海水硫化物 0.223 0.228 −0.003 0.342 0.535* 0.133 −0.256
    表层海水温度 0.280 0.124 0.196 0.121 0.050 0.071 0.106
    底层海水温度 0.349 0.206 0.188 −0.041 −0.134 0.171 0.354
    表层海水盐度 −0.192 0.023 −0.258 0.209 0.359 −0.051 −0.260
    底层海水盐度 −0.192 0.001 −0.233 0.271 0.415 −0.071 −0.347
    表层海水pH值 −0.079 −0.055 −0.033 0.564** 0.602** −0.092 −0.687**
    底层海水pH值 −0.049 −0.168 0.133 0.053 0.020 −0.274 −0.006
    注:**:p<0.01; *:p<0.05。
    下载: 导出CSV
  • [1]

    Wang B D, Xin M, Wei Q S, et al. A historical overview of coastal eutrophication in the China Seas[J]. Marine Pollution Bulletin, 2018, 136:394-400. doi: 10.1016/j.marpolbul.2018.09.044

    [2]

    黎慧, 万夕和, 王李宝, 等. 南黄海辐射沙脊群海域氮磷的季节变化及潜在性富营养化分析[J]. 生态科学, 2016, 35(2):75-80

    LI Hui, WAN Xihe, WANG Libao, et al. Seasonal change of nitrogen and phosphorus and analysis of potential eutrophication in radial sand ridge group region of the South Yellow Sea[J]. Ecological Science, 2016, 35(2):75-80.

    [3]

    杨庶, 杨茜, 曲克明, 等. 南黄海近海富营养化长期演变的沉积记录[J]. 海洋与湖沼, 2017, 48(1):22-28

    YANG Shu, YANG Qian, QU Keming, et al. Sedimental records of eutrophication in coastal waters of the southern Yellow Sea[J]. Oceanologia et Limnologia Sinica, 2017, 48(1):22-28.

    [4]

    颜天, 于仁成, 周名江, 等. 黄海海域大规模绿潮成因与应对策略: “鳌山计划”研究进展[J]. 海洋与湖沼, 2018, 49(5):950-958

    YAN Tian, YU Rencheng, ZHOU Mingjiang, et al. Mechanism of massive formation and prevention strategy against large-scale green tides in the south yellow sea[J]. Oceanologia et Limnologia Sinica, 2018, 49(5):950-958.

    [5]

    韦钦胜, 王保栋, 姚庆祯, 等. 海水增温和富营养化驱动下的黄海水体脱氧和酸化[C]//中国海洋学会2017年学术年会论文集. 青岛: 中国海洋学会, 2017: 83-97

    WEI Qinsheng, WANG Baodong, YAO Qingzhen, et al. Deoxygenation and acidification of Yellow Sea waters driven by seawater warming and eutrophication[C]//Proceedings of the 2017 Annual Academic Conference of the Oceanic Society of China. Qingdao, 2017: 83-97.

    [6]

    Wei Q S, Yao Q Z, Wang B D, et al. Long-term variation of nutrients in the southern Yellow Sea[J]. Continental Shelf Research, 2015, 111:184-196. doi: 10.1016/j.csr.2015.08.003

    [7]

    宋金明, 李学刚, 邵君波, 等. 南黄海沉积物中氮、磷的生物地球化学行为[J]. 海洋与湖沼, 2006, 37(4):370-376

    SONG Jinming, LI Xuegang, SHAO Junbo, et al. Biogeochemical characteristics of nitrogen and phosphorus in the south Yellow Sea sediments[J]. Oceanologia et Limnologia Sinica, 2006, 37(4):370-376.

    [8]

    Meng J, Yu Z G, Yao Q Z, et al. Distribution, mixing behavior, and transformation of dissolved inorganic phosphorus and suspended particulate phosphorus along a salinity gradient in the Changjiang Estuary[J]. Marine Chemistry, 2015, 168:124-134. doi: 10.1016/j.marchem.2014.09.016

    [9]

    Barik S K, Bramha S, Bastia T K, et al. Characteristics of geochemical fractions of phosphorus and its bioavailability in sediments of a largest brackish water lake, South Asia[J]. Ecohydrology & Hydrobiology, 2019, 19(3):370-382.

    [10]

    Ruttenberg K C, Berner R A. Authigenic apatite formation and burial in sediments from non-upwelling, continental margin environments[J]. Geochimica et Cosmochimica Acta, 1993, 57(5):991-1007. doi: 10.1016/0016-7037(93)90035-U

    [11]

    Li C L, Yang D Z, Zhai W D. Effects of warming, eutrophication and climate variability on acidification of the seasonally stratified North Yellow Sea over the past 40 years[J]. Science of the Total Environment, 2022, 815:152935. doi: 10.1016/j.scitotenv.2022.152935

    [12]

    Sun Y Q, Yao L L, Liu J L, et al. Prevention strategies for green tides at source in the Southern Yellow Sea[J]. Marine Pollution Bulletin, 2022, 178:113646. doi: 10.1016/j.marpolbul.2022.113646

    [13]

    Li D X, Gao Z Q, Wang Z C. Analysis of the reasons for the outbreak of Yellow Sea green tide in 2021 based on long-term multi-source data[J]. Marine Environmental Research, 2022, 178:105649. doi: 10.1016/j.marenvres.2022.105649

    [14]

    Wang J J, Beusen A H W, Liu X C, et al. Spatially explicit inventory of sources of nitrogen inputs to the Yellow Sea, East China Sea, and South China Sea for the period 1970-2010[J]. Earth’s Future, 2020, 8(10):e2020EF001516. doi: 10.1029/2020EF001516

    [15]

    秦蕴珊, 赵一阳, 陈丽蓉, 等. 黄海地质[M]. 北京: 海洋出版社, 1989

    QIN Yunshan, ZHAO Yiyang, CHEN Lirong, et al. Yellow Sea Geology[M]. Beijing: Ocean Press, 1989.

    [16]

    苏纪兰, 袁业立. 中国近海水文[M]. 北京: 海洋出版社, 2005

    SU Jilan, YUAN Yeli. Modern Hydrology in China[M]. Beijing: Ocean Press, 2005.

    [17]

    石学法, 刘焱光, 乔淑卿, 等. 渤海、黄海和东海沉积物类型图[M]. 北京: 科学出版社, 2021

    SHI Xuefa, LIU Yanguang, QIAO Shuqing, et al. Sediment Type Map of the Bohai Sea, Yellow Sea and East China Sea[M]. Beijing: Science Press, 2021.

    [18]

    Aydin I, Aydin F, Saydut A, et al. A sequential extraction to determine the distribution of phosphorus in the seawater and marine surface sediment[J]. Journal of Hazardous Materials, 2009, 168(2-3):664-669. doi: 10.1016/j.jhazmat.2009.02.095

    [19]

    Shepard F P. Nomenclature based on sand-silt-clay ratios[J]. Journal of Sedimentary Research, 1954, 24(3):151-158.

    [20]

    Fu Z H, Hong Z J, Wei J L, et al. Phosphorus fractionation and adsorption characteristics in drinking water reservoir inlet river sediments under human disturbance[J]. Journal of Soils and Sediments, 2022, 22(9):2530-2547. doi: 10.1007/s11368-022-03257-1

    [21]

    黎睿, 王圣瑞, 肖尚斌, 等. 长江中下游与云南高原湖泊沉积物磷形态及内源磷负荷[J]. 中国环境科学, 2015, 35(6):1831-1839

    LI Rui, WANG Shengrui, XIAO Shangbin, et al. Sediments phosphorus forms and loading in the lakes of the mid-lower reaches of the Yangtze River and Yunnan Plateau, China[J]. China Environmental Science, 2015, 35(6):1831-1839.

    [22]

    Luo C Y, Wen S L, Lu Y H, et al. Coprecipitation of humic acid and phosphate with Fe(III) enhances the sequestration of carbon and phosphorus in sediments[J]. Chemical Geology, 2022, 588:120645. doi: 10.1016/j.chemgeo.2021.120645

    [23]

    Ding S, Liu Y, Dan S F, et al. Historical changes of sedimentary P-binding forms and their ecological driving mechanism in a typical "grass-algae" eutrophic lake[J]. Water Research, 2021, 204:117604. doi: 10.1016/j.watres.2021.117604

    [24]

    Cheng X L, Huang Y N, Li R, et al. Impacts of water temperature on phosphorus release of sediments under flowing overlying water[J]. Journal of Contaminant Hydrology, 2020, 235:103717. doi: 10.1016/j.jconhyd.2020.103717

    [25]

    Ding S M, Sun Q, Chen X, et al. Synergistic adsorption of phosphorus by iron in lanthanum modified bentonite (Phoslock®): New insight into sediment phosphorus immobilization[J]. Water Research, 2018, 134:32-43. doi: 10.1016/j.watres.2018.01.055

    [26]

    Chen X M, Zhang W, Yin Y P, et al. Seasonal variation characteristics and release potential of phosphorus in sediments: a case study of the Qiuxi River, a typical diffuse source pollution river in southwestern China[J]. Journal of Soils and Sediments, 2021, 21(1):575-591. doi: 10.1007/s11368-020-02805-x

    [27]

    Liu Y Q, Cao X Y, Li H, et al. Distribution of phosphorus-solubilizing bacteria in relation to fractionation and sorption behaviors of phosphorus in sediment of the Three Gorges Reservoir[J]. Environmental Science and Pollution Research, 2017, 24(21):17679-17687. doi: 10.1007/s11356-017-9339-0

    [28]

    Kaiserli A, Voutsa D, Samara C. Phosphorus fractionation in lake sediments - lakes Volvi and Koronia, N. Greece[J]. Chemosphere, 2002, 46(8):1147-1155. doi: 10.1016/S0045-6535(01)00242-9

    [29]

    Chen H J. Surface-flow constructed treatment wetlands for pollutant removal: applications and perspectives[J]. Wetlands, 2011, 31(4):805-814. doi: 10.1007/s13157-011-0186-3

    [30]

    周帆琦, 沙茜, 张维昊, 等. 武汉东湖和南湖沉积物中磷形态分布特征与相关分析[J]. 湖泊科学, 2014, 26(3):401-409 doi: 10.18307/2014.0310

    ZHOU Fanqi, SHA Qian, ZHANG Weihao, et al. Distribution and correlation analysis of phosphorus fractions in the sediments from the Lake Nanhu and Lake Donghu in Wuhan[J]. Journal of Lake Sciences, 2014, 26(3):401-409. doi: 10.18307/2014.0310

    [31]

    Andrieux-Loyer F, Aminot A. Phosphorus forms related to sediment grain size and geochemical characteristics in French coastal areas[J]. Estuarine, Coastal and Shelf Science, 2001, 52(5):617-629. doi: 10.1006/ecss.2001.0766

    [32]

    魏俊峰, 陈洪涛, 刘月良, 等. 2008年调水调沙期间黄河下游悬浮颗粒物中磷的赋存形态[J]. 环境科学, 2011, 32(2):368-374

    WEI Junfeng, CHEN Hongtao, LIU Yueliang, et al. Phosphorus forms of the suspended particulate matter in the Yellow Rive downstream during water and sediment regulation 2008[J]. Environmental Science, 2011, 32(2):368-374.

    [33]

    于子洋, 杜俊涛, 姚庆祯, 等. 黄河口湿地表层沉积物中磷赋存形态的分析[J]. 环境科学, 2014, 35(3):942-950

    YU Ziyang, DU Juntao, YAO Qingzhen, et al. Distribution of phosphorus in surface sediments from the Yellow River Estuary wetland[J]. Environmental Science, 2014, 35(3):942-950.

    [34]

    于佳真, 王晓昌, 薛涛, 等. 不同温度下西安汉城湖沉积物吸附、释放特性和磷形态[J]. 环境工程学报, 2016, 10(11):6275-6282

    YU Jiazhen, WANG Xiaochang, XUE Tao, et al. Phosphorus sorption, release characteristic under different temperature and phosphorus fractions in sediments of Hancheng Lake in Xi’an[J]. Chinese Journal of Environmental Engineering, 2016, 10(11):6275-6282.

    [35]

    岳维忠, 黄小平, 孙翠慈. 珠江口表层沉积物中氮、磷的形态分布特征及污染评价[J]. 海洋与湖沼, 2007, 38(2):111-117

    YUE Weizhong, HUANG Xiaoping, SUN Cuici. Distribution and pollution of nitrogen and phosphorus in surface sediments from the Pearl River Estuary[J]. Oceanologia et Limnologia Sinica, 2007, 38(2):111-117.

    [36]

    周爱民, 王东升, 汤鸿霄. 磷(P)在天然沉积物水界面上的吸附[J]. 环境科学学报, 2005, 25(1):64-69

    ZHOU Aimin, WANG Dongsheng, TANG Hongxiao. Adsorption of phosphorus on sediment-water interface[J]. Acta Scientiae Circumstantiae, 2005, 25(1):64-69.

    [37]

    Sutula M, Bianchi T S, McKee B A. Effect of seasonal sediment storage in the lower Mississippi River on the flux of reactive particulate phosphorus to the Gulf of Mexico[J]. Limnology and Oceanography, 2004, 49(6):2223-2235. doi: 10.4319/lo.2004.49.6.2223

    [38]

    Meng J, Yao P, Yu Z G, et al. Speciation, bioavailability and preservation of phosphorus in surface sediments of the Changjiang Estuary and adjacent East China Sea inner shelf[J]. Estuarine, Coastal and Shelf Science, 2014, 144:27-38. doi: 10.1016/j.ecss.2014.04.015

    [39]

    Baken S, Moens C, Van Der Grift B, et al. Phosphate binding by natural iron-rich colloids in streams[J]. Water Research, 2016, 98:326-333. doi: 10.1016/j.watres.2016.04.032

    [40]

    Sekula-Wood E, Benitez-Nelson C R, Bennett M A, et al. Magnitude and composition of sinking particulate phosphorus fluxes in Santa Barbara Basin, California[J]. Global Biogeochemical Cycles, 2012, 26(2):GB2023.

    [41]

    乔永民, 郭佳, 杨骏, 等. 洱海湖滨带与湖中心带表层沉积物磷的形态对比分析与环境学意义[J]. 生态科学, 2017, 36(4):38-45

    QIAO Yongmin, GUO Jia, YANG Jun, et al. Comparative analysis of phosphorus fraction in surface sediment between lakeside and middle zone of Erhai Lake and its environmental significance[J]. Ecological Science, 2017, 36(4):38-45.

    [42]

    Bańkowska-Sobczak A, Blazejczyk A, Eiche E, et al. Phosphorus inactivation in lake sediments using calcite materials and controlled resuspension-mechanism and efficiency[J]. Minerals, 2020, 10(3):223. doi: 10.3390/min10030223

    [43]

    孟佳, 姚庆祯, 陈洪涛, 等. 北黄海表层沉积物中颗粒态磷的形态分布[J]. 环境科学, 2012, 33(10):3361-3367

    MENG Jia, YAO Qingzhen, CHEN Hongtao, et al. Forms and distributions of particulate phosphorus in the surface sediments of North Yellow Sea[J]. Environmental Science, 2012, 33(10):3361-3367.

    [44]

    江雪, 文帅龙, 姚书春, 等. 天津于桥水库沉积物磷赋存特征及其环境意义[J]. 湖泊科学, 2018, 30(3):628-639 doi: 10.18307/2018.0305

    JIANG Xue, WEN Shuailong, YAO Shuchun, et al. Environmental significance of phosphorus existing forms in the sediments of Yuqiao Reservoir in Tianjin[J]. Journal of Lake Sciences, 2018, 30(3):628-639. doi: 10.18307/2018.0305

    [45]

    Yang B, Song G D, Liu S M, et al. Phosphorus recycling and burial in core sediments of the East China Sea[J]. Marine Chemistry, 2017, 192:59-72. doi: 10.1016/j.marchem.2017.04.001

    [46]

    Liu S M, Zhang J, Chen H T, et al. Benthic nutrient recycling in shallow coastal waters of the Bohai Sea[J]. Chinese Journal of Oceanology and Limnology, 2004, 22(4):365-372. doi: 10.1007/BF02843630

    [47]

    Bastami K D, Neyestani M R, Raeisi H, et al. Bioavailability and geochemical speciation of phosphorus in surface sediments of the Southern Caspian Sea[J]. Marine Pollution Bulletin, 2018, 126:51-57. doi: 10.1016/j.marpolbul.2017.10.095

    [48]

    向速林, 吴涛哲, 龚聪远, 等. 去除有机质对城市浅水湖泊氮磷释放特征的影响[J]. 水土保持通报, 2021, 41(5):9-14,74

    XIANG Sulin, WU Taozhe, GONG Congyuan, et al. Effects of organic matter removal on nitrogen and phosphorus release characteristics from surface sediments in urban shallow lakes[J]. Bulletin of Soil and Water Conservation, 2021, 41(5):9-14,74.

    [49]

    Zhuang W, Gao X L, Zhang Y, et al. Geochemical characteristics of phosphorus in surface sediments of two major Chinese mariculture areas: The Laizhou Bay and the coastal waters of the Zhangzi Island[J]. Marine Pollution Bulletin, 2014, 83(1):343-351. doi: 10.1016/j.marpolbul.2014.03.040

    [50]

    潘成荣, 汪家权, 郑志侠, 等. 巢湖沉积物中氮与磷赋存形态研究[J]. 生态与农村环境学报, 2007, 23(1):43-47

    PAN Chengrong, WANG Jiaquan, ZHENG Zhixia, et al. Forms of phosphorus and nitrogen existing in sediments in Chaohu Lake[J]. Journal of Ecology and Rural Environment, 2007, 23(1):43-47.

    [51]

    Rydin E, Malmaeus J M, Karlsson O M, et al. Phosphorus release from coastal Baltic Sea sediments as estimated from sediment profiles[J]. Estuarine, Coastal and Shelf Science, 2011, 92(1):111-117. doi: 10.1016/j.ecss.2010.12.020

    [52]

    Mort H P, Slomp C P, Gustafsson B G, et al. Phosphorus recycling and burial in Baltic Sea sediments with contrasting redox conditions[J]. Geochimica et Cosmochimica Acta, 2010, 74(4):1350-1362. doi: 10.1016/j.gca.2009.11.016

    [53]

    Lukkari K, Leivuori M, Vallius H, et al. The chemical character and burial of phosphorus in shallow coastal sediments in the northeastern Baltic Sea[J]. Biogeochemistry, 2009, 94(2):141-162. doi: 10.1007/s10533-009-9315-y

    [54]

    Redfield A C, Ketchum B H, Richards F A. The influence of organisms on the composition of seawater[M]//Hill M N. The Sea. New York: Wiley InterScience, 1963.

    [55]

    Coelho J P, Flindt M R, Jensen H S, et al. Phosphorus speciation and availability in intertidal sediments of a temperate estuary: relation to eutrophication and annual P-fluxes[J]. Estuarine, Coastal and Shelf Science, 2004, 61(4):583-590. doi: 10.1016/j.ecss.2004.07.001

    [56]

    Prasad M B K, Ramanathan A L. Dissolved organic nutrients in the Pichavaram mangrove waters of east coast of India[J]. Indian Journal of Geo-Marine Sciences, 2008, 37(2):141-145.

  • 加载中

(9)

(3)

计量
  • 文章访问数:  870
  • PDF下载数:  69
  • 施引文献:  0
出版历程
收稿日期:  2023-07-31
修回日期:  2023-08-22
录用日期:  2023-08-22
刊出日期:  2023-10-28

目录