九州-帕劳海脊南段铁锰结壳物质组成特征及成因机制

丁雪, 刘佳, 杨慧良, 赵京涛, 黄威, 李攀峰, 宋维宇, 郭建卫, 虞义勇, 崔汝勇, 胡邦琦. 九州-帕劳海脊南段铁锰结壳物质组成特征及成因机制[J]. 海洋地质与第四纪地质, 2023, 43(4): 105-115. doi: 10.16562/j.cnki.0256-1492.2023053101
引用本文: 丁雪, 刘佳, 杨慧良, 赵京涛, 黄威, 李攀峰, 宋维宇, 郭建卫, 虞义勇, 崔汝勇, 胡邦琦. 九州-帕劳海脊南段铁锰结壳物质组成特征及成因机制[J]. 海洋地质与第四纪地质, 2023, 43(4): 105-115. doi: 10.16562/j.cnki.0256-1492.2023053101
DING Xue, LIU Jia, YANG Huiliang, ZHAO Jingtao, HUANG Wei, LI Panfeng, SONG Weiyu, GUO Jianwei, YU Yiyong, CUI Ruyong, HU Bangqi. Composition characteristics and genetic mechanism of ferromanganese crusts in the southern section of the Kyushu-Palau Ridge[J]. Marine Geology & Quaternary Geology, 2023, 43(4): 105-115. doi: 10.16562/j.cnki.0256-1492.2023053101
Citation: DING Xue, LIU Jia, YANG Huiliang, ZHAO Jingtao, HUANG Wei, LI Panfeng, SONG Weiyu, GUO Jianwei, YU Yiyong, CUI Ruyong, HU Bangqi. Composition characteristics and genetic mechanism of ferromanganese crusts in the southern section of the Kyushu-Palau Ridge[J]. Marine Geology & Quaternary Geology, 2023, 43(4): 105-115. doi: 10.16562/j.cnki.0256-1492.2023053101

九州-帕劳海脊南段铁锰结壳物质组成特征及成因机制

  • 基金项目: 国家自然科学基金面上项目“菲律宾海盆底层水体性质对中更新世气候转型的响应机制”(41976192);中国地质调查局地质调查二级项目(DD20230647,DD20221720)
详细信息
    作者简介: 丁雪(1986—),女,硕士,助理研究员,主要从事海洋沉积与矿物地球化学研究,E-mail:dingxue@mail.cgs.gov.cn
    通讯作者: 胡邦琦(1983—),男,博士,研究员,主要从事海洋沉积与矿产资源调查评价,E-mail:bangqihu@gmail.com
  • 中图分类号: P736.4

Composition characteristics and genetic mechanism of ferromanganese crusts in the southern section of the Kyushu-Palau Ridge

More Information
  • 铁锰结壳(又称富钴结壳、多金属结壳)富含Co、Cu、Mn、Ni、Ti、V、REE、Y和Zn等人类日常生活和高新技术产业亟需的关键金属,是一种重要的战略性矿产资源。本文对九州-帕劳海脊南段水深1900~2600 m处获得的9个站位铁锰结壳样品进行了矿物学和地球化学研究,分析了铁锰结壳的矿物组成、主微量元素和稀土元素含量,并进一步探讨了铁锰结壳的成因类型。结果表明,研究区铁锰结壳的矿物组成以水羟锰矿为主,同时含有大量非晶态铁氧/氢氧化物;Mn、Fe、Co、Ni、Cu平均含量分别为16.15%、15.38%、0.32%、0.33%、0.10%;CaO/P2O5均值为5.93,表明九州-帕劳海脊南段铁锰结壳样品均未发生磷酸盐化作用;铁锰结壳明显富集稀土元素(含Y,REYs),平均含量为1194 μg/g,轻稀土显著富集,稀土元素经后太古代澳大利亚页岩(PAAS)标准化后配分模式整体相对平坦,呈现Ce正异常而Eu无异常,与海水呈现镜像关系,说明铁锰结壳稀土元素主要来源于海水。铁锰结壳的矿物组成和元素判别图均表明九州-帕劳海脊南段铁锰结壳属于水成型,未受明显的成岩作用影响。

  • 加载中
  • 图 1  研究区地理位置和水文环境特征(A)及铁锰结壳样品站位分布图(B)(红色三角为铁锰结壳站位,白色五角星为CTD09测站)、CTD09站实测温度(C)、盐度(D)和溶解氧(E)垂向分布图

    Figure 1. 

    图 2  研究区铁锰结壳样品

    Figure 2. 

    图 3  A12和A17站铁锰结壳样品X射线衍射特征性图谱

    Figure 3. 

    图 4  研究区铁锰结壳样品微量元素蛛网图

    Figure 4. 

    图 5  研究区铁锰结壳样品PAAS标准化稀土元素配分曲线

    Figure 5. 

    图 6  研究区铁锰结壳成因类型三角判别图

    Figure 6. 

    图 7  研究区铁锰结壳样品CeSN/CeSN*比值与Nd浓度关系图(A)以及CeSN/CeSN*比值与YSN/HoSN比值关系图(B)[10]

    Figure 7. 

    表 1  九州-帕劳海脊南段铁锰结壳常量元素组成(元素单位:%)

    Table 1.  Major element composition of ferromanganese crust samples in the southern section of Kyushu-Palau Ridge (element content: %)

    样品编号AlCaMgKNaTiPMnFeMn/Fe
    A32.844.191.311.485.981.240.7615.015.70.96
    A42.664.911.130.925.791.130.5314.718.00.81
    A51.403.821.130.765.331.190.7021.117.61.2
    A74.704.491.751.475.401.160.2510.413.80.76
    A122.026.911.160.874.481.090.4916.815.91.06
    A12-13.185.581.220.902.220.820.4012.514.30.87
    A12-20.856.461.240.442.670.700.4216. 913.01.3
    A17-11.322.291.270.431.551.020.3621.615.11.43
    A17-21.142.970.910.381.290.790.3116. 912.91.31
    AB125.032.821.331.052.360.960.4011.515.10.77
    AB141.972.231.140.481.700.980.3917. 917.61.02
    AB152.382.411.151.002.500.900.3818.415.81.17
    下载: 导出CSV

    表 2  九州-帕劳海脊南段铁锰结壳和全球各大洋铁锰结壳中主要金属元素含量

    Table 2.  Contents of main metal elements in ferromanganese crust samples of the southern section of Kyushu-Palau Ridge and other major ocean ferromanganese crusts

    样品编号Mn/%Fe/%Co/%Ni/%Cu/%Y/(μg/g)∑REE/(μg/g)
    A315.015.70.340.280.071961286
    A414.718.00.210.240.101351024
    A521.117.60.470.400.071881327
    A710.413.80.210.200.1061640
    A1216.815.90.360.320.101631239
    A12-112.514.30.200.260.08122860
    A12-216. 913.00.280.320.041341075
    A17-121.615.10.500.550.231031267
    A17-216.912.90.390.380.111061001
    AB1211.515.10.180.210.11120761
    AB1417. 917.60.340.380.141421244
    AB1518.415.80.390.400.091151022
    卡罗琳洋脊CM4海山[18]24.215.10.160.340.011401148
    西太平洋[12]19.616.40.660.370.121701775
    中太平洋[7]22.816.90.670.420.102212221
    南太平洋[7]21.718.10.620.460.111772363
    大西洋[7]14.520.90.360.260.091812249
    印度洋[7]17.022.30.330.260.111781457
    下载: 导出CSV
  • [1]

    Hein J R, Mizell K, Koschinsky A, et al. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: comparison with land-based resources[J]. Ore Geology Reviews, 2013, 51: 1-14.

    [2]

    Koschinsky A, Hein J R. Marine ferromanganese encrustations: archives of changing oceans[J]. Elements, 2017, 13(3): 177-182.

    [3]

    Josso P, Pelleter E, Pourret O, et al. A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements[J]. Ore Geology Reviews, 2017, 87: 3-15.

    [4]

    Lusty P A J, Hein J R, Josso P. Formation and occurrence of ferromanganese crusts: earth's storehouse for critical metals[J]. Elements, 2018, 14(5): 313-318.

    [5]

    Josso P, Rushton J, Lusty P, et al. Late Cretaceous and Cenozoic paleoceanography from north-east Atlantic ferromanganese crust microstratigraphy[J]. Marine Geology, 2020, 422: 106122.

    [6]

    Josso P, Parkinson I, Horstwood M, et al. Improving confidence in ferromanganese crust age models: a composite geochemical approach[J]. Chemical Geology, 2019, 513: 108-119.

    [7]

    Hein J R, Koschinsky A. 13.11 - Deep-ocean ferromanganese crusts and nodules[J]. Treatise on Geochemistry (Second Edition), 2014, 13: 273-291.

    [8]

    Bonatti E, Kraemer T, Rydell H. Classification and genesis of submarine iron-manganese deposits[M]//Horn D R. Ferromanganese Deposits on the Ocean Floor. Washington: National Science Foundation, 1972: 149-165.

    [9]

    Hein J R, Koschinsky A, Halbach P, et al. Iron and manganese oxide mineralization in the Pacific[J]. Geological Society, London, Special Publications, 1997, 119(1): 123-138.

    [10]

    Bau M, Schmidt K, Koschinsky A, et al. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium[J]. Chemical Geology, 2014, 381: 1-9.

    [11]

    Hein J R, Conrad T, Mizell K, et al. Controls on ferromanganese crust composition and reconnaissance resource potential, Ninetyeast Ridge, Indian Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2016, 110: 110: 1-19.

    [12]

    杨胜雄, 龙晓军, 祁奇, 等. 西太平洋富钴结壳矿物学和地球化学特征: 以麦哲伦海山和马尔库斯-威克海山富钴结壳为例[J]. 中国海洋大学学报, 2016, 46(2): 105-116

    YANG Shengxiong, LONG Xiaojun, QI Qi, et al. The mineralogical and geochemical characteristics of co-rich crusts from the western Pacific: taking the co-rich crusts from Magellan and Marcus-wake seamounts as an example[J]. Periodical of Ocean University of China, 2016, 46(2): 105-116.

    [13]

    邓贤泽, 任江波, 邓希光, 等. 富钴结壳关键元素赋存状态与富集机理[J]. 地质通报, 2021, 40(S1): 376-384

    DENG Xianze, REN Jiangbo, DENG Xiguang, et al. Cobalt-rich crust obtains high contents of key elements from seawater: element absorption and distribution[J]. Geological Bulletin of China, 2021, 40(S1): 376-384.

    [14]

    石学法, 符亚洲, 李兵, 等. 我国深海矿产研究: 进展与发现(2011—2020)[J]. 矿物岩石地球化学通报, 2021, 40(2): 305-318

    SHI Xuefa, FU Yazhou, LI Bing, et al. Research on deep-sea minerals in China: progress and discovery (2011-2020)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(2): 305-318.

    [15]

    何高文, 杨永, 韦振权, 等. 西太平洋中国富钴结壳勘探合同区矿床地质[J]. 中国有色金属学报, 2021, 31(10): 2649-2664

    HE Gaowen, YANG Yong, WEI Zhenquan, et al. Mineral deposit characteristics of cobalt-rich Fe-Mn crusts in COMRA contract area, Western Pacific Ocean[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(10): 2649-2664.

    [16]

    Hein J R, Conrad T, Mizell K, et al. Controls on ferromanganese crust composition and reconnaissance resource potential, Ninetyeast Ridge, Indian Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2016, 110: 1-19.

    [17]

    刘凯, 王珍岩. 西太平洋Kocebu海山铁锰结壳稀土元素地球化学特征[J]. 海洋地质与第四纪地质, 2021, 41(1): 210-222 doi: 10.16562/j.cnki.0256-1492.2020092101

    LIU Kai, WANG Zhenyan. Geochemistry of rare earth elements and yttrium in ferromanganese crusts from Kocebu Guyot in the Western Pacific[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 210-222. doi: 10.16562/j.cnki.0256-1492.2020092101

    [18]

    侯晓帆, 王珍岩, 李文建, 等. 西太平洋卡罗琳洋脊CM4海山铁锰结壳矿物学和地球化学特征[J]. 海洋与湖沼, 2020, 51(5): 1118-1126 doi: 10.11693/hyhz20191000193

    HOU Xiaofan, WANG Zhenyan, LI Wenjian, et al. Mineralogy and geochemistry of ferromanganese crusts of Caroline Ridge CM4 Guyot in the western Pacific[J]. Oceanologia et Limnologia Sinica, 2020, 51(5): 1118-1126. doi: 10.11693/hyhz20191000193

    [19]

    张晔. 麦哲伦海山区海山富钴结壳与海盆多金属结核对比研究[D]. 中国地质大学(北京)硕士学位论文, 2021

    ZHANG Ye. Comparative study of cobalt-rich crusts and polymetallic nodules in seamounts of Magellan Sea[D]. Master Dissertation of China University of Geosciences (Beijing), 2021.

    [20]

    王洋. 中、西太平洋多金属结壳成矿元素的时空富集规律及其古海洋学意义[D]. 中国地质大学(北京)博士学位论文, 2020

    WANG Yang. Temporal and spatial enrichment of metallogenic elements in polymetallic crusts from central and western Pacific and its paleoceanographic significance[D]. Doctor Dissertation of China University of Geosciences (Beijing), 2020.

    [21]

    刘家岐, 兰晓东. 中太平洋莱恩海山富钴结壳元素地球化学特征及成因[J]. 海洋地质与第四纪地质, 2022, 42(2): 81-91 doi: 10.16562/j.cnki.0256-1492.2021041901

    LIU Jiaqi, LAN Xiaodong. Element geochemistry and genesis of cobalt-rich crust on the Line Seamount of the Central Pacific[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 81-91. doi: 10.16562/j.cnki.0256-1492.2021041901

    [22]

    高晶晶, 刘季花, 张辉, 等. 西太平洋采薇海山和徐福海山富钴结壳稀土元素地球化学特征及来源[J]. 海洋地质与第四纪地质, 2022, 42(3): 87-99 doi: 10.16562/j.cnki.0256-1492.2021071302

    GAO Jingjing, LIU Jihua, ZHANG Hui, et al. Geochemistry and sources of rare earth elements in cobalt-rich crusts from the Caiwei and Xufu seamounts, West Pacific Ocean[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 87-99. doi: 10.16562/j.cnki.0256-1492.2021071302

    [23]

    高晶晶, 刘季花, 张辉, 等. 麦哲伦海山群富钴结壳元素地球化学特征及赋存状态[J]. 海洋与湖沼, 2023, 54(2): 424-435 doi: 10.11693/hyhz20220600149

    GAO Jingjing, LIU Jihua, ZHANG Hui, et al. Geochemistry and occurrence phase of the elements in cobalt-rich crusts from the Magellan seamounts[J]. Oceanologia et Limnologia Sinica, 2023, 54(2): 424-435. doi: 10.11693/hyhz20220600149

    [24]

    Ishizuka O, Taylor R N, Yuasa M, et al. Making and breaking an island arc: a new perspective from the Oligocene Kyushu-Palau arc, Philippine Sea[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(5): Q05005.

    [25]

    Usui A, Graham I J, Ditchburn R G, et al. Growth history and formation environments of ferromanganese deposits on the Philippine Sea Plate, northwest Pacific Ocean[J]. Island Arc, 2007, 16(3): 420-430.

    [26]

    徐兆凯, 李安春, 蒋富清, 等. 东菲律宾海晚中新世末期以来古海洋环境演化的新型铁锰结壳记录[J]. 中国科学 D辑: 地球科学, 2007, 37(4): 512-520

    XU Zhaokai, LI Anchun, JIANG Fuqing, et al. A new iron-manganese crust record of paleomarine environmental evolution in the East Philippine Sea since the end of the Late Miocene[J]. Science in China Series D: Earth Sciences, 2007, 37(4): 512-520.

    [27]

    徐兆凯, 李安春, 蒋富清, 等. 东菲律宾海深水区新型铁锰结壳的特征和成因[J]. 海洋地质与第四纪地质, 2006, 26(4): 91-98 doi: 10.16562/j.cnki.0256-1492.2006.04.013

    XU Zhaokai, LI Anchun, JIANG Fuqing, et al. Characteristics and origin of the new-type ferromanganese crusts fromdeepwater areas of the East Philippine Sea[J]. Marine Geology & Quaternary Geology, 2006, 26(4): 91-98. doi: 10.16562/j.cnki.0256-1492.2006.04.013

    [28]

    Zhou J, Cai P J, Yang C P, et al. Geochemical characteristics and genesis of ferromanganese nodules and crusts from the Central Rift Seamounts Group of the West Philippine Sea[J]. Ore Geology Reviews, 2022, 145: 104923.

    [29]

    Ren J B, Yao H Q, Yang Y, et al. Critical metal enrichment in atypical hydrogenetic ferromanganese nodules: a case study in the Central Basin Ridge of the West Philippine Basin[J]. Chemical Geology, 2023, 615: 121224.

    [30]

    宋维宇, 李超, 孟祥君, 等. 九州-帕劳海脊南段共生多金属结核与富钴结壳地球化学特征及其资源意义[J]. 海洋地质与第四纪地质, 2022, 42(5): 149-157 doi: 10.16562/j.cnki.0256-1492.2022061701

    SONG Weiyu, LI Chao, MENG Xiangjun, et al. Geochemical characteristics and resource significance of polymetallic nodules and cobalt-rich crusts in the southern Kyushu-Palau ridge[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 149-157. doi: 10.16562/j.cnki.0256-1492.2022061701

    [31]

    黄威, 胡邦琦, 宋维宇, 等. 九州-帕劳海脊南部13°20′N海山铁锰结壳关键金属富集规律及制约因素[J]. 海洋地质与第四纪地质, 2022, 42(5): 137-148 doi: 10.16562/j.cnki.0256-1492.2022052401

    HUANG Wei, HU Bangqi, SONG Weiyu, et al. Enrichment and constraints of critical metals in ferromanganese crusts from 13°20'N seamount of the southern Kyushu-Palau Ridge[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 137-148. doi: 10.16562/j.cnki.0256-1492.2022052401

    [32]

    黄威, 胡邦琦, 徐磊, 等. 帕里西维拉海盆西缘中段铁锰结核的地球化学特征和成因类型[J]. 海洋地质与第四纪地质, 2021, 41(1): 199-209 doi: 10.16562/j.cnki.0256-1492.2020101501

    HUANG Wei, HU Bangqi, XU Lei, et al. Geochemical characteristics and genesis of the ferromanganese nodules in the middle western margin of the Parece Vela Basin[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 199-209. doi: 10.16562/j.cnki.0256-1492.2020101501

    [33]

    Kawabe M, Fujio S. Pacific ocean circulation based on observation[J]. Journal of Oceanography, 2010, 66(3): 389-403.

    [34]

    Zhai F G, Gu Y Z. Abyssal circulation in the philippine sea[J]. Journal of Ocean University of China, 2020, 19(2): 249-262.

    [35]

    Zang N, Wang F, Sprintall J. The intermediate water in the Philippine Sea[J]. Journal of Oceanology and Limnology, 2020, 38(5): 1343-1353.

    [36]

    Wu J, Suppe J, Lu R Q, et al. Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(6): 4670-4741.

    [37]

    侯方辉, 秦轲, 陆凯, 等. 九州-帕劳海脊中段及两侧盆地构造沉积特征及俯冲起始: 多道反射地震综合研究[J]. 海洋地质与第四纪地质, 2022, 42(5): 187-198

    HOU Fanghui, QIN Ke, LU Kai, et al. Tectono-sedimentary characteristics and subduction initiation in the middle Kyushu-Palau Ridge and adjacent basins: a comprehensive study of multichannel seismic reflection profiles[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 187-198.

    [38]

    Zhang H D, Che H, Xia J Q, et al. Sedimentary CaCO3 accumulation in the deep West Pacific Ocean[J]. Frontiers in Earth Science, 2022, 10: 857260.

    [39]

    Hein J R, Koschinsk A, Bau M, et al. Cobalt-rich ferromanganese crusts in the pacific[M]//Cronan D S. Handbook of Marine Mineral Deposits. New York: Routledge, 2000: 239-279.

    [40]

    潘家华, 刘淑琴, 杨忆, 等. 西太平洋海山磷酸盐的常量、微量和稀土元素地球化学研究[J]. 地质论评, 2002, 48(5): 534-541 doi: 10.3321/j.issn:0371-5736.2002.05.012

    PAN Jiahua, LIU Shuqin, YANG Yi, et al. Research on geochemical characteristics of major, trace and rare-earth elements in phosphates from the West Pacific seamounts[J]. Geological Review, 2002, 48(5): 534-541. doi: 10.3321/j.issn:0371-5736.2002.05.012

    [41]

    Rudnick R L, Gao S. 4.1-Composition of the continental crust[J]. Treatise on Geochemistry (Second Edition), 2014, 4: 1-51.

    [42]

    高晶晶, 刘季花, 张辉, 等. 太平洋海山富钴结壳中铂族元素赋存状态与富集机理[J]. 海洋学报, 2019, 41(8): 115-124

    GAO Jingjing, LIU Jihua, ZHANG Hui, et al. Occurrence phase and enrichment mechanism of platinum group elements in the Pacific cobalt-rich crusts[J]. Haiyang Xuebao, 2019, 41(8): 115-124.

    [43]

    Bau M, Koschinsky A. Oxidative scavenging of cerium on hydrous Fe oxide: evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts[J]. Geochemical Journal, 2009, 43(1): 37-47.

    [44]

    何高文, 孙晓明, 杨胜雄, 等. 太平洋多金属结核和富钴结壳稀土元素地球化学对比及其地质意义[J]. 中国地质, 2011, 38(2): 462-472 doi: 10.3969/j.issn.1000-3657.2011.02.020

    HE Gaowen, SUN Xiaoming, YANG Shengxiong, et al. A comparison of REE geochemistry between polymetallic nodules and cobalt rich crusts in the Pacific Ocean[J]. Geology in China, 2011, 38(2): 462-472. doi: 10.3969/j.issn.1000-3657.2011.02.020

    [45]

    Behrens M K, Pahnke K, Paffrath R, et al. Rare earth element distributions in the West Pacific: trace element sources and conservative vs. non-conservative behavior[J]. Earth and Planetary Science Letters, 2018, 486: 166-177.

    [46]

    Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater[J]. Geochimica et Cosmochimica Acta, 1996, 60(10): 1709-1725.

  • 加载中

(7)

(2)

计量
  • 文章访问数:  679
  • PDF下载数:  1
  • 施引文献:  0
出版历程
收稿日期:  2023-05-31
修回日期:  2023-07-11
录用日期:  2023-07-11
刊出日期:  2023-08-28

目录