Composition characteristics and genetic mechanism of ferromanganese crusts in the southern section of the Kyushu-Palau Ridge
-
摘要:
铁锰结壳(又称富钴结壳、多金属结壳)富含Co、Cu、Mn、Ni、Ti、V、REE、Y和Zn等人类日常生活和高新技术产业亟需的关键金属,是一种重要的战略性矿产资源。本文对九州-帕劳海脊南段水深1900~2600 m处获得的9个站位铁锰结壳样品进行了矿物学和地球化学研究,分析了铁锰结壳的矿物组成、主微量元素和稀土元素含量,并进一步探讨了铁锰结壳的成因类型。结果表明,研究区铁锰结壳的矿物组成以水羟锰矿为主,同时含有大量非晶态铁氧/氢氧化物;Mn、Fe、Co、Ni、Cu平均含量分别为16.15%、15.38%、0.32%、0.33%、0.10%;CaO/P2O5均值为5.93,表明九州-帕劳海脊南段铁锰结壳样品均未发生磷酸盐化作用;铁锰结壳明显富集稀土元素(含Y,REYs),平均含量为1194 μg/g,轻稀土显著富集,稀土元素经后太古代澳大利亚页岩(PAAS)标准化后配分模式整体相对平坦,呈现Ce正异常而Eu无异常,与海水呈现镜像关系,说明铁锰结壳稀土元素主要来源于海水。铁锰结壳的矿物组成和元素判别图均表明九州-帕劳海脊南段铁锰结壳属于水成型,未受明显的成岩作用影响。
Abstract:Ferromanganese crusts (also known as cobalt-rich crusts or polymetallic crusts) are important strategic resources of minerals rich in key metals (Co, Cu, Mn, Ni, Ti, V, REE, Y, and Zn), which is essential for both human being’s daily life and high-tech industries. We conducted mineralogical and geochemical analyses of nine ferromanganese crust stations obtained from depths of 1900~2600 m in the southern section of the Kyushu-Palau Ridge, analyzed the mineral composition, major and trace element contents, and rare earth element (REE) contents of the ferromanganese crusts, and explored their genetic types. Results show that the mineral composition of the ferromanganese crusts was dominated by vernadite, and contained a large amount of amorphous iron oxide/hydroxide. The average contents of Mn, Fe, Co, Ni, and Cu were 16.15%, 15.38%, 0.32%, 0.33%, and 0.10%, respectively. The average CaO/P2O5 ratio was 5.93, indicating that the ferromanganese crust samples from the southern section of Kyushu-Palau Ridge had not undergone phosphatization. The ferromanganese crusts were significantly enriched in REYs, with an average content of 1194 μg/g. Light REEs were significantly enriched, and the Post-Archean Australian Shales (PAAS) normalized distribution pattern was relatively flat, showing a positive Ce anomaly and no Eu anomaly, and the REEs in the ferromanganese crusts may have originated from seawater. The mineral composition and genetic discrimination diagrams of the ferromanganese crusts indicated that they were of hydrogenetic origin and were not significantly affected by diagenesis.
-
Key words:
- ferromanganese crusts /
- geochemistry /
- mineralogy /
- genesis /
- the Kyushu-Palau Ridge
-
图 7 研究区铁锰结壳样品CeSN/CeSN*比值与Nd浓度关系图(A)以及CeSN/CeSN*比值与YSN/HoSN比值关系图(B)[10]
Figure 7.
表 1 九州-帕劳海脊南段铁锰结壳常量元素组成(元素单位:%)
Table 1. Major element composition of ferromanganese crust samples in the southern section of Kyushu-Palau Ridge (element content: %)
样品编号 Al Ca Mg K Na Ti P Mn Fe Mn/Fe A3 2.84 4.19 1.31 1.48 5.98 1.24 0.76 15.0 15.7 0.96 A4 2.66 4.91 1.13 0.92 5.79 1.13 0.53 14.7 18.0 0.81 A5 1.40 3.82 1.13 0.76 5.33 1.19 0.70 21.1 17.6 1.2 A7 4.70 4.49 1.75 1.47 5.40 1.16 0.25 10.4 13.8 0.76 A12 2.02 6.91 1.16 0.87 4.48 1.09 0.49 16.8 15.9 1.06 A12-1 3.18 5.58 1.22 0.90 2.22 0.82 0.40 12.5 14.3 0.87 A12-2 0.85 6.46 1.24 0.44 2.67 0.70 0.42 16. 9 13.0 1.3 A17-1 1.32 2.29 1.27 0.43 1.55 1.02 0.36 21.6 15.1 1.43 A17-2 1.14 2.97 0.91 0.38 1.29 0.79 0.31 16. 9 12.9 1.31 AB12 5.03 2.82 1.33 1.05 2.36 0.96 0.40 11.5 15.1 0.77 AB14 1.97 2.23 1.14 0.48 1.70 0.98 0.39 17. 9 17.6 1.02 AB15 2.38 2.41 1.15 1.00 2.50 0.90 0.38 18.4 15.8 1.17 表 2 九州-帕劳海脊南段铁锰结壳和全球各大洋铁锰结壳中主要金属元素含量
Table 2. Contents of main metal elements in ferromanganese crust samples of the southern section of Kyushu-Palau Ridge and other major ocean ferromanganese crusts
样品编号 Mn/% Fe/% Co/% Ni/% Cu/% Y/(μg/g) ∑REE/(μg/g) A3 15.0 15.7 0.34 0.28 0.07 196 1286 A4 14.7 18.0 0.21 0.24 0.10 135 1024 A5 21.1 17.6 0.47 0.40 0.07 188 1327 A7 10.4 13.8 0.21 0.20 0.10 61 640 A12 16.8 15.9 0.36 0.32 0.10 163 1239 A12-1 12.5 14.3 0.20 0.26 0.08 122 860 A12-2 16. 9 13.0 0.28 0.32 0.04 134 1075 A17-1 21.6 15.1 0.50 0.55 0.23 103 1267 A17-2 16.9 12.9 0.39 0.38 0.11 106 1001 AB12 11.5 15.1 0.18 0.21 0.11 120 761 AB14 17. 9 17.6 0.34 0.38 0.14 142 1244 AB15 18.4 15.8 0.39 0.40 0.09 115 1022 卡罗琳洋脊CM4海山[18] 24.2 15.1 0.16 0.34 0.01 140 1148 西太平洋[12] 19.6 16.4 0.66 0.37 0.12 170 1775 中太平洋[7] 22.8 16.9 0.67 0.42 0.10 221 2221 南太平洋[7] 21.7 18.1 0.62 0.46 0.11 177 2363 大西洋[7] 14.5 20.9 0.36 0.26 0.09 181 2249 印度洋[7] 17.0 22.3 0.33 0.26 0.11 178 1457 -
[1] Hein J R, Mizell K, Koschinsky A, et al. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: comparison with land-based resources[J]. Ore Geology Reviews, 2013, 51: 1-14.
[2] Koschinsky A, Hein J R. Marine ferromanganese encrustations: archives of changing oceans[J]. Elements, 2017, 13(3): 177-182.
[3] Josso P, Pelleter E, Pourret O, et al. A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements[J]. Ore Geology Reviews, 2017, 87: 3-15.
[4] Lusty P A J, Hein J R, Josso P. Formation and occurrence of ferromanganese crusts: earth's storehouse for critical metals[J]. Elements, 2018, 14(5): 313-318.
[5] Josso P, Rushton J, Lusty P, et al. Late Cretaceous and Cenozoic paleoceanography from north-east Atlantic ferromanganese crust microstratigraphy[J]. Marine Geology, 2020, 422: 106122.
[6] Josso P, Parkinson I, Horstwood M, et al. Improving confidence in ferromanganese crust age models: a composite geochemical approach[J]. Chemical Geology, 2019, 513: 108-119.
[7] Hein J R, Koschinsky A. 13.11 - Deep-ocean ferromanganese crusts and nodules[J]. Treatise on Geochemistry (Second Edition), 2014, 13: 273-291.
[8] Bonatti E, Kraemer T, Rydell H. Classification and genesis of submarine iron-manganese deposits[M]//Horn D R. Ferromanganese Deposits on the Ocean Floor. Washington: National Science Foundation, 1972: 149-165.
[9] Hein J R, Koschinsky A, Halbach P, et al. Iron and manganese oxide mineralization in the Pacific[J]. Geological Society, London, Special Publications, 1997, 119(1): 123-138.
[10] Bau M, Schmidt K, Koschinsky A, et al. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium[J]. Chemical Geology, 2014, 381: 1-9.
[11] Hein J R, Conrad T, Mizell K, et al. Controls on ferromanganese crust composition and reconnaissance resource potential, Ninetyeast Ridge, Indian Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2016, 110: 110: 1-19.
[12] 杨胜雄, 龙晓军, 祁奇, 等. 西太平洋富钴结壳矿物学和地球化学特征: 以麦哲伦海山和马尔库斯-威克海山富钴结壳为例[J]. 中国海洋大学学报, 2016, 46(2): 105-116
YANG Shengxiong, LONG Xiaojun, QI Qi, et al. The mineralogical and geochemical characteristics of co-rich crusts from the western Pacific: taking the co-rich crusts from Magellan and Marcus-wake seamounts as an example[J]. Periodical of Ocean University of China, 2016, 46(2): 105-116.
[13] 邓贤泽, 任江波, 邓希光, 等. 富钴结壳关键元素赋存状态与富集机理[J]. 地质通报, 2021, 40(S1): 376-384
DENG Xianze, REN Jiangbo, DENG Xiguang, et al. Cobalt-rich crust obtains high contents of key elements from seawater: element absorption and distribution[J]. Geological Bulletin of China, 2021, 40(S1): 376-384.
[14] 石学法, 符亚洲, 李兵, 等. 我国深海矿产研究: 进展与发现(2011—2020)[J]. 矿物岩石地球化学通报, 2021, 40(2): 305-318
SHI Xuefa, FU Yazhou, LI Bing, et al. Research on deep-sea minerals in China: progress and discovery (2011-2020)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(2): 305-318.
[15] 何高文, 杨永, 韦振权, 等. 西太平洋中国富钴结壳勘探合同区矿床地质[J]. 中国有色金属学报, 2021, 31(10): 2649-2664
HE Gaowen, YANG Yong, WEI Zhenquan, et al. Mineral deposit characteristics of cobalt-rich Fe-Mn crusts in COMRA contract area, Western Pacific Ocean[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(10): 2649-2664.
[16] Hein J R, Conrad T, Mizell K, et al. Controls on ferromanganese crust composition and reconnaissance resource potential, Ninetyeast Ridge, Indian Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2016, 110: 1-19.
[17] 刘凯, 王珍岩. 西太平洋Kocebu海山铁锰结壳稀土元素地球化学特征[J]. 海洋地质与第四纪地质, 2021, 41(1): 210-222 doi: 10.16562/j.cnki.0256-1492.2020092101
LIU Kai, WANG Zhenyan. Geochemistry of rare earth elements and yttrium in ferromanganese crusts from Kocebu Guyot in the Western Pacific[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 210-222. doi: 10.16562/j.cnki.0256-1492.2020092101
[18] 侯晓帆, 王珍岩, 李文建, 等. 西太平洋卡罗琳洋脊CM4海山铁锰结壳矿物学和地球化学特征[J]. 海洋与湖沼, 2020, 51(5): 1118-1126 doi: 10.11693/hyhz20191000193
HOU Xiaofan, WANG Zhenyan, LI Wenjian, et al. Mineralogy and geochemistry of ferromanganese crusts of Caroline Ridge CM4 Guyot in the western Pacific[J]. Oceanologia et Limnologia Sinica, 2020, 51(5): 1118-1126. doi: 10.11693/hyhz20191000193
[19] 张晔. 麦哲伦海山区海山富钴结壳与海盆多金属结核对比研究[D]. 中国地质大学(北京)硕士学位论文, 2021
ZHANG Ye. Comparative study of cobalt-rich crusts and polymetallic nodules in seamounts of Magellan Sea[D]. Master Dissertation of China University of Geosciences (Beijing), 2021.
[20] 王洋. 中、西太平洋多金属结壳成矿元素的时空富集规律及其古海洋学意义[D]. 中国地质大学(北京)博士学位论文, 2020
WANG Yang. Temporal and spatial enrichment of metallogenic elements in polymetallic crusts from central and western Pacific and its paleoceanographic significance[D]. Doctor Dissertation of China University of Geosciences (Beijing), 2020.
[21] 刘家岐, 兰晓东. 中太平洋莱恩海山富钴结壳元素地球化学特征及成因[J]. 海洋地质与第四纪地质, 2022, 42(2): 81-91 doi: 10.16562/j.cnki.0256-1492.2021041901
LIU Jiaqi, LAN Xiaodong. Element geochemistry and genesis of cobalt-rich crust on the Line Seamount of the Central Pacific[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 81-91. doi: 10.16562/j.cnki.0256-1492.2021041901
[22] 高晶晶, 刘季花, 张辉, 等. 西太平洋采薇海山和徐福海山富钴结壳稀土元素地球化学特征及来源[J]. 海洋地质与第四纪地质, 2022, 42(3): 87-99 doi: 10.16562/j.cnki.0256-1492.2021071302
GAO Jingjing, LIU Jihua, ZHANG Hui, et al. Geochemistry and sources of rare earth elements in cobalt-rich crusts from the Caiwei and Xufu seamounts, West Pacific Ocean[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 87-99. doi: 10.16562/j.cnki.0256-1492.2021071302
[23] 高晶晶, 刘季花, 张辉, 等. 麦哲伦海山群富钴结壳元素地球化学特征及赋存状态[J]. 海洋与湖沼, 2023, 54(2): 424-435 doi: 10.11693/hyhz20220600149
GAO Jingjing, LIU Jihua, ZHANG Hui, et al. Geochemistry and occurrence phase of the elements in cobalt-rich crusts from the Magellan seamounts[J]. Oceanologia et Limnologia Sinica, 2023, 54(2): 424-435. doi: 10.11693/hyhz20220600149
[24] Ishizuka O, Taylor R N, Yuasa M, et al. Making and breaking an island arc: a new perspective from the Oligocene Kyushu-Palau arc, Philippine Sea[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(5): Q05005.
[25] Usui A, Graham I J, Ditchburn R G, et al. Growth history and formation environments of ferromanganese deposits on the Philippine Sea Plate, northwest Pacific Ocean[J]. Island Arc, 2007, 16(3): 420-430.
[26] 徐兆凯, 李安春, 蒋富清, 等. 东菲律宾海晚中新世末期以来古海洋环境演化的新型铁锰结壳记录[J]. 中国科学 D辑: 地球科学, 2007, 37(4): 512-520
XU Zhaokai, LI Anchun, JIANG Fuqing, et al. A new iron-manganese crust record of paleomarine environmental evolution in the East Philippine Sea since the end of the Late Miocene[J]. Science in China Series D: Earth Sciences, 2007, 37(4): 512-520.
[27] 徐兆凯, 李安春, 蒋富清, 等. 东菲律宾海深水区新型铁锰结壳的特征和成因[J]. 海洋地质与第四纪地质, 2006, 26(4): 91-98 doi: 10.16562/j.cnki.0256-1492.2006.04.013
XU Zhaokai, LI Anchun, JIANG Fuqing, et al. Characteristics and origin of the new-type ferromanganese crusts fromdeepwater areas of the East Philippine Sea[J]. Marine Geology & Quaternary Geology, 2006, 26(4): 91-98. doi: 10.16562/j.cnki.0256-1492.2006.04.013
[28] Zhou J, Cai P J, Yang C P, et al. Geochemical characteristics and genesis of ferromanganese nodules and crusts from the Central Rift Seamounts Group of the West Philippine Sea[J]. Ore Geology Reviews, 2022, 145: 104923.
[29] Ren J B, Yao H Q, Yang Y, et al. Critical metal enrichment in atypical hydrogenetic ferromanganese nodules: a case study in the Central Basin Ridge of the West Philippine Basin[J]. Chemical Geology, 2023, 615: 121224.
[30] 宋维宇, 李超, 孟祥君, 等. 九州-帕劳海脊南段共生多金属结核与富钴结壳地球化学特征及其资源意义[J]. 海洋地质与第四纪地质, 2022, 42(5): 149-157 doi: 10.16562/j.cnki.0256-1492.2022061701
SONG Weiyu, LI Chao, MENG Xiangjun, et al. Geochemical characteristics and resource significance of polymetallic nodules and cobalt-rich crusts in the southern Kyushu-Palau ridge[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 149-157. doi: 10.16562/j.cnki.0256-1492.2022061701
[31] 黄威, 胡邦琦, 宋维宇, 等. 九州-帕劳海脊南部13°20′N海山铁锰结壳关键金属富集规律及制约因素[J]. 海洋地质与第四纪地质, 2022, 42(5): 137-148 doi: 10.16562/j.cnki.0256-1492.2022052401
HUANG Wei, HU Bangqi, SONG Weiyu, et al. Enrichment and constraints of critical metals in ferromanganese crusts from 13°20'N seamount of the southern Kyushu-Palau Ridge[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 137-148. doi: 10.16562/j.cnki.0256-1492.2022052401
[32] 黄威, 胡邦琦, 徐磊, 等. 帕里西维拉海盆西缘中段铁锰结核的地球化学特征和成因类型[J]. 海洋地质与第四纪地质, 2021, 41(1): 199-209 doi: 10.16562/j.cnki.0256-1492.2020101501
HUANG Wei, HU Bangqi, XU Lei, et al. Geochemical characteristics and genesis of the ferromanganese nodules in the middle western margin of the Parece Vela Basin[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 199-209. doi: 10.16562/j.cnki.0256-1492.2020101501
[33] Kawabe M, Fujio S. Pacific ocean circulation based on observation[J]. Journal of Oceanography, 2010, 66(3): 389-403.
[34] Zhai F G, Gu Y Z. Abyssal circulation in the philippine sea[J]. Journal of Ocean University of China, 2020, 19(2): 249-262.
[35] Zang N, Wang F, Sprintall J. The intermediate water in the Philippine Sea[J]. Journal of Oceanology and Limnology, 2020, 38(5): 1343-1353.
[36] Wu J, Suppe J, Lu R Q, et al. Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(6): 4670-4741.
[37] 侯方辉, 秦轲, 陆凯, 等. 九州-帕劳海脊中段及两侧盆地构造沉积特征及俯冲起始: 多道反射地震综合研究[J]. 海洋地质与第四纪地质, 2022, 42(5): 187-198
HOU Fanghui, QIN Ke, LU Kai, et al. Tectono-sedimentary characteristics and subduction initiation in the middle Kyushu-Palau Ridge and adjacent basins: a comprehensive study of multichannel seismic reflection profiles[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 187-198.
[38] Zhang H D, Che H, Xia J Q, et al. Sedimentary CaCO3 accumulation in the deep West Pacific Ocean[J]. Frontiers in Earth Science, 2022, 10: 857260.
[39] Hein J R, Koschinsk A, Bau M, et al. Cobalt-rich ferromanganese crusts in the pacific[M]//Cronan D S. Handbook of Marine Mineral Deposits. New York: Routledge, 2000: 239-279.
[40] 潘家华, 刘淑琴, 杨忆, 等. 西太平洋海山磷酸盐的常量、微量和稀土元素地球化学研究[J]. 地质论评, 2002, 48(5): 534-541 doi: 10.3321/j.issn:0371-5736.2002.05.012
PAN Jiahua, LIU Shuqin, YANG Yi, et al. Research on geochemical characteristics of major, trace and rare-earth elements in phosphates from the West Pacific seamounts[J]. Geological Review, 2002, 48(5): 534-541. doi: 10.3321/j.issn:0371-5736.2002.05.012
[41] Rudnick R L, Gao S. 4.1-Composition of the continental crust[J]. Treatise on Geochemistry (Second Edition), 2014, 4: 1-51.
[42] 高晶晶, 刘季花, 张辉, 等. 太平洋海山富钴结壳中铂族元素赋存状态与富集机理[J]. 海洋学报, 2019, 41(8): 115-124
GAO Jingjing, LIU Jihua, ZHANG Hui, et al. Occurrence phase and enrichment mechanism of platinum group elements in the Pacific cobalt-rich crusts[J]. Haiyang Xuebao, 2019, 41(8): 115-124.
[43] Bau M, Koschinsky A. Oxidative scavenging of cerium on hydrous Fe oxide: evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts[J]. Geochemical Journal, 2009, 43(1): 37-47.
[44] 何高文, 孙晓明, 杨胜雄, 等. 太平洋多金属结核和富钴结壳稀土元素地球化学对比及其地质意义[J]. 中国地质, 2011, 38(2): 462-472 doi: 10.3969/j.issn.1000-3657.2011.02.020
HE Gaowen, SUN Xiaoming, YANG Shengxiong, et al. A comparison of REE geochemistry between polymetallic nodules and cobalt rich crusts in the Pacific Ocean[J]. Geology in China, 2011, 38(2): 462-472. doi: 10.3969/j.issn.1000-3657.2011.02.020
[45] Behrens M K, Pahnke K, Paffrath R, et al. Rare earth element distributions in the West Pacific: trace element sources and conservative vs. non-conservative behavior[J]. Earth and Planetary Science Letters, 2018, 486: 166-177.
[46] Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater[J]. Geochimica et Cosmochimica Acta, 1996, 60(10): 1709-1725.