冲绳海槽南部热液区附近柱状沉积物中微生物的垂直分布多样性及其对环境因子的响应

邓兴渝, 曹文瑞, 姜明玉, 曾志刚, 常凤鸣, 宋召军. 冲绳海槽南部热液区附近柱状沉积物中微生物的垂直分布多样性及其对环境因子的响应[J]. 海洋地质与第四纪地质, 2023, 43(5): 198-213. doi: 10.16562/j.cnki.0256-1492.2023061901
引用本文: 邓兴渝, 曹文瑞, 姜明玉, 曾志刚, 常凤鸣, 宋召军. 冲绳海槽南部热液区附近柱状沉积物中微生物的垂直分布多样性及其对环境因子的响应[J]. 海洋地质与第四纪地质, 2023, 43(5): 198-213. doi: 10.16562/j.cnki.0256-1492.2023061901
DENG Xingyu, CAO Wenrui, JIANG Mingyu, ZENG Zhigang, CHANG Fengming, SONG Zhaojun. Microbial vertical diversity in core sediments and its response to environmental factors near the hydrothermal field of the southern Okinawa Trough[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 198-213. doi: 10.16562/j.cnki.0256-1492.2023061901
Citation: DENG Xingyu, CAO Wenrui, JIANG Mingyu, ZENG Zhigang, CHANG Fengming, SONG Zhaojun. Microbial vertical diversity in core sediments and its response to environmental factors near the hydrothermal field of the southern Okinawa Trough[J]. Marine Geology & Quaternary Geology, 2023, 43(5): 198-213. doi: 10.16562/j.cnki.0256-1492.2023061901

冲绳海槽南部热液区附近柱状沉积物中微生物的垂直分布多样性及其对环境因子的响应

  • 基金项目: 山东省自然科学基金面上项目“冲绳海槽唐印热液区周边沉积物中硫氧化菌多样性及其硫代谢途径的比较研究”(ZR2020MD088);国家自然科学基金面上项目“西太平洋铁锰结核的生物成矿特征及其成矿元素的微生物迁移过程研究”(41976202);中国科学院海洋地质与环境重点实验室开放基金课题(MGE2022KG4,MGE2022KG6);国家重点基础研究发展计划(973计划)项目“典型弧后盆地热液活动及其成矿机理”(2013CB429700);泰山学者工程“海底热液系统、岩浆活动、沉积记录与结核结壳研究”(ts201511061)
详细信息
    作者简介: 邓兴渝(1998—),女,硕士研究生,主要从事地质微生物方向研究,E-mail:dengxingyu@qdio.ac.cn
    通讯作者: 曹文瑞(1985—),男,副研究员,研究方向为地质微生物,E-mail:wrcao@qdio.ac.cn
  • 中图分类号: P736

Microbial vertical diversity in core sediments and its response to environmental factors near the hydrothermal field of the southern Okinawa Trough

More Information
  • 近年来,海底热液环境中的微生物及其环境适应机制已经成为海洋科学研究的热点。目前,相关的研究主要集中在表层沉积物及微生物的水平分布多样性方面,而对柱状沉积物中微生物垂直分布多样性研究却很少。本文基于西太平洋冲绳海槽南部热液区附近S2站位的柱状沉积物样品,通过对其不同层位的样品进行分离培养和16S rRNA基因高通量测序,揭示了样品中可培养微生物和总体微生物的垂直群落分布特征,同时结合对样品主量元素、微量元素、碳氮含量等指标的评估和冗余分析等统计学方法,讨论了微生物群落结构及其对环境因子的响应。研究发现该位点的柱状沉积物有机质含量较为贫乏,存在两个富含Cu-Zn-Pb的层;各个层位的沉积物中微生物类群均以变形菌为主要类群,同时表层沉积物表现出更高的微生物多样性。此外研究还表明柱状沉积物中有机碳含量与其微生物的群落组成有着更为密切的关系。总之, 本研究的结果和获得的菌种资源为进一步深入研究海底热液环境中微生物参与元素地球化学循环的过程提供了一定的基础。

  • 加载中
  • 图 1  不同层位沉积物中Cu、Zn、Pb、TC、TN和TOC含量变化

    Figure 1. 

    图 2  基于16S rRNA基因序列构建的可培养细菌的系统发育树

    Figure 2. 

    图 3  样品的α-多样性指数表征

    Figure 3. 

    图 4  基于科水平的物种聚类显示的样品中不同细菌所占的比例

    Figure 4. 

    图 5  基于物种相对丰度的不同层位样品间的主坐标分析

    Figure 5. 

    图 6  基于科水平差异物种相对丰度的样本聚类热图

    Figure 6. 

    图 7  样品、微生物种群及环境因子RDA图

    Figure 7. 

    表 1  本研究使用样品的地球化学组成

    Table 1.  Geochemical compositions of the samples used in this study

    样品深
    度/cmbsf
    18 30 81 100 110 171 181 190 199 240 248 267 288 301 311 334 380 392 475
    Na2O/% 2.03 1.98 1.81 1.9 1.86 1.98 1.8 1.84 1.84 1.79 1.79 1.78 1.95 1.89 1.96 1.83 1.89 2.02 1.88
    MgO/% 2.64 2.3 2.49 2.5 2.59 2.03 2.43 2.65 2.58 2.4 2.38 2.41 2.71 2.58 2.48 2.39 2.54 2.57 2.49
    Al2O3/% 16.32 15.39 16.33 15.77 15.23 14.25 16.11 16.65 16.31 16.37 16.2 16.41 16.13 15.92 15.31 15.98 15.96 15.9 16.37
    SiO2/% 58.88 60.43 59.27 59.7 59.17 62.59 59.43 58.05 57.99 59.26 59.53 59.27 59.12 58.48 58.99 59.51 59.62 58.96 58.55
    Fe2O3/% 6.43 5.85 6.43 6.03 5.98 5.09 6.21 6.41 6.43 6.31 6.18 6.23 6.32 6.23 5.8 6.14 6.26 6.24 6.26
    K2O/% 3.26 2.97 3.27 3.11 3.09 2.76 3.26 3.46 3.35 3.29 3.23 3.26 3.28 3.23 3.04 3.21 3.24 3.17 3.28
    CaO/% 2.21 2.67 2.4 2.66 3.52 2.92 2.6 2.66 2.92 2.55 2.6 2.49 2.41 3.13 3.46 2.68 2.52 2.62 2.75
    P/10−6 706.1 714.3 684.3 674 632.5 623.6 631.4 607.2 635.4 642 649.2 689.1 646.6 602.5 653.1 620.1 623 899 618.5
    S/10−6 761.1 859.7 649.3 841 804.9 956.8 567.1 580.2 657.2 517.6 559 569.4 620.3 650.5 782.9 556.5 734.1 660.4 661.3
    Cl/10−6 6037.2 6000 3860.6 4979.2 4420.3 5220.8 4230.2 5057 5537.6 3815.5 4061.6 4257.9 5084 5536.1 6376.4 4519.6 4159.3 6186.9 5395
    Ti/10−6 4742.1 4697.5 4834.1 4714.8 4530.7 4377.6 4777.1 4603 4734.4 4868.5 4826 4845.9 4641.3 4639.4 4567 4743.7 4663.3 4562.8 4811.9
    V/10−6 131.8 110 128.4 124.9 122.7 100.9 122.7 129.6 128.4 118.9 119.6 117.4 139.2 127.3 117 119.8 131.9 129.2 125
    Cr/10−6 99.5 84.6 94.9 88.2 88.8 76.1 90.1 100.1 95.2 91.6 90.8 90 97.6 92.6 85.8 88.6 94.6 89.8 93.4
    Mn/10−6 478.4 505.3 527.1 463 496.2 404.1 507 475 493.8 513.2 510.5 542.4 489.8 503.1 492.1 509.3 458.6 623.8 529.6
    Co/10−6 16.5 16.6 18.6 16 21.8 13.9 16.6 16.7 16.1 15.6 15.6 17.7 17.7 17.5 16 17 16.7 16 16.8
    Ni/10−6 40.3 35.8 40.8 37.2 36.9 30.8 37.5 39.9 38.5 38.5 37.3 37.5 39.4 39.5 35.9 36.9 38.8 37.3 39
    Cu/10−6 48.9 28.2 38.5 36.5 35 18.9 26.3 40.1 28.6 28.9 25.4 26.5 57.9 28.5 25.2 26 44.3 43.9 27
    Zn/10−6 130.8 95.9 117.6 113.9 110.4 83.4 103.3 126.8 107.2 108.3 103.2 105.5 154.7 107.4 95.7 102.5 135.4 129.5 105.4
    Ga/10−6 21.2 19.7 22.5 20.2 20.9 18.3 21 22.9 21.6 22.8 20.9 21.6 21.3 21.7 19 21.5 22.2 20.7 21.7
    As/10−6 17 15.5 19.4 12.3 10.5 8.3 12.2 14.8 12.5 12.6 12.2 13.2 17.3 11.6 9.2 11.5 14 14.7 11.7
    Rb/10−6 150.6 135.9 153.3 141.8 140.8 122.5 152.7 163.4 158 157.3 151.8 152.6 150.5 151.1 137.3 150.6 149.7 144.6 154
    Sr/10−6 144 149 149 149 170 149 149 155 159 151 152 147 151 162 167 152 151 155 155
    Zr/10−6 194 208 190 203 189 236 196 170 177 192 198 196 184 179 200 194 189 191 187
    Nb/10−6 18.3 21.6 18 17.3 17.7 17 18.8 17.7 20.4 18.5 19 18.7 17.8 19 18.9 18.5 21.1 17.8 18.2
    U/10−6 3.7 3.8 3.5 3.5 3.9 2.9 3.8 3.9 4.2 4.1 3.8 3.8 3.8 3.8 3.4 3.8 3.9 3.6 3.6
    Mo/10−6 1.2 1.5 1.3 1.1 1.3 1 1.4 1.5 1.6 1.3 1.3 1.3 1.4 1.4 1.3 1.3 1.7 1.2 1.3
    Sn/10−6 10.1 9.7 8.3 7.3 10.6 8 12.2 14.6 13.6 9.5 11.1 14.2 10.9 14.4 15.2 10.8 18.7 13.6 10.9
    Sb/10−6 15.2 9.6 9.3 7.1 10 11.2 13.4 18.3 13.8 7.7 12.3 15.7 11.8 20.6 17.2 13 24.5 15 14.9
    Ba/10−6 524 474 521 493 507 430 517 549 515 509 500 497 562 504 487 503 537 518 500
    Hf/10−6 5.5 5.9 5.4 6 5.5 6.7 5.5 5.1 5.1 5.7 5.9 5.5 5.3 5.4 5.8 5.5 5.2 5.6 5.3
    W/10−6 2.9 7.3 5.1 12.1 9.1 12.9 4.4 2.4 6.3 4.3 4.2 6.9 11.6 3.2 7.6 4.3 4.4 6.6 4.6
    Pb/10−6 93.5 33.6 55.9 58.3 49.9 27.6 36.8 61.1 37.5 37.4 33.8 34.5 116.9 39.3 36.7 38.7 92.3 94.9 36
    Bi/10−6 0.5 0.2 1 1.3 1.4 2.4 1.2 1.6 0.3 1.3 1.5 0 0 0 0.7 1 0.6 1.3 0
    Th/10−6 15.2 15 13.8 13.9 12.8 10.6 16.1 14 16.1 14.7 14.6 15.5 14.7 16.4 13.1 14.8 15.1 14.7 14.5
    Ce/10−6 76.5 54.2 62.8 73.7 71.8 74.8 65.5 68.4 78.7 72.8 66.4 69.4 66.8 68.4 72.9 65.1 68 65.7 84.4
    Nd/10−6 27.8 38.4 34 29.1 32.8 29.3 35.1 31 26.9 26.8 33.6 30.8 35.7 31.3 31.8 28 27.5 25.2 29.5
    Y/10−6 26.8 27.4 26.8 27 25.5 26.1 26.8 24.4 26 26.2 27.7 27.2 25.8 25.8 26.1 26.7 25.4 25.6 27
    La/10−6 44.7 36.3 44.3 35.3 36.4 40.3 41.2 36.4 44.6 44.8 39.8 42 37.7 38.1 33.8 40.8 38.2 44.6 43.8
    Sc/10−6 13.9 15 16.6 14.7 15.5 10.6 16 15.6 16.1 13.6 12.9 17.5 13.4 14.3 12.8 15.9 15.1 15.4 14.3
    TN/% 0.16 0.1 0.14 0.1 0.13 0.07 0.11 0.15 0.13 0.12 0.1 0.15 0.16 0.12 0.13 0.12 0.14 0.14 0.12
    TC/% 1.43 1.1 1.29 1.24 1.58 1.16 1.33 1.54 1.33 1.39 1.38 1.63 1.43 1.62 1.64 1.41 1.52 1.43 1.52
    TOC/% 1.05 0.7 0.91 0.69 0.92 0.67 0.82 0.93 0.85 0.66 0.86 1.01 0.96 0.98 0.86 0.85 1.04 1.02 0.9
    下载: 导出CSV

    表 2  基于16S rRNA基因序列的菌株分类鉴定信息

    Table 2.  Isolation and identification of strains based on 16S rRNA gene sequence analysis

    菌株号亲缘菌株16S rRNA
    基因相似性/%
    层位深度
    /cmbsf
    16S rRNA基因
    序列登录号
    18A01Alcanivorax xenomutans JC109T99.2218OQ186762
    18E01Bacillus tequilensis KCTC 13622T99.7918OQ186763
    18E02Pelagibacterium halotolerans B2T99.7818OQ186764
    18E03Bacillus altitudinis 41KF2bT99.9318OQ186765
    18E04Pseudonocardia carboxydivorans Y8T99.9318OQ186766
    18E05Alcanivorax xenomutans JC109T10018OQ186767
    18M01Alcanivorax venustensis ISO4T10018OQ186768
    18S01Alcanivorax xenomutans JC109T10018OQ186769
    81A02Alcanivorax xenomutans JC109T99.9381OQ186770
    81E01Rossellomorea aquimaris TF-12T99.2181OQ186771
    81E02Sutcliffiella halmapala DSM 8723T99.1481OQ186772
    81E03Rossellomorea aquimaris TF-12T99.2981OQ186773
    81E05Fictibacillus arsenicus Con a/3T99.7181OQ186774
    81E06Bacillus safensis subsp. safensis FO-36bT99.8681OQ186775
    81E07-1Alcanivorax xenomutans JC109T99.9381OQ186777
    81E07-2Staphylococcus pseudoxylosus S04009T99.8681OQ186778
    81E08Mesobacillus thioparans BMP-1T99.7181OQ186779
    81E09Mesorhizobium sediminum YIM M12096T99.7781OQ186780
    110E01Halomonas titanicae BH1T99.44110OQ186781
    110E02Metabacillus idriensis SMC 4352-2T99.93110OQ186782
    110E03Pseudonocardia carboxydivorans Y8T100110OQ186783
    110E04Mesorhizobium sediminum YIM M12096T99.77110OQ186784
    110E05Pelagibacterium halotolerans B2T99.78110OQ186785
    110E06Sutcliffiella horikoshii DSM 8719T99.29110OQ186786
    110E07Virgibacillus halodenitrificans DSM 10037T99.93110OQ186787
    181E01Halomonas titanicae BH1T100181OQ186788
    181E02Rossellomorea aquimaris TF-12T99.36181OQ186789
    181E03Pseudonocardia carboxydivorans Y8T99.79181OQ186790
    181E04Nitratireductor aquibiodomus JCM 21793T99.08181OQ186791
    181M01Halomonas titanicae BH1T100181OQ186792
    181S01Martelella mediterranea DSM 17316T99.63181OQ186793
    199A01Alcanivorax xenomutans JC109T100199OQ186794
    199E01Nitratireductor aquibiodomus JCM 21793T99.17199OQ186795
    199E02Mesorhizobium sediminum YIM M12096T99.77199OQ186796
    199E03Pseudonocardia carboxydivorans Y8T99.78199OQ186797
    199M01Halomonas titanicae BH1T100199OQ186798
    248E02Paenisporosarcina quisquiliarum SK 55T99.38248OQ186799
    248E04Nitratireductor aquibiodomus JCM 21793T99.03248OQ186800
    248E05Citromicrobium bathyomarinum JF-1T99.7248OQ186801
    301A01Alcanivorax xenomutans JC109T99.93301OQ186802
    301E02Paenisporosarcina macmurdoensis CMS 21wT99.31301OQ186803
    301E04Paenisporosarcina macmurdoensis CMS 21wT99.72301OQ186804
    301E05Pelagerythrobacter marinus H32T99.93301OQ186805
    301E06Nitratireductor aquibiodomus JCM 21793T98.94301OQ186806
    334E03Paenisporosarcina macmurdoensis CMS 21wT99.15334OQ186807
    334E04Paenisporosarcina macmurdoensis CMS 21wT99.14334OQ186808
    334E05Alcanivorax xenomutans JC109T100334OQ186809
    334M01Alcanivorax xenomutans JC109T99.93334OQ186810
    334S02Alcanivorax xenomutans JC109T100334OQ186811
    334S03Muricauda ruestringensis DSM 13258T98.48334OQ186812
    334S04Alcanivorax xenomutans JC109T100334OQ186813
    392A01Alcanivorax xenomutans JC109T99.93392OQ186814
    392E01Paenisporosarcina quisquiliarum SK 55T99.71392OQ186815
    392E02Alcanivorax xenomutans JC109T100392OQ186816
    392E03Pelagerythrobacter marinus H32T100392OQ186817
    392E04Pelagibacterium nitratireducens JLT2005T99.77392OQ186818
    392E05Paracoccus marcusii DSM 11574T99.77392OQ186819
    392E06Paenisporosarcina quisquiliarum SK 55T99.79392OQ186820
    475E01Alkalihalobacillus hwajinpoensis SW-72T99.65475OQ186821
    475E02Thalassospira xiamenensis M-5T99.65475OQ186822
    475E03Qipengyuania vulgaris 022 2-10T99.85475OQ186823
    475E04Pelagibacterium nitratireducens JLT2005T99.7475OQ186824
    475S01Alcanivorax xenomutans JC109T99.93475OQ186825
    475M01Thalassospira xiamenensis M-5T99.85475OQ186826
    下载: 导出CSV
  • [1]

    王风平, 周悦恒, 张新旭, 等. 深海微生物多样性[J]. 生物多样性, 2013, 21(4): 446-456

    WANG Fengping, ZHOU Yueheng, ZHANG Xinxu, et al. Biodiversity of deep-sea microorganisms[J]. Biodiversity Science, 2013, 21(4): 446-456.

    [2]

    李学恭, 徐俊, 肖湘. 深海微生物高压适应与生物地球化学循环[J]. 微生物学通报, 2013, 40(1): 59-70

    LI Xuegong, XU Jun, XIAO Xiang. High pressure adaptation of deep-sea microorganisms and biogeochemical cycles[J]. Microbiology China, 2013, 40(1): 59-70.

    [3]

    Takai K, Nakagawa S, Nunoura T. Comparative investigation of microbial communities associated with hydrothermal activities in the Okinawa Trough[M]//Ishibashi J I, Okino K, Sunamura M. Subseafloor Biosphere Linked to Hydrothermal Systems. Tokyo: Springer, 2015: 421-435.

    [4]

    Takai K, Nakamura K. Compositional, physiological and metabolic variability in microbial communities associated with geochemically diverse, deep-sea hydrothermal vent fluids[M]//Barton L L, Mandl M, Loy A. Geomicrobiology: Molecular and Environmental Perspective. Dordrecht: Springer, 2010: 251-283.

    [5]

    Nakamura K, Takai K. Theoretical constraints of physical and chemical properties of hydrothermal fluids on variations in chemolithotrophic microbial communities in seafloor hydrothermal systems[J]. Progress in Earth and Planetary Science, 2014, 1(1): 5. doi: 10.1186/2197-4284-1-5

    [6]

    Nakagawa S, Takai K. Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance[J]. FEMS Microbiology Ecology, 2008, 65(1): 1-14. doi: 10.1111/j.1574-6941.2008.00502.x

    [7]

    Takai K, Nakamura K. Archaeal diversity and community development in deep-sea hydrothermal vents[J]. Current Opinion in Microbiology, 2011, 14(3): 282-291. doi: 10.1016/j.mib.2011.04.013

    [8]

    Guan L, Cho K H, Lee J H. Analysis of the cultivable bacterial community in jeotgal, a Korean salted and fermented seafood, and identification of its dominant bacteria[J]. Food Microbiology, 2011, 28(1): 101-113. doi: 10.1016/j.fm.2010.09.001

    [9]

    Thornburg C C, Zabriskie T M, McPhail K L. Deep-sea hydrothermal vents: potential hot spots for natural products discovery?[J]. Journal of Natural Products, 2010, 73(3): 489-499. doi: 10.1021/np900662k

    [10]

    Wang S S, Jiang L J, Hu Q T, et al. Elemental sulfur reduction by a deep-sea hydrothermal vent Campylobacterium Sulfurimonas sp. NW10[J]. Environmental Microbiology, 2021, 23(2): 965-979. doi: 10.1111/1462-2920.15247

    [11]

    杜瑞, 于敏, 程景广, 等. 冲绳海槽热液区可培养硫氧化细菌多样性及其硫氧化特性[J]. 微生物学报, 2019, 59(6): 1036-1049 doi: 10.13343/j.cnki.wsxb.20180353

    DU Rui, YU Min, CHENG Jingguang, et al. Diversity and sulfur oxidation characteristics of cultivable sulfur oxidizing bacteria in hydrothermal fields of Okinawa Trough[J]. Acta microbiologica Sinica, 2019, 59(6): 1036-1049. doi: 10.13343/j.cnki.wsxb.20180353

    [12]

    Venter J C, Remington K, Heidelberg J F, et al. Environmental genome shotgun sequencing of the Sargasso Sea[J]. Science, 2004, 304(5667): 66-74. doi: 10.1126/science.1093857

    [13]

    刘明华, 王健鑫, 俞凯成, 等. 东海陆架表层沉积物细菌群落结构及地理分布研究[J]. 海洋与湖沼, 2015, 46(5): 1119-1131

    LIU Minghua, WANG Jianxin, YU Kaicheng, et al. Community structure and geographical distribution of bacterial on surface layer sediments in the east China Sea[J]. Oceanologia et Limnologia Sinica, 2015, 46(5): 1119-1131.

    [14]

    王苑如, 崔鸿鹏, 李继东, 等. 西太平洋多金属结核区表层沉积物细菌群落结构及其对沉积扰动的响应[J]. 海洋学研究, 2021, 39(2): 21-32

    WANG Yuanru, CUI Hongpeng, LI Jidong, et al. The structure of bacterial communities and its response to the sedimentary disturbance in the surface sediment of western Pacific polymetallic nodule area[J]. Journal of Marine Sciences, 2021, 39(2): 21-32.

    [15]

    Inagaki F, Kuypers M M M, Tsunogai U, et al. Microbial community in a sediment-hosted CO2 lake of the southern Okinawa Trough hydrothermal system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(38): 14164-14169.

    [16]

    Yanagawa K, Ijiri A, Breuker A, et al. Defining boundaries for the distribution of microbial communities beneath the sediment-buried, hydrothermally active seafloor[J]. The ISME Journal, 2017, 11(2): 529-542. doi: 10.1038/ismej.2016.119

    [17]

    Nakagawa S, Takai K, Inagaki F, et al. Variability in microbial community and venting chemistry in a sediment-hosted backarc hydrothermal system: impacts of subseafloor phase-separation[J]. FEMS Microbiology Ecology, 2005, 54(1): 141-155. doi: 10.1016/j.femsec.2005.03.007

    [18]

    Wang L, Yu M, Liu Y, et al. Comparative analyses of the bacterial community of hydrothermal deposits and seafloor sediments across Okinawa Trough[J]. Journal of Marine Systems, 2018, 180: 162-172. doi: 10.1016/j.jmarsys.2016.11.012

    [19]

    Yanagawa K, Breuker A, Schippers A, et al. Microbial community stratification controlled by the subseafloor fluid flow and geothermal gradient at the Iheya North hydrothermal field in the Mid-Okinawa Trough (Integrated Ocean Drilling Program Expedition 331)[J]. Applied and Environmental Microbiology, 2014, 80(19): 6126-6135. doi: 10.1128/AEM.01741-14

    [20]

    Yanagawa K, Morono Y, de Beer D, et al. Metabolically active microbial communities in marine sediment under high-CO2 and low-pH extremes[J]. The ISME Journal, 2013, 7(3): 555-567. doi: 10.1038/ismej.2012.124

    [21]

    Zhang J, Sun Q L, Zeng Z G, et al. Microbial diversity in the deep-sea sediments of Iheya North and Iheya Ridge, Okinawa Trough[J]. Microbiological Research, 2015, 177: 43-52. doi: 10.1016/j.micres.2015.05.006

    [22]

    Rona P A, Scott S D. A special issue on sea-floor hydrothermal mineralization: new perspectives: preface[J]. Economic Geology, 1993, 88(8): 1935-1976. doi: 10.2113/gsecongeo.88.8.1935

    [23]

    邵珂, 陈建平, 任梦依. 印度洋中脊多金属硫化物矿产资源定量预测与评价[J]. 海洋地质与第四纪地质, 2015, 35(5): 125-133

    SHAO Ke, CHEN Jianping, REN Mengyi. Quantitative prediction and evaluation of polymetallic sulfide mineral deposits along the central Indian ocean ridge[J]. Marine Geology & Quaternary Geology, 2015, 35(5): 125-133.

    [24]

    Walsh J J. Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen[J]. Nature, 1991, 350(6313): 53-55. doi: 10.1038/350053a0

    [25]

    胡思谊. 冲绳海槽南部S3岩心沉积物的矿物学和地球化学研究[D]. 中国科学院大学(中国科学院海洋研究所)博士学位论文, 2020

    HU Siyi. Mineralogical and geochemical study of sediment core S3 from the southern Okinawa Trough[D]. Doctor Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2020.

    [26]

    杨宝菊, 吴永华, 刘季花, 等. 冲绳海槽表层沉积物元素地球化学及其对物源和热液活动的指示[J]. 海洋地质与第四纪地质, 2018, 38(2): 25-37

    YANG Baoju, WU Yonghua, LIU Jihua, et al. Elemental geochemistry of surface sediments in Okinawa Trough and its implications for provenance and hydrothermal activity[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 25-37.

    [27]

    赵维殳, 肖湘. 深海热液区微生物群落与环境适应性机理[J]. 中国科学: 生命科学, 2023, 53(5): 660-671

    ZHAO Weishu, XIAO Xiang. Microbiome and environmental adaption mechanisms in deep-sea hydrothermal vents[J]. Scientia Sinica: Vitae, 2023, 53(5): 660-671.

    [28]

    杨娅敏. 冲绳海槽南部浊流沉积层中的硫化物特征研究[D]. 中国科学院大学(中国科学院海洋研究所)博士学位论文, 2021

    YANG Yamin. Study on the characteristics of turbidite sediments hosted-sulfides deposit from the southern Okinawa Trough[D]. Doctor Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2021.

    [29]

    Zeng Z G, Chen S, Ma Y, et al. Chemical compositions of mussels and clams from the Tangyin and Yonaguni Knoll IV hydrothermal fields in the southwestern Okinawa Trough[J]. Ore Geology Reviews, 2017, 87: 172-191. doi: 10.1016/j.oregeorev.2016.09.015

    [30]

    尚鲁宁, 陈磊, 张训华, 等. 冲绳海槽南部海底热液活动区地形地貌特征及成因分析[J]. 海洋地质与第四纪地质, 2019, 39(4): 12-22

    SHANG Luning, CHEN Lei, ZHANG Xunhua, et al. Topographic features of the hydrothermal field and their genetic mechanisms in southern Okinawa Trough[J]. Marine Geology & Quaternary Geology, 2019, 39(4): 12-22.

    [31]

    Atlas R M. Handbook of Microbiological Media[M]. Boca Raton: CRC Press, 1993: 527.

    [32]

    Ruby E G, Wirsen C O, Jannasch H W. Chemolithotrophic sulfur-oxidizing bacteria from the Galapagos rift hydrothermal vents[J]. Applied and Environmental Microbiology, 1981, 42(2): 317-324. doi: 10.1128/aem.42.2.317-324.1981

    [33]

    Das A, Cao W R, Zhang H J, et al. Carbon fixation in sediments of Sino-Pacific seas-differential contributions of bacterial and archaeal domains[J]. Journal of Marine Systems, 2017, 175: 15-23. doi: 10.1016/j.jmarsys.2017.06.005

    [34]

    Cao W R, Lu D C, Sun X K, et al. Seonamhaeicola maritimus sp. nov., isolated from coastal sediment[J]. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(2): 902-908.

    [35]

    Wang F, Men X, Zhang G, et al. Assessment of 16S rRNA gene primers for studying bacterial community structure and function of aging flue-cured tobaccos[J]. AMB Express, 2018, 8(1): 182. doi: 10.1186/s13568-018-0713-1

    [36]

    Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution, 2021, 38(7): 3022-3027. doi: 10.1093/molbev/msab120

    [37]

    Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach[J]. Journal of Molecular Evolution, 1981, 17(6): 368-376. doi: 10.1007/BF01734359

    [38]

    Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences[J]. Journal of Molecular Evolution, 1980, 16(2): 111-120. doi: 10.1007/BF01731581

    [39]

    Nossa C W, Oberdorf W E, Yang L Y, et al. Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome[J]. World Journal of Gastroenterology, 2010, 16(33): 4135-444. doi: 10.3748/wjg.v16.i33.4135

    [40]

    Yang Y M, Zeng Z G, Yin X B, et al. Mineralogy, geochemistry, and sulfur isotope characteristics of sediment-hosted hydrothermal sulfide minerals from the southern Okinawa Trough[J]. Acta Oceanologica Sinica, 2021, 40(10): 129-143. doi: 10.1007/s13131-021-1836-9

    [41]

    赵一阳, 翟世奎, 李永植, 等. 冲绳海槽中部热水活动的新记录[J]. 科学通报, 1996, 41(14): 1307-1310

    ZHAO Yiyang, ZHAI Shikui, LI Yongzhi, et al. New records of submarine hydrothermal activity in middle part of the Okinawa Trough[J]. Chinese Science Bulletin, 1997, 42(7): 574-577.

    [42]

    蒋富清, 李安春, 李铁刚. 冲绳海槽北端表层沉积物过渡元素地球化学特征[J]. 海洋与湖沼, 2006, 37(1): 75-83 doi: 10.3321/j.issn:0029-814X.2006.01.012

    JIANG Fuqing, LI Anchun, LI Tiegang. Geochemical characteristics of transition elements in surface sediments northern Okinawa Trough[J]. Oceanologia et Limnologia Sinica, 2006, 37(1): 75-83. doi: 10.3321/j.issn:0029-814X.2006.01.012

    [43]

    Edlund A, Hårdeman F, Jansson J K, et al. Active bacterial community structure along vertical redox gradients in Baltic Sea sediment[J]. Environmental Microbiology, 2008, 10(8): 2051-2063. doi: 10.1111/j.1462-2920.2008.01624.x

    [44]

    Chu H Y, Sun H B, Tripathi B M, et al. Bacterial community dissimilarity between the surface and subsurface soils equals horizontal differences over several kilometers in the western Tibetan Plateau[J]. Environmental Microbiology, 2016, 18(5): 1523-1533. doi: 10.1111/1462-2920.13236

    [45]

    Teske A P. Microbial community composition in deep marine subsurface sediments of ODP Leg 201: sequencing surveys and cultivations[M]//Jørgensen B B, D'Hondt S L, Miller D J. Proceedings of the Ocean Drilling Program Scientific Results. 2006.

    [46]

    Pérez-Rodríguez I, Bohnert K A, Cuebas M, et al. Detection and phylogenetic analysis of the membrane-bound nitrate reductase (Nar) in pure cultures and microbial communities from deep-sea hydrothermal vents[J]. FEMS Microbiology Ecology, 2013, 86(2): 256-267. doi: 10.1111/1574-6941.12158

    [47]

    Rajasabapathy R, Mohandass C, Colaco A, et al. Culturable bacterial phylogeny from a shallow water hydrothermal vent of Espalamaca (Faial, Azores) reveals a variety of novel taxa[J]. Current Science, 2014, 106(1): 58-69.

    [48]

    Martins A, Tenreiro T, Andrade G, et al. Photoprotective bioactivity present in a unique marine bacteria collection from Portuguese deep sea hydrothermal vents[J]. Marine Drugs, 2013, 11(5): 1506-1523. doi: 10.3390/md11051506

    [49]

    Kaye J Z, Sylvan J B, Edwards K J, et al. Halomonas and Marinobacter ecotypes from hydrothermal vent, subseafloor and deep-sea environments[J]. FEMS Microbiology Ecology, 2011, 75(1): 123-133. doi: 10.1111/j.1574-6941.2010.00984.x

    [50]

    Cao H L, Wang Y, Lee O O, et al. Microbial sulfur cycle in two hydrothermal chimneys on the southwest Indian Ridge[J]. mBio, 2014, 5(1): e00980-13.

    [51]

    Mohandass C, Rajasabapathy R, Ravindran C, et al. Bacterial diversity and their adaptations in the shallow water hydrothermal vent at D. João de Castro Seamount (DJCS), Azores, Portugal[J]. Cahiers de Biologie Marine, 2012, 53(1): 65-76.

    [52]

    Dick G J, Lee Y E, Tebo B M. Manganese(II)-oxidizing Bacillus spores in Guaymas basin hydrothermal sediments and plumes[J]. Applied and Environmental Microbiology, 2006, 72(5): 3184-3190. doi: 10.1128/AEM.72.5.3184-3190.2006

    [53]

    Liao L, Xu X W, Jiang X W, et al. Microbial diversity in deep-sea sediment from the cobalt-rich crust deposit region in the Pacific Ocean[J]. FEMS Microbiology Ecology, 2011, 78(3): 565-585. doi: 10.1111/j.1574-6941.2011.01186.x

    [54]

    Xu M X, Wang F P, Meng J, et al. Construction and preliminary analysis of a metagenomic library from a deep-sea sediment of East Pacific Nodule province[J]. FEMS Microbiology Ecology, 2007, 62(3): 233-241. doi: 10.1111/j.1574-6941.2007.00377.x

    [55]

    魏曼曼. 劳盆地深海热液喷口沉积物中微生物群落结构研究[D]. 中南大学硕士学位论文, 2010

    WEI Manman. Study on microbial community structures in sediments from Lau Basin deep-sea hydrothermal vents[D]. Master Dissertation of Central South University, 2010.

    [56]

    Flores G E, Campbell J H, Kirshtein J D, et al. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge[J]. Environmental Microbiology, 2011, 13(8): 2158-2171. doi: 10.1111/j.1462-2920.2011.02463.x

    [57]

    Sylvan J B, Toner B M, Edwards K J. Life and death of deep-sea vents: bacterial diversity and ecosystem succession on inactive hydrothermal sulfides[J]. mBio, 2012, 3(1): e00279-11.

    [58]

    Cao W R, Wang L S, Saren G, et al. Variable microbial communities in the non-hydrothermal sediments of the Mid-Okinawa Trough[J]. Geomicrobiology Journal, 2020, 37(8): 774-782. doi: 10.1080/01490451.2020.1776800

    [59]

    张伟. 热带西太平洋深海沉积物微生物多样性及群落结构特征研究[D]. 中国科学院研究生院(海洋研究所)硕士学位论文, 2010

    ZHANG Wei. Microbial diversity and community structure in marine sediments from the tropical western Pacific[D]. Master Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2010.

    [60]

    Lee S Y, Huh C A, Su C C, et al. Sedimentation in the Southern Okinawa Trough: enhanced particle scavenging and teleconnection between the Equatorial Pacific and western Pacific margins[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2004, 51(11): 1769-1780. doi: 10.1016/j.dsr.2004.07.008

    [61]

    邵宗泽. 深海热液区化能自养微生物多样性、代谢特征与环境作用[J]. 科学通报, 2018, 63(36): 3902-3910 doi: 10.1360/N972018-00980

    SHAO Zongze. Diversity and metabolism of prokaryotic chemoautotrophs and their interactions with deep-sea hydrothermal environments[J]. Chinese Science Bulletin, 2018, 63(36): 3902-3910. doi: 10.1360/N972018-00980

    [62]

    Li Y X, Li F C, Zhang X W, et al. Vertical distribution of bacterial and archaeal communities along discrete layers of a deep-sea cold sediment sample at the East Pacific Rise (~13°N)[J]. Extremophiles, 2008, 12(4): 573-585. doi: 10.1007/s00792-008-0159-5

    [63]

    Wang P, Xiao X, Wang F P. Phylogenetic analysis of Archaea in the deep-sea sediments of west Pacific Warm Pool[J]. Extremophiles, 2005, 9(3): 209-217. doi: 10.1007/s00792-005-0436-5

  • 加载中

(7)

(2)

计量
  • 文章访问数:  365
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2023-06-19
修回日期:  2023-07-30
录用日期:  2023-07-30
刊出日期:  2023-10-28

目录